

# Cardiac Rhythm Disease Management

# **Product Performance Report**

Important Patient Management Information for Physicians





2011 First Edition – Issue 64

lssue 64

This report is available online at www.medtronic.com/CRDMProduct Performance

# A Message from the Vice President

Dear Customer,

At Medtronic, product quality and reliability have been and will continue to be a priority. For over 27 years, Medtronic has compiled and produced product performance reports with one primary goal, to provide you with the product information you need to best care for your patients.

Our commitment to you is best expressed in Medtronic's mission: "To strive without reserve for the greatest possible reliability and quality in our products; to be the unsurpassed standard of comparison and to be recognized as a company of dedication, honesty, integrity, and service." To this end, we continually explore new ways to expand, improve, and learn from our product performance systems and measures.

Our quality goals cannot be reached alone. We welcome your collaboration, insight, and recommendations. Please contact our Technical Services Department at 1 (800) 723-4636 with your feedback comments and any questions.

Your participation and assistance in returning explanted products are also critical. Returned products are tested and evaluated so that we can fully measure the performance of our devices. Please refer to the instructions on the next page for assistance in returning products to the Medtronic CRDM Returned Product Analysis Laboratory.

As we constantly strive to exceed your expectations, we thank you for your dedication to improving and saving the lives of those suffering from cardiac rhythm disorders.

With appreciation and warm regards,

Tim Samsel Vice President, Quality and Regulatory Medtronic Cardiac Rhythm Disease Management Medtronic, Inc.

# **Contact Information**

We invite our customers to use these telephone numbers to call with suggestions, inquiries, or specific problems related to our products.

#### **US Technical Services Department**

Phone: 1 (800) 723-4636 (Tachy) 1 (800) 505-4636 (Brady) 1 (800) 824-2362 Fax: www.medtronic.com/corporate/contact.jsp

#### For questions related to this CRDM Product

Performance Report, please call US Technical Services at the number above, or write to:

> Timothy Smith Medtronic, Inc. 8200 Coral Sea Street NE MS MVN61 Mounds View, MN 55112 USA

Email: tim.smith@medtronic.com

#### **International Technical Centers**

Europe (Heerlen NL) Japan (Tokyo)

+31-45-566-8844 +81-3-5753-4116

#### For questions related to returning explanted product or returning product that shows signs of malfunction, please contact:

Outside the United States:

Your Medtronic representative or international technical center at the number above.

Within the United States: Your Medtronic representative or

CRDM Returned Product Analysis Laboratory

| Phone: | 1 (800) 328-2518, ext. 44800       |
|--------|------------------------------------|
| Email: | crdm.returnedproduct@medtronic.com |

#### **Editorial Staff**

#### **Independent Physician Quality Panel**

Angelo Auricchio, MD, Lugano, Switzerland Steven J. Compton, MD, Anchorage, AK John P. DiMarco, MD, PhD, Charlottesville, VA Kevin Hackett, MD, Columbus, OH R. Hardwin Mead, MD, Palo Alto, CA

#### Editor

Tim Samsel, Vice President, CRDM Quality and Regulatory

#### **Trademarks of Medtronic, Inc.**

| Adapta®             | InSync III     | Quick Look™       |
|---------------------|----------------|-------------------|
| AT500®              | Protect™       | Relia™            |
| Attain®             | InSync Sentry® | Secura®           |
| CapSure®            | Intrinsic®     | SelectSecure®     |
| CapSure Sense®      | Jewel®         | Sensia®           |
| CapSureFix®         | Kappa®         | Sensing Assurance |
| Capture             | Legend®        | Sigma®            |
| Management®         | Marquis®       | Spectraflex       |
| CareLink®           | Maximo®        | Sprint®           |
| Concerto®           | Medtronic      | Sprint Fidelis®   |
| Consulta®           | CareAlert®     | Sprint Quattro®   |
| EnPulse®            | Medtronic      | Sprint Quattro    |
| EnRhythm®           | CareLink®      | Secure®           |
| EnTrust®            | Micro Jewel    | Sprint Quattro    |
| GEM <sup>®</sup>    | Micro Minix    | Secure S®         |
| InSync <sup>®</sup> | Minix          | SureFix®          |
| InSync ICD®         | Minuet         | Target Tip®       |
| InSync Marquis™     | MVP®           | Tenax             |
| InSync II Marquis™  | Onyx®          | Thera®-i          |
| InSync III Marquis™ | Patient Alert™ | Transvene         |
| InSync Maximo®      | Preva          | Versa®            |
| InSync II           | Prevail®       | Virtuoso®         |
| Protect™            | Prodigy        |                   |
|                     |                |                   |

# **CRDM Product Performance Report**

Introduction 1 Method for Estimating CRT, ICD, and IPG Device Performance 6

- CRT Cardiac Resynchronization Therapy 10 CRT Survival Summary 17 CRT Reference Chart 20
- ICD Implantable Cardioverter Defibrillators 21 ICD Survival Summary 32 ICD Reference Chart 36 ICD Connector Styles 38
- IPG Implantable Pulse Generators 39 IPG Survival Summary 66 IPG Reference Chart 73

#### Leads

Method for Estimating Lead Performance 76

#### Left-Heart Leads 81

Lead Survival Summary 84 US Returned Product Analysis Summary 84 US Reports of Acute Lead Observations 84 Reference Chart 85

#### Defibrillation Leads 86

Lead Survival Summary 94 US Returned Product Analysis Summary 95 US Reports of Acute Lead Observations 95 Reference Chart 96

#### Pacing Leads 97

Lead Survival Summary 119 US Returned Product Analysis Summary 122 US Reports of Acute Lead Observations 123 Reference Chart 124

### ICD and CRT-D Charge Time Performance 132

#### Advisories 138

(in order of communication date, from most recent to oldest)

#### Performance Notes 148

Dual Chamber Pacemakers with Measurement Lock-up ERI Kappa 600, 700, 800, 900, EnPulse, Adapta, Versa, Sensia, Relia, and Vitatron Models E50A1, E60A1, and G70A1 148 Helix Retraction of the Sprint Quattro Secure S 6935 and Sprint Quattro Secure 6947 149 Potential Malfunction of CRT, ICD, and IPG Products due to Anomalies in MOSFET Integrated Circuit Technology 150 Clinical Management of VCM near Elective Replacement 151 Ensuring the Accuracy of Battery Longevity Estimates 152 Interactions between Cardiac Pacing and Ventricular Arrhythmia Initiation 153 AT500 Pacing System Follow-Up Protocol 154 Insertion of the Lead into the Device 155 GEM II DR/VR and GEM III DR/VR/AT ICD Battery Discharge Behavior 156 General Follow-Up and Replacement of ICD Leads 157 Clinical Management of High-Voltage Lead System Oversensing 158 Tests and Observations for Clinical Assessment of Chronic Pacing Leads 159

Epi/Myocardial Pacing Leads 126

VDD Single Pass Pacing Leads 130

US Returned Product Analysis Summary 129 US Reports of Acute Lead Observations 129

US Returned Product Analysis Summary 131

US Reports of Acute Lead Observations 131

Lead Survival Summary 128

Lead Survival Summary 131

Reference Chart 129

Reference Chart 131

### 2011 First Edition Issue 64

Date cutoff for this edition is January 31, 2011

This report is available online at www.medtronic.com/CRDM ProductPerformance

E

# 51,2011

# Introduction

# All product performance reports are not created equal. For 27 years, Medtronic has monitored performance via both returned product analysis and multicenter clinical studies.

This Product Performance Report (PPR) presents device survival estimates, advisory summaries, performance notes, and other information pertinent to assessing the performance of Medtronic implantable pulse generators (IPGs), implantable cardioverter defibrillators (ICDs), cardiac resynchronization therapy (CRT) devices, and implantable pacing and defibrillation leads.

This Product Performance Report has been prepared in accordance with International Standard ISO 5841- 2:2000(E).

The survival estimates provided in this report are considered to be representative of worldwide performance.

#### **Survival Estimates**

Medtronic, like other companies, monitors CRT, ICD, and IPG device performance using returned product analysis. We also monitor CRT, ICD, and IPG device performance using an active multicenter clinical study.

Returned product analysis is a passive approach to assessing product performance. This approach provides a suitable measure of product performance only when a significant number of explanted products are returned to the manufacturer. Returned product analysis provides a measure of hardware performance, but not necessarily the total clinical performance (e.g., the incidence of complications such as infection, erosion, muscle stimulation, etc. are not estimated).

The survival estimates provided in this report for CRT, ICD, and IPG devices are based on returned product analysis. This approach is suitable because a significant number of explanted generators are returned for analysis.

Lead performance is monitored differently. In contrast to CRT, ICD, and IPG devices, a very small percentage of leads are returned to the manufacturer due to the difficulty of explanting them. For leads, an active clinical study provides more accurate survival estimates compared to estimates based solely on returned product analysis.

Survival estimates for leads are based on clinical observations recorded via Medtronic CRDM's System Longevity Study. This multicenter clinical study is designed to record clinical observations representative of the total clinical experience. Therefore, the lead survival estimates include both lead hardware failure and lead-related medical complications, and do not differentiate a lead hardware failure from other clinical events such as exit block, perforation, dislodgement, or concurrent pulse generator failure. The actuarial life table method is applied to the data collected for CRT, ICD, and IPG devices and leads to provide the survival estimates included in this report. A general introduction to understanding this method of survival analysis is given later in this introduction.

#### **ICD Charge Times**

Since May 2000, Medtronic has provided important information on charge time performance of ICDs. The information provided in this report shows how ICD charge time can vary during the time a device is implanted. The information is presented in graphical format showing charge time as a function of implant time. The data for charge times are collected from devices enrolled in the System Longevity Study.

#### Advisory Summaries

This Product Performance Report includes summaries of all advisories applicable to the performance of the products included in the report. An advisory is added to the report when any product affected by the advisory remains in service and at risk of experiencing the behavior described in the advisory. The advisory will remain in the report until Medtronic estimates no product affected by the advisory remains active, or the risk of experiencing the behavior described in the advisory has passed.

For most advisories, the products subject to the advisory retain essentially the same survival probability as the products of the same model(s) not affected by the advisory. For those advisories where the survival probabilities of the affected and non-affected populations do differ significantly, Medtronic will provide separate survival data for each population. The separate survival data will remain in the report until Medtronic estimates no affected product remains in active service.

#### **Performance** Notes

This report concludes with a number of Performance Notes developed by Medtronic to provide additional product performance information relevant to follow-up practice and patient management.

Medtronic urges all physicians to return explanted products and to notify Medtronic when a product is no longer in use, regardless of reason for explant or removal from use.

#### How You Can Help

Medtronic urges all physicians to return explanted products and to notify Medtronic when a product is no longer in use, regardless of the reason for explant or removal from use. The procedures for returning products vary by geographic location.

Mailer kits with prepaid US postage are available for use within the United States to send CRTs, ICDs, IPGs, and leads to Medtronic's CRDM Returned Product Analysis Lab. These mailers are sized to accommodate the devices and leads from a single patient or clinical event and are designed to meet US postal regulations for mailing biohazard materials.

If the product being returned is located outside the United States, please contact your local Medtronic representative for instructions.

Medtronic also requests the return of explanted products from non-clinical sources, such as funeral homes, and will assume responsibility for storage and disposal of the product once received.

Mailer kits can be obtained by contacting the Returned Product Lab. For information on how to contact the Lab, refer to the Contact Information page of this report.

We continually strive to improve this CRDM Product Performance Report. In keeping with this philosophy, we ask for your suggestions on the content and format of this report, as well as any information you have regarding the performance of Medtronic products. For information on how to comment on this report, see the Contact Information page of this report.

#### **Overview of Survival Analysis**

Medtronic uses the Cutler-Ederer actuarial life table method to estimate the length of time over which devices and leads will perform within performance limits established by Medtronic. This probability to perform within performance limits over time is called the *survival probability*.

Devices and leads are followed until an *event* occurs where the device or lead ceases to operate within performance limits. The length of time from implant to the event is recorded for individual devices and leads in the *population sample*. The population sample for CRT, ICD, and IPG devices is made up of patients whose devices are registered as implanted in the United States. For leads, the population sample is the patients enrolled in our multicenter, international prospective System Longevity Study.

For IPGs and ICDs, the events can be normal battery depletion or a device malfunction. For leads, the events are complications as defined in the study protocol.

The actuarial life table method allows Medtronic to account for devices and leads removed from service for reasons unrelated to performance. Devices and leads removed for these reasons are said to be *suspended*. Examples include devices and leads:

- still in service at the time the analysis is performed
- removed to upgrade the device or lead
- no longer in service due to the death of the patient for reasons unrelated to the device or leads
- implanted in patients who are lost to follow-up

For each suspension, the device or lead has performed within performance limits for a period of time, after which its performance is unknown.

#### An Example

The following example describes the survival analysis method used to establish the survival probability estimates for Medtronic CRDM devices and leads. The example is intended to provide an overview of the analysis process. The definitions of malfunctions and complications, and other details specific to calculating device and lead survival estimates, are provided in the articles *Method for Estimating CRT, ICD, and IPG Device Performance (page 6)* and *Method for Estimating Lead Performance (page 75)*.

# Introduction continued

# This simple example describes the survival analysis method used to establish the survival probability estimates for Medtronic CRDM devices and leads.

#### Figure 1

Implant times for devices of 16 patients. Gray bars with an orange X indicate devices removed from service due to an event. Blue bars indicate suspended devices.

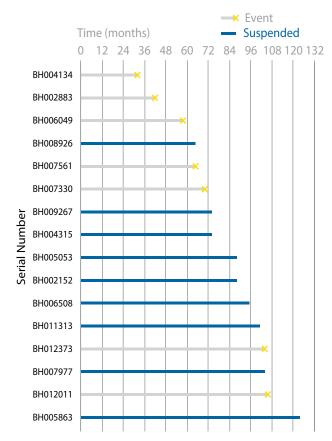



Figure 1 illustrates 16 patients who have implanted devices. The first patient's device (serial number BH004134) operated within performance limits for 32 months. At that time an event occurred. The fourth patient's device (serial number BH008926) did not have an event but is suspended, perhaps because it was still in service at the time of the analysis. This patient had 66 months of implant experience. In this example, Figure 1 shows that seven of the 16 devices suffered events, and nine are suspended.

The first step in the life table method is to divide the implant time into intervals of a specific length. This example will use 12-month intervals. The number of devices entered, suspended, and removed due to an event are counted and summarized, as shown in Table 1. For the first two intervals, all 16 devices survived and none were removed. In the interval (24-36 months), device BH004134 was removed due to an event. Therefore the table entries show that 16 entered the interval, none were suspended, and one was removed due to an event.

For the interval from 36-48 months, only 15 devices entered the interval and one was removed for an event. The remaining intervals are examined and the data entered in columns A, B, and C in like manner. The rest of the columns are filled in using calculations on the data in columns A, B, and C.

The *Effective Sample Size* (D) is the number of devices with full opportunity to experience a qualifying event in the interval. This is computed by subtracting one half the number suspended in the interval from the number that entered the interval. This calculation more accurately reflects the number of devices that could have experienced a qualifying event than simply using the number that entered the interval. Using the number of devices that enter an interval overestimates the sample size because the suspended devices do not complete the interval. Ignoring the suspended devices underestimates the sample size because suspended devices are not credited with their full service time. Using one half the number of suspended devices effectively splits the difference.

The next column in the table is the *Proportion with Event* (E). This is the proportion of devices that had an event in the interval. It is calculated by dividing the *Number of Events* (C) by the *Effective Sample Size* (D). The number can be interpreted as the estimated rate at which events occur in the time interval.

The *Interval Survival Probability* (F) is the estimate of probability of surviving to the end of the interval assuming the device was working at the beginning of the interval. It is calculated as 1 minus the *Proportion with Event* (E). This number can be interpreted as the estimated rate at which events **do not** occur in the time interval.

# Introduction continued

The Cumulative Survival Probabilities (G) from the last column of the life table can be plotted versus time intervals in the first column to give a survival curve. Figure 2 shows the survival curve for the data shown in Table 1.

|                       | А                 | В                   | с                   | D                        | E                        | F                                   | G                                     |
|-----------------------|-------------------|---------------------|---------------------|--------------------------|--------------------------|-------------------------------------|---------------------------------------|
| Interval<br>in Months | Number<br>Entered | Number<br>Suspended | Number<br>of Events | Effective<br>Sample Size | Proportion<br>with Event | Interval<br>Survival<br>Probability | Cumulative<br>Survival<br>Probability |
| 0                     | 16                | 0                   | 0                   | 16                       | 0.000                    | 1.000                               | 1.000                                 |
| 0-12                  | 16                | 0                   | 0                   | 16                       | 0.000                    | 1.000                               | 1.000                                 |
| 12-24                 | 16                | 0                   | 0                   | 16                       | 0.000                    | 1.000                               | 1.000                                 |
| 24-36                 | 16                | 0                   | 1                   | 16                       | 0.063                    | 0.938                               | 0.938                                 |
| 36-48                 | 15                | 0                   | 1                   | 15                       | 0.067                    | 0.933                               | 0.875                                 |
| 48-60                 | 14                | 0                   | 1                   | 14                       | 0.071                    | 0.929                               | 0.813                                 |
| 60-72                 | 13                | 1                   | 2                   | 12.5                     | 0.160                    | 0.840                               | 0.683                                 |
| 72-84                 | 10                | 2                   | 0                   | 9                        | 0.000                    | 1.000                               | 0.683                                 |
| 84-96                 | 8                 | 3                   | 0                   | 6.5                      | 0.000                    | 1.000                               | 0.683                                 |
| 96-108                | 5                 | 2                   | 2                   | 4                        | 0.500                    | 0.500                               | 0.341                                 |
| 108-120               | 1                 | 0                   | 0                   | 1                        | 0.000                    | 1.000                               | 0.341                                 |
| 120-132               | 1                 | 1                   | 0                   | 0.5                      | 0.000                    | 1.000                               | 0.341                                 |
|                       |                   |                     |                     |                          |                          |                                     |                                       |

#### Table 1Life Table for Figure 1

#### Definitions:

| Α                                                           | В                                                                                  | C                                                             | D                                                                                                                                                                                                       | E                                                                                                                                                        | F                                                                                                                                                                                                          | G                                                                                                                                                                                                                       |
|-------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Number<br>Entered                                           | Number<br>Suspended                                                                | Number<br>of Events                                           | Effective<br>Sample Size                                                                                                                                                                                | Proportion<br>with Event                                                                                                                                 | Interval<br>Survival<br>Probability                                                                                                                                                                        | Cumulative<br>Survival<br>Probability                                                                                                                                                                                   |
| Number of devices<br>active at the start<br>of the interval | Number of devices<br>removed from<br>service for reasons<br>other than an<br>event | Number of units<br>removed from<br>service due to an<br>event | Number of<br>units with full<br>opportunity to<br>experience a<br>qualifying event<br>in the interval.<br>Computed by<br>subtracting one<br>half the Number<br>Suspended from<br>the Number<br>Entered. | Proportion of<br>devices that<br>had an event<br>in the interval.<br>Computed by<br>dividing the<br>Number of Events<br>by the Effective<br>Sample Size. | The probability<br>of surviving to<br>the end of the<br>interval, assuming<br>the device was<br>working at the<br>beginning of<br>the interval.<br>Computed as<br>1 minus the<br>Proportion With<br>Event. | The overall<br>probability of<br>surviving to the<br>end of the interval.<br>Computed by<br>multiplying the<br>Interval Survival<br>Probability by the<br>previous interval's<br>Cumulative<br>Survival<br>Probability. |

Cumulative Survival Probability (G) is the estimate of the unconditional probability of surviving to the end of the interval. It is computed by multiplying the Interval Survival Probability (F) by the previous interval's Cumulative Survival Probability. The probability of surviving to 132 months in the example is estimated for the table to be 0.341, or 34.1%. The *Cumulative Survival Probabilities* (G) of the life table can be plotted versus time intervals in the first column to give a survival curve. Figure 2 shows the survival curve for the data in Table 1.



#### Figure 2 Survival Curve for Data Given in Table 1

#### **Confidence Intervals**

Since survival curves are based on a sample of the device and lead population, they are only estimates of survival. The larger the effective sample size, the more confident the estimate. A confidence interval can be calculated to assess the confidence in an estimate. In the Product Performance Report, Medtronic provides a 95% confidence interval. This can be interpreted as meaning that 95% of the time, the true survival of the device will fall somewhere in the interval.

#### Survival Curves in the Product Performance Report

Since the survival estimate can become very imprecise with small effective sample sizes, Medtronic truncates the survival curve when the effective sample size is less than 100 for CRTs, ICDs, and IPGs, and when the number entered is less than 50 for leads. The survival charts in the Product Performance Report show the effective sample size for each year interval where Medtronic has experience. When the effective sample size reaches 100 for CRTs, ICDs, and IPGs or when the number entered reaches 50 for leads, the next data point is added to the survival curve.

Although the report provides tabular data in one-year intervals, the curves are actually computed and plotted using 1-month intervals (for CRT, ICD, and IPG devices) or 3-month intervals (for leads).

A number of references are available for additional information on survival analysis using the Cutler-Ederer life table method.<sup>1</sup>

<sup>&</sup>lt;sup>1</sup> Lee, Elisa T.(2003) Statistical Methods for Survival Data Analysis – 3rd Edition (Wiley Series in Probability and Statistics).

# Method for Estimating CRT, ICD, and IPG Device Performance

Medtronic urges all physicians to return explanted products and to notify Medtronic when a product is no longer in use, regardless of reason for explant or removal from use.

The performance of CRT, ICD, and IPG devices is expressed in terms of device survival estimates, where "survival" refers to the function of the device, not the survival of the patient. These survival estimates are intended to illustrate the probability that a device will survive for a given number of years with neither malfunction nor battery depletion.

The survival estimates are determined from the analysis of Medtronic CRDM's United States device registration data and US returned product analysis data. These data are presented graphically and numerically.

Because this analysis is based on returned product analysis, the performance data does not reflect any device-related medical complications such as erosion, infection, muscle stimulation, or muscle inhibition.

#### Categorization of Depleted and Malfunctioning Devices for Survival Analysis

For survival estimation, every device returned to Medtronic CRDM and analyzed in the CRDM Returned Product Analysis laboratory is assigned to one of three categories. The device 1) is functioning normally, 2) has reached normal battery depletion, or 3) has malfunctioned. This categorization is combined with data from our device registry for the total number of implants and the implant durations to create the survival curves presented on the following pages.

#### **Definition of Malfunction**

Medtronic CRDM considers a device as having malfunctioned whenever the analysis shows that any parameter was outside the performance limits established by Medtronic while implanted and in service. To be considered a malfunction or battery depletion, the device must have been returned to Medtronic and analyzed.

Devices damaged after explant, damaged due to failure to heed warnings or contraindications in the labeling, or damaged due to interaction with other implanted devices (including leads) are not considered device malfunctions.

A device subject to a safety advisory is not considered to have malfunctioned unless it has been returned to Medtronic CRDM and found, through analysis, to actually have performed outside the performance limits established by Medtronic. Not all malfunctions expose the patient to a loss of pacing or defibrillation therapy. Some malfunctions included in the following survival estimates may not have been detected at all by the physician or the patient. These malfunctions, however, are included in the survival estimates and provide important feedback to our product development organization.

To provide insight into the nature of malfunctions, each malfunction is categorized as Malfunction with Compromised Therapy Function or Malfunction without Compromised Therapy Function. A summary of these malfunctions is presented for the most recently market-released models.

For this report, Normal Battery Depletion, Malfunction with Compromised Therapy Function, and Malfunction without Compromised Therapy Function are defined as follows:

Normal Battery Depletion – The condition when:

- (a) a device is returned with no associated complaint and the device has reached its elective replacement indicator(s) with implant time that meets or exceeds the nominal (50 percentile) predicted longevity at default (labeled) settings, or
- (b) a device is returned and the device has reached its elective replacement indicator(s) with implant time exceeding 80% of the expected longevity calculated using the available device setting information.

Medtronic CRDM establishes expected longevity by statistically characterizing the power consumed by the device and the power available from the device battery. This characterization is applied to a number of parameter configurations to derive a statistical mean longevity value and standard deviation for each parameter configuration. The statistical mean value minus three standard deviations is used as the expected longevity for determining if a battery depleted normally.

# Method for Estimating CRT, ICD, and IPG Device Performance, continued

# The Standard Actuarial Method is used to estimate IPG and ICD survival. This product performance report has been prepared in accordance with International Standard ISO 5841-2:2000(E).

For reference purposes, the following pages include estimated longevities for each model. The actual longevity achieved for any device while implanted will depend on the actual programmed parameters and patient factors, and may differ significantly from these estimates.

#### Malfunction with Compromised Therapy Function

The condition when a device is found to have malfunctioned in a manner that compromised pacing or defibrillation therapy (including complete loss or partial degradation), while implanted and in service, as confirmed by returned product analysis.

*Examples:* Sudden loss of battery voltage; accelerated current drain such that low battery was not detected before loss of therapy; sudden malfunction during defibrillation therapy resulting in aborted delivery of therapy, intermittent malfunction where therapy is compromised while in the malfunction state.

#### Malfunction without Compromised Therapy Function

The condition when a device is found to have malfunctioned in a manner that *did not* compromise pacing or defibrillation therapy, while implanted and in service, as confirmed by returned product analysis.

*Examples:* Error affecting diagnostic functions, telemetry function, data storage; malfunction of a component that causes battery to lose power quickly enough to cause premature battery depletion, but slowly enough that the condition is detected through normal follow-up before therapy is lost; mechanical problems with connector header that do not affect therapy.

#### **Expanded Malfunction Detail**

The malfunctions are further divided into categories that identify the subject area of the malfunction. The malfunctions are divided into the following subject areas:

Electrical Component – Findings linked to electrical components such as integrated circuits, resistors, capacitors, diodes, etc.

Electrical Interconnect – Findings linked to the connections between electrical components such as wires, solder joints, wire bonds, etc.

Battery – Findings linked to the battery and its components

Software/Firmware – Findings linked to software or firmware function

Possible Early Battery Depletion – Findings where the actual reported implant time is less than 80% of the expected longevity calculated using the available device setting information with no device malfunction observed. There may not be sufficient device setting information to determine conclusively if battery depletion was normal or premature in the absence of a specific root cause finding. However, returned devices meeting the above criteria are conservatively classified as Possible Early Battery Depletion malfunctions.

Other – Findings related to other components such as insulators, grommets, setscrews, and packaging, and findings where analysis is inconclusive

#### **Returned Product Analysis Process**

Analysis of returned product is performed according to written procedures. These procedures determine the minimum analysis required. The analysis required varies depending on the type of device, age of the device, the associated information received with the device, actual experience with models of similar design, and other factors. Additional analysis is performed as necessary to investigate a performance concern from a customer, or to collect specific reliability data.

When a device is returned with a performance concern from a customer, the general analysis process includes a preliminary analysis of the device in its as-received condition, followed by an automated functional test using test equipment equivalent to the equipment used in manufacturing.

When a malfunction is identified, failure analysis is performed to provide the detailed information necessary to investigate possible causes and actions. Medtronic CRDM maintains in-house expertise and performs its failure analysis using facilities it owns and supports. This capability permits detailed failure analysis.

# Method for Estimating CRT, ICD, and IPG Device Performance, continued

Medtronic CRDM adjusts all-cause survival estimates to account for underreporting. While this lowers our all-cause survival estimates, we feel it gives a more accurate perspective on real performance.

#### Statistical Methods for Survival Analysis

Of the several different statistical methods available for survival analysis, the Standard Actuarial Method, with suspensions assumed distributed evenly within the intervals (Cutler-Ederer Method), is used to determine estimates of IPG and ICD survival. This method is commonly used by medical researchers and clinicians.

Implant times are calculated from the implant date to the earlier of the explant date or the cutoff date of the report. From this data an estimate of the probability of device survival is calculated at each monthly interval.

On the following pages, each graph includes a survival curve where events include malfunctions and normal battery depletions. This survival curve is a good representation of the probability a device will survive a period of time without malfunction and without battery depletion. For example, if a device survival probability is 95% after 5 years of service, then the device has a 5% chance of being removed due to battery depletion or malfunction in the first 5 years following implant.

In addition, a second curve is included to show survival excluding normal battery depletion. This curve is a good representation of the probability for a device to survive without malfunction. This curve includes only malfunctions as events and excludes normal battery depletion.

Since the survival estimate can become very imprecise with small effective sample sizes, Medtronic truncates the survival curve when the effective sample size is less than 100 for CRT, ICD, and IPG devices. The survival charts in the Product Performance Report show the effective sample size for each year interval where we have experience. When the effective sample size reaches 100, the next data point is added to the survival curve.

Although the report provides tabular data in one-year intervals, the curves are actually computed and plotted using one-month intervals.

The data in the tables are rounded to the nearest tenth of one percent. Occasionally, a graph may show 100% survival, but have one or more malfunctions or battery depletions. This occurs because, even with the malfunctions or battery depletions, the data rounds to 100%.

The survival curves are statistical estimates. As performance experience accumulates, the estimation improves. Confidence intervals are provided as a way to indicate the degree of certainty of the estimates. Greenwood's formula is used to calculate corresponding 95% confidence intervals for the standard errors, and the complementary log-log method is used to produce the confidence bounds.

# Sample Size and How the Population and Population Samples Are Defined

The population sample from which the survival estimates are derived is comprised of the devices registered as implanted in the United States as of the report cutoff date. The number of registered implants, as well as an estimate of the number that remain in active service, is listed for each model. To be included in the population, the device must have been registered with Medtronic's registration system and implanted for at least one day.

This sample based on US implants is considered to be representative of the worldwide population, and therefore the survival estimates shown in this report should be representative of the performance worldwide of these models.

A CRT, ICD, or IPG model or model family will be included in this report when it has accumulated at least 10,000 implant months and will remain in the report as long as at least 500 devices remain active.

# Methods Used to Adjust for Underreporting of Malfunction and Battery Depletion

The tables on the following pages show the actual number of malfunctions and battery depletions recorded by the analysis lab for US registered devices. Since not all devices are returned to Medtronic CRDM for analysis, these numbers underestimate the true number of malfunctions and battery depletions. To more accurately estimate the all-cause device survival probabilities, the number of malfunctions and battery depletions used to plot each interval of the all-cause survival curves is adjusted (multiplied) by a factor that is based on an estimate of the magnitude of underreporting. The magnitude of underreporting is estimated by analyzing experience in Medtronic's Device And Registrant Tracking (DART) system.

The DART system is an important element of Medtronic's Quality System. The DART system is designed to meet or exceed the US FDA's device tracking requirements set forth by the Safe Medical Devices Act. In the United States, over 98% of Medtronic's CRT, ICD, and IPG implants become registered in the DART system. continued Because pacemakers do not cure the patient's underlying health problem, when a pacemaker stops functioning (due to either normal battery replacement or malfunction) it is replaced with a new pacemaker. Therefore, the replacement recorded in the DART system is a good indication that the previous pacemaker experienced either battery depletion or malfunction. The fraction of replaced devices that are subsequently returned can be used to estimate the correction factor for the under reporting of the combination of battery depletion and malfunction.

Note that devices of patients who have expired do not factor into the calculation of the correction. It is possible some proportion of these device experienced battery depletion or malfunction. Since these are not counted into the correction factor based on the return rate of replaced devices, a correction factor based only on the return rate of replaced devices may still underestimate the true rate of battery depletion and malfunction. However, devices that are replaced because the patient is receiving a system upgrade or are removed because the patient no longer needs it (e.g., due to heart transplant) do contribute to the calculation of the correction factor and therefore impart an opposite bias.

Also note that this method of calculating the correction factor cannot distinguish between devices that are removed due to malfunction and those due to normal battery depletion. It might seem intuitive that devices that unexpectedly malfunction should be much more likely to be returned to the manufacturer than a device with ordinary normal battery depletion. But this has not been conclusively demonstrated. Therefore, this method only provides a correction factor reflecting the combination of battery depletion and malfunction.

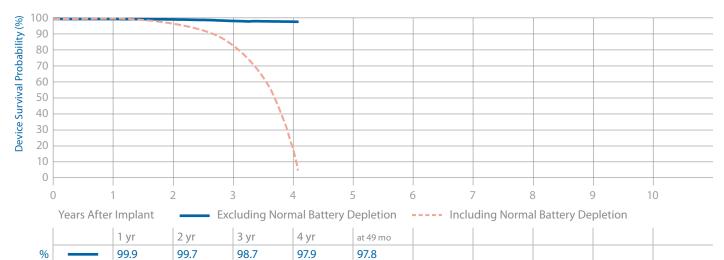
No adjustment for underreporting is applied to the malfunction-free survival curve because a method for estimating malfunction-only underreporting has not been developed.

#### Adjustments to Registered Implants to Compensate for Unreported Devices Removed from Service

Devices are at times removed from service for reasons other than device malfunction or battery depletion. Examples are devices removed from service due to nondevice related patient mortality and devices removed due to changes in the patient's medical condition. Because an accurate estimate of device survival depends on an accurate estimate of the number of devices in service, it is important not to overstate the number of devices in service.

To ensure the number of devices in service is not overstated, Medtronic addresses this underreporting in two ways. Regular updates obtained from the Social Security Administration about deceased persons is used to update Medtronic's DART data about patients who have died but whose deaths had not been reported to Medtronic. In addition, the patient mortality rate derived from our DART system is monitored and compared to published mortality rates for comparable patient populations. If, during calculation of the survival curves, the patient mortality indicated by the data in DART is significantly different from published rates, an adjustment is applied to correct the difference.

## 7289 InSync II Marquis


| US Market Release                                                                              | Jul-03 |
|------------------------------------------------------------------------------------------------|--------|
| Registered US Implants                                                                         | 28,000 |
| Estimated Active US Implants                                                                   | 100    |
| Normal Battery Depletions (US)                                                                 | 6,470  |
| Advisories: <u>See page 145</u> – 2005 Potential<br>Premature Battery Depletion Due to Battery | Short  |

| Malfunctions (US)                            |
|----------------------------------------------|
| Therapy Function Not Compromised             |
| Electrical Component                         |
| Software/Firmware                            |
| Possible Early Battery Depletion             |
| Therapy Function Compromised                 |
| Battery (9 malfunctions related to advisory) |
| Electrical Component                         |

#### Product Characteristics

> 32 10 22

| NBD Code             | VVED        |
|----------------------|-------------|
| Serial Number Prefix | PRJ         |
| Max Delivered Energy | 30 J        |
| Estimated Longevity  | See page 20 |
|                      |             |



4.2

1,000

# 24,000 Effective Sample Size

99.7

%

96.7

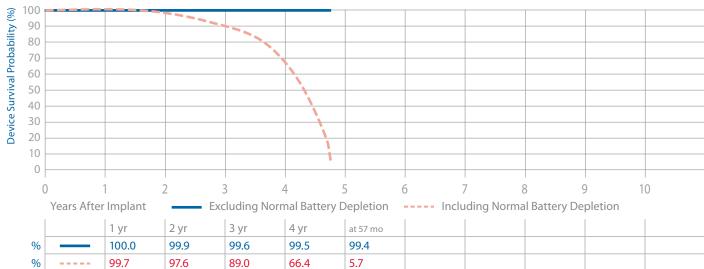
17,000

82.4

12,000

18.3

2,000


### 7297 InSync Sentry

| US Market Release              | Nov-04 |
|--------------------------------|--------|
| Registered US Implants         | 9,000  |
| Estimated Active US Implants   | 4      |
| Normal Battery Depletions (US) | 2,336  |
| Advisories                     | None   |

| Malfunctions (US)                |
|----------------------------------|
| Therapy Function Not Compromised |
| Battery                          |
| Electrical Component             |
| Software/Firmware                |
| Possible Early Battery Depletion |
| Therapy Function Compromised     |
| Electrical Component             |

#### **Product Characteristics**

| NBD Code             | VVED        |
|----------------------|-------------|
| Serial Number Prefix | PRK         |
| Max Delivered Energy | 35 J        |
| Estimated Longevity  | See page 20 |
|                      |             |



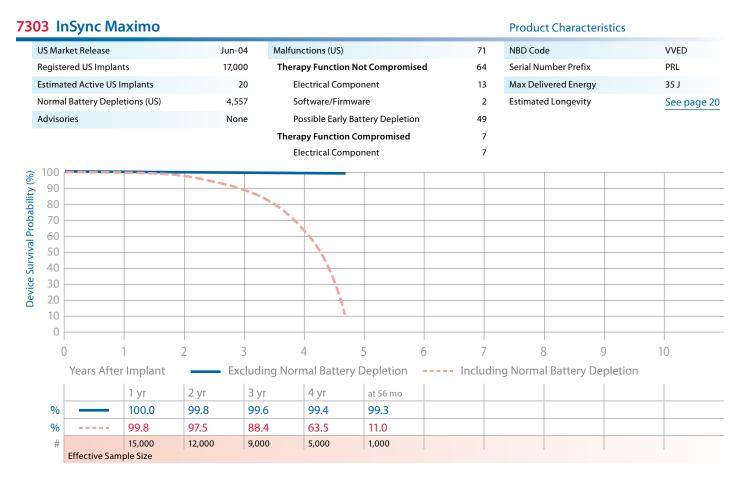
300

3,000

# 7299 InSync Sentry

#

8,000

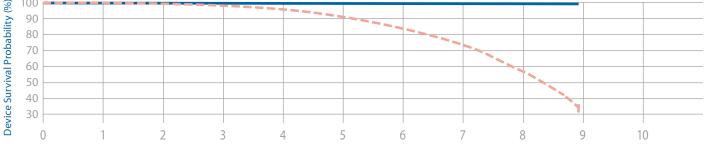

Effective Sample Size

6,000

5,000

| 7299 I                                                                 | nSync Se        | entry        |        |        |                    |                  |          | Product Character    | istics |           |
|------------------------------------------------------------------------|-----------------|--------------|--------|--------|--------------------|------------------|----------|----------------------|--------|-----------|
| US Ma                                                                  | rket Release    |              | Арі    | r-05 N | lalfunctions (US)  |                  | 133      | NBD Code             | VVE    | ED        |
| Regist                                                                 | ered US Impla   | nts          | 31,    | 000 -  | Therapy Function I | Not Compromised  | 124      | Serial Number Prefix | PR     | <         |
| Estima                                                                 | ated Active US  | Implants     | 3,     | 000    | Electrical Comp    | oonent           | 15       | Max Delivered Energy | 35.    | J         |
| Norm                                                                   | al Battery Depl | letions (US) | 5,     | 920    | Software/Firmv     | ware             | 2        | Estimated Longevity  | See    | e page 20 |
| Adviso                                                                 | ories           |              | N      | one    | Possible Early B   | attery Depletion | 107      |                      |        | 1 3       |
|                                                                        |                 |              |        | -      | Therapy Function ( | , ,              | 9        |                      |        |           |
|                                                                        |                 |              |        |        | Electrical Comp    | -                | 9        |                      |        |           |
| <b>③</b> 100                                                           |                 |              |        |        |                    |                  |          |                      |        |           |
| ۲                                                                      |                 |              |        |        |                    |                  |          |                      |        |           |
| 08 bilit                                                               |                 |              |        |        |                    |                  |          |                      |        |           |
| qpado 20                                                               |                 |              |        |        |                    |                  |          |                      |        |           |
| DI 60                                                                  |                 |              |        |        |                    |                  |          |                      |        |           |
| 50 IX                                                                  |                 |              |        |        |                    |                  |          |                      |        |           |
| Device Survival Probability<br>0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 |                 |              |        |        |                    |                  |          |                      |        |           |
| e 30                                                                   |                 |              |        |        |                    |                  |          |                      |        |           |
| 01 EV                                                                  |                 |              |        |        |                    |                  |          |                      |        |           |
| <u>م</u> 10                                                            |                 |              |        |        |                    |                  |          |                      |        |           |
| 0                                                                      |                 |              |        |        |                    |                  |          |                      |        |           |
|                                                                        | 0               | 1            | 2      | 3      | 4                  | 5 6              | 7        | 8                    | 9 10   |           |
|                                                                        | Years Afte      | er Implant   | _      | 0      | Normal Battery     |                  | Includin | g Normal Battery De  |        |           |
|                                                                        |                 | 1 yr         | 2 yr   | 3 yr   | 4 yr               | at 56 mo         |          |                      |        |           |
| %                                                                      |                 | 100.0        | 99.9   | 99.7   | 99.4               | 99.1             |          |                      |        |           |
| %                                                                      |                 | 99.8         | 97.7   | 89.3   | 63.5               | 8.5              |          |                      |        |           |
| #                                                                      |                 | 27,000       | 22,000 | 17,000 | 8,000              | 1,000            |          |                      |        |           |
|                                                                        | Effective San   | nple Size    |        |        |                    |                  |          |                      |        |           |

Source: Medtronic Device Registration and Returned Product Analysis Data as of January 31, 2011



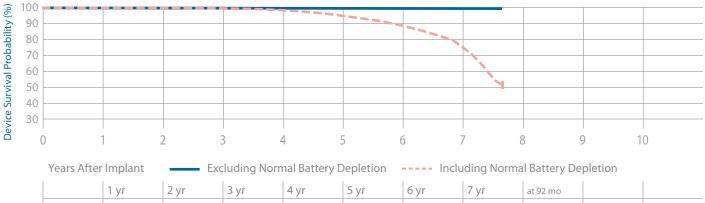

#### 7304 InSync Maximo

| '304 li                                                                  | n <mark>Sync</mark> Ma       | aximo       |        |                            |                                  |                 |        |      | Product Characteris  | tics    |             |
|--------------------------------------------------------------------------|------------------------------|-------------|--------|----------------------------|----------------------------------|-----------------|--------|------|----------------------|---------|-------------|
| US Mai                                                                   | rket Release                 |             | Apr    | -05 N                      | Malfunctions (US)                |                 | 76     |      | NBD Code             |         | VVED        |
| Registe                                                                  | Registered US Implants       |             |        | 000                        | Therapy Function Not Compromised |                 |        |      | Serial Number Prefix |         | PRL         |
| Estima                                                                   | Estimated Active US Implants |             |        | 000                        | Battery                          |                 |        |      | Max Delivered Energy |         | 35 J        |
| Norma                                                                    | l Battery Deple              | etions (US) | 3,0    | 3,000 Electrical Component |                                  |                 | 8      | 8    | Estimated Longevity  |         | See page 20 |
| Adviso                                                                   | ories                        |             | No     | one                        | Possible Early Ba                | ttery Depletion | 64     |      |                      |         |             |
|                                                                          |                              |             |        |                            | Therapy Function C               | ompromised      | 3      |      |                      |         |             |
|                                                                          |                              |             |        |                            | Electrical Compo                 | onent           | 3      |      |                      |         |             |
| <b>§</b> 100                                                             |                              |             |        |                            |                                  |                 |        |      |                      |         |             |
| Device Survival Probability (%)<br>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |                              |             |        |                            |                                  |                 |        |      |                      |         |             |
| 08 pabi                                                                  |                              |             |        |                            |                                  |                 |        |      |                      |         |             |
| 70 Floop                                                                 |                              |             |        |                            |                                  |                 |        |      |                      |         |             |
| ival 50                                                                  |                              |             |        |                            |                                  |                 |        |      |                      |         |             |
| AINS 40                                                                  |                              |             |        |                            |                                  |                 |        |      |                      |         |             |
| 30 IC                                                                    |                              |             |        |                            |                                  |                 |        |      |                      |         |             |
| 20 Jevi                                                                  |                              |             |        |                            |                                  |                 |        |      |                      |         |             |
| 10                                                                       |                              |             |        |                            |                                  |                 |        |      |                      |         |             |
| 0                                                                        |                              |             |        |                            |                                  |                 |        |      |                      |         |             |
| (                                                                        | )                            | 1           | 2      | 3                          | 4                                | 5 6             | 5 7    |      | 8 9                  |         | 10          |
|                                                                          | Years After                  | r Implant   | E>     | kcluding                   | Normal Battery                   | Depletion       | Includ | ding | g Normal Battery Dep | oletion |             |
|                                                                          |                              | 1 yr        | 2 yr   | 3 yr                       | 4 yr                             | at 57 mo        |        |      |                      |         |             |
| %                                                                        |                              | 100.0       | 99.9   | 99.6                       | 99.2                             | 99.2            |        |      |                      |         |             |
| %                                                                        |                              | 99.8        | 97.8   | 90.3                       | 66.9                             | 7.0             |        |      |                      |         |             |
| #                                                                        |                              | 16,000      | 13,000 | 9,000                      | 5,000                            | 400             |        |      |                      |         |             |
|                                                                          | Effective Sam                | ple Size    |        |                            |                                  |                 |        |      |                      |         |             |

12 Medtronic CRDM Product Performance Report www.medtronic.com/CRDMProductPerformance

| US Market Release              | Aug-01 | Malfunctions (US)                | 29 | NBD Code             | DDDR       |
|--------------------------------|--------|----------------------------------|----|----------------------|------------|
| Registered US Implants         | 15,000 | Therapy Function Not Compromised | 7  | Serial Number Prefix | PIN        |
| Estimated Active US Implants   | 1,000  | Electrical Component             | 4  | Estimated Longevity  | See page 2 |
| Normal Battery Depletions (US) | 1,000  | Possible Early Battery Depletion | 3  |                      |            |
| Advisories                     | None   | Therapy Function Compromised     | 22 |                      |            |
|                                |        | Electrical Interconnect          | 22 |                      |            |




| Years After | Implant | Exc   | luding Norn | nal Battery D | epletion | Inclu | С |
|-------------|---------|-------|-------------|---------------|----------|-------|---|
|             | 1 yr    | 2 yr  | 3 yr        | 4 yr          | 5 yr     | 6 yr  |   |
|             | 100.0   | 100.0 | 99.9        | 99.8          | 99.7     | 99.6  | 9 |

Iding Normal Battery Depletion

|   |                       | 1 yr   | 2 yr   | 3 yr  | 4 yr  | 5 yr  | бyr   | 7 yr  | 8 yr  | at 107 mo |  |
|---|-----------------------|--------|--------|-------|-------|-------|-------|-------|-------|-----------|--|
| % |                       | 100.0  | 100.0  | 99.9  | 99.8  | 99.7  | 99.6  | 99.6  | 99.6  | 99.5      |  |
| % |                       | 99.9   | 99.6   | 98.1  | 95.8  | 90.8  | 83.5  | 72.9  | 57.5  | 33.6      |  |
| # |                       | 12,000 | 10,000 | 8,000 | 6,000 | 5,000 | 4,000 | 2,000 | 1,000 | 100       |  |
|   | Effective Sample Size |        |        |       |       |       |       |       |       |           |  |

#### 8042 InSync III

| 8042 InSync III                |        |                                  |    | Product Characteristics | 5           |
|--------------------------------|--------|----------------------------------|----|-------------------------|-------------|
| US Market Release              | Feb-03 | Malfunctions (US)                | 11 | NBD Code                | DDDR        |
| Registered US Implants         | 39,000 | Therapy Function Not Compromised | 4  | Serial Number Prefix    | PKF         |
| Estimated Active US Implants   | 19,000 | Electrical Component             | 3  | Estimated Longevity     | See page 20 |
| Normal Battery Depletions (US) | 758    | Possible Early Battery Depletion | 1  |                         |             |
| Advisories                     | None   | Therapy Function Compromised     | 7  |                         |             |
|                                |        | Electrical Component             | 3  |                         |             |
|                                |        | Electrical Interconnect          | 4  |                         |             |



|   |                       | 1 yr   | 2 yr   | 3 yr   | 4 yr   | 5 yr  | бyr   | 7 yr  | at 92 mo |  |
|---|-----------------------|--------|--------|--------|--------|-------|-------|-------|----------|--|
| % |                       | 100.0  | 100.0  | 100.0  | 100.0  | 99.9  | 99.9  | 99.9  | 99.9     |  |
| % |                       | 99.9   | 99.8   | 99.2   | 97.5   | 94.3  | 87.7  | 74.5  | 51.2     |  |
| # |                       | 28,000 | 20,000 | 15,000 | 10,000 | 7,000 | 4,000 | 1,000 | 100      |  |
|   | Effective Sample Size |        |        |        |        |       |       |       |          |  |

### C154DWK, C164AWK, C174AWK Concerto

| US Market Release                                                                               | May-06 |
|-------------------------------------------------------------------------------------------------|--------|
| Registered US Implants                                                                          | 81,000 |
| Estimated Active US Implants                                                                    | 48,000 |
| Normal Battery Depletions (US)                                                                  | 2,321  |
| Advisories: <u>See page 139</u> – 2009<br>Potential Reduced Device Longevity                    |        |
|                                                                                                 |        |
| Performance Note: <u>See page 150</u> –<br>Anomalies in MOSFET Integrated<br>Circuit Technology |        |

| Malfunctions (US)                | 256 |
|----------------------------------|-----|
| Therapy Function Not Compromised | 230 |
| Electrical Component             | 13  |
| Electrical Interconnect          | 1   |
| Software/Firmware                | 1   |
| Possible Early Battery Depletion | 215 |
| Therapy Function Compromised     | 26  |
| Electrical Component             | 25  |
| Electrical Interconnect          | 1   |

#### (N) | (A) Product Characteristics

| 1,219 | NBD Code             | VVED          |  |  |  |  |
|-------|----------------------|---------------|--|--|--|--|
| 1,211 | Serial Number Prefix | PVU, PVT, PVR |  |  |  |  |
| 1,208 | Max Delivered Energy | 35 J          |  |  |  |  |
|       | Estimated Longevity  | See page 20   |  |  |  |  |
| 3     |                      |               |  |  |  |  |
| 8     |                      |               |  |  |  |  |
| 7     |                      |               |  |  |  |  |
| 1     |                      |               |  |  |  |  |

| 100      |     |     |     |     | C154DWł  | , C164AWK, C17 | 4AWK (Non-adv   | isory populatior | ı) 98.5% |   |    |
|----------|-----|-----|-----|-----|----------|----------------|-----------------|------------------|----------|---|----|
| 90<br>80 |     |     |     |     |          |                |                 |                  |          |   |    |
| 80       |     |     |     |     |          |                |                 |                  |          |   |    |
| 70       |     |     |     |     |          |                |                 |                  |          |   |    |
| 60       |     |     | 1   |     | C154DWK, | C164AWK, C174  | AWK (Advisory p | opulation) 60.8  | %        |   |    |
|          |     |     |     | -   |          |                |                 |                  |          |   |    |
| 50       |     |     |     |     |          |                |                 |                  |          |   |    |
| 40       |     |     |     | 1   |          |                |                 |                  |          |   |    |
| 30       |     |     |     | 1   |          |                |                 |                  |          |   |    |
| 20       |     |     |     | 1   |          |                |                 |                  |          |   |    |
| 10       |     |     |     | 1   |          |                |                 |                  |          |   |    |
| 0        |     |     |     | 1   |          |                |                 |                  |          |   |    |
| 0        |     |     |     |     |          |                |                 |                  |          |   |    |
| (        | 0 1 | 1 2 | 2 3 | 3 4 |          | 5 (            | 5               | 7                | 8        | 9 | 10 |

Years After Implant Excluding Normal Battery Depletion ----- Including Normal Battery Depletion Non-Adv 1 yr 2 yr 3 yr 4 yr at 51 mo 100.0 99.8 99.5 99.0 98.5 % % 99.8 97.8 90.6 68.9 59.5 . . . . . # 69,000 47,000 19,000 1,000 100 Effective Sample Size

|   | Adv Pop               | 1 yr  | 2 yr  | 3 yr  | at 39 mo |  |  |  |  |  |
|---|-----------------------|-------|-------|-------|----------|--|--|--|--|--|
| % |                       | 99.9  | 99.4  | 76.5  | 60.8     |  |  |  |  |  |
| % |                       | 99.7  | 96.8  | 44.3  | 6.4      |  |  |  |  |  |
| # |                       | 3,000 | 3,000 | 1,000 | 200      |  |  |  |  |  |
|   | Effective Sample Size |       |       |       |          |  |  |  |  |  |

# **D224TRK Consulta CRT-D**

| US Market Release              | Aug-08 | Malfunctions (US)                | 44 | NBD Code             | DDED        |
|--------------------------------|--------|----------------------------------|----|----------------------|-------------|
| Registered US Implants         | 41,000 | Therapy Function Not Compromised | 43 | Serial Number Prefix | PUD         |
| Estimated Active US Implants   | 35,000 | Electrical Component             | 6  | Max Delivered Energy | 35 J        |
| Normal Battery Depletions (US) | 40     | Software/Firmware                | 1  | Estimated Longevity  | See page 20 |
| Advisories                     | None   | Possible Early Battery Depletion | 36 |                      |             |
|                                |        | Therapy Function Compromised     | 1  |                      |             |

**Electrical Component** 

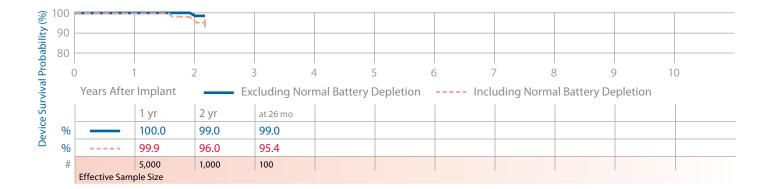
#### **Product Characteristics**

1

| NBD Code             | DDED        |  |  |
|----------------------|-------------|--|--|
| Serial Number Prefix | PUD         |  |  |
| Max Delivered Energy | 35 J        |  |  |
| Estimated Longevity  | See page 20 |  |  |
|                      |             |  |  |
|                      |             |  |  |
|                      |             |  |  |

| 100 |       |             |    |             |              |              |     |           |              |              |    |  |
|-----|-------|-------------|----|-------------|--------------|--------------|-----|-----------|--------------|--------------|----|--|
| 90  |       |             |    |             |              |              |     |           |              |              |    |  |
| 80  |       |             |    |             |              |              |     |           |              |              |    |  |
|     | 0     | 1           | 2  | 3           | 4            | 5            | 6   | 7         | 8            | 9            | 10 |  |
|     | Years | After Impla | nt | - Excluding | g Normal Bat | ttery Deplet | ion | Including | Normal Batte | ery Depletio | n  |  |

| e.   |   |               |          |       |          |  |  |  |  |
|------|---|---------------|----------|-------|----------|--|--|--|--|
| evio |   |               | 1 yr     | 2 yr  | at 26 mo |  |  |  |  |
| Õ    | % |               | 100.0    | 99.3  | 99.1     |  |  |  |  |
|      | % |               | 99.9     | 97.2  | 96.1     |  |  |  |  |
|      | # |               | 16,000   | 1,000 | 400      |  |  |  |  |
|      |   | Effective Sam | ole Size |       |          |  |  |  |  |


#### **D274TRK** Concerto II CRT-D

Effective Sample Size

| 74TRK Concerto II C                                      | RT-D     |                       |             |            | Product Chara      | cteristics  |             |
|----------------------------------------------------------|----------|-----------------------|-------------|------------|--------------------|-------------|-------------|
| US Market Release                                        | Aug-09   | Malfunctions (US)     |             | 1          | NBD Code           |             | DDED        |
| Registered US Implants                                   | 19,000   | Therapy Function Not  | Compromised | 0          | Serial Number Pref | ix          | PUE, PZB    |
| Estimated Active US Implants                             | 17,000   | Therapy Function Con  | npromised   | 1          | Max Delivered Ene  | rgy         | 35 J        |
| Normal Battery Depletions (US)                           | 2        | Electrical Compon     | ent         | 1          | Estimated Longevi  | ty          | See page 20 |
| Advisories                                               | None     |                       |             |            |                    |             |             |
| 100<br>90<br>80<br>0 1<br>Years After Implant<br>% 100.0 | 2 3      | 4 5                   | 6           | 7          | 8                  | 9           | 10          |
| Years After Implant                                      | Exclud   | ling Normal Battery D | epletion    | - Includii | ng Normal Batter   | y Depletion |             |
| 1 yr                                                     | at 15 mo |                       |             |            |                    |             |             |
| % 100.0                                                  | 100.0    |                       |             |            |                    |             |             |
| % 99.9                                                   | 99.9     |                       |             |            |                    |             |             |
| # 2,000                                                  | 100      |                       |             |            |                    |             |             |

# D284TRK Maximo II CRT-D

| US Market Release              | Mar-08 | Malfunctions (US)                | 14 | NBD Code             | VVED        |
|--------------------------------|--------|----------------------------------|----|----------------------|-------------|
| Registered US Implants         | 10,000 | Therapy Function Not Compromised | 14 | Serial Number Prefix | PZP         |
| Estimated Active US Implants   | 8,000  | Possible Early Battery Depletion | 14 | Max Delivered Energy | 35 J        |
| Normal Battery Depletions (US) | 18     | Therapy Function Compromised     | 0  | Estimated Longevity  | See page 20 |
| Advisories                     | None   |                                  |    |                      |             |



**Product Characteristics** 

Device Survival Summary (95% Confidence Interval)

The following table shows CRT device survival estimates with 95% confidence intervals. Estimates are shown both with and without normal battery depletions included.

|                                 |                                                                                                         | 10 yr                                                                           |                                          |                                                                                                                               |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                          |
|---------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|
|                                 |                                                                                                         | 8 yr                                                                            |                                          |                                                                                                                               |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                          |
|                                 |                                                                                                         | 7 yr                                                                            |                                          |                                                                                                                               |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                          |
|                                 |                                                                                                         | 6 yr                                                                            |                                          |                                                                                                                               |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                          |
|                                 |                                                                                                         | 5 yr                                                                            | 97.8<br>+.2/3<br>at 49 mo                | 4.2<br>+.6/5<br>at 49 mo                                                                                                      | 99.4<br>+.2/2<br>at 57 mo                | 5.7<br>+1.2/-1.0<br>at 57 mo             | 99.1<br>+.2/3<br>at 56 mo                | 8.5<br>+.9/8<br>at 56 mo                 | 99.3<br>+.1/2<br>at 56 mo                | 11.0<br>+1.1/-1.0<br>at 56 mo            | 99.2<br>+.2/2<br>at 57 mo                | 7.0<br>+1.2/-1.0<br>at 57 mo             |
| y (%)                           |                                                                                                         | 4 yr                                                                            | 97.9<br>+.2/3                            | 18.3<br>+.9/8                                                                                                                 | 99.5<br>+.2/2                            | 66.4<br>+1.3/-1.4                        | 99.4<br>+.1/1                            | 63.5<br>+.8/8                            | 99.4<br>+.1/2                            | 63.5<br>+1.0/-1.0                        | 99.2<br>+.2/2                            | 66.9<br>+1.0/-1.0                        |
| robabilit                       | . III                                                                                                   | 3 yr                                                                            | 98.7<br>+.2/2                            | 82.4<br>+.6/6                                                                                                                 | 99.6<br>+.1/2                            | 89.0<br>+.8/8                            | 99.7<br>+.1/1                            | 89.3<br>+.4/4                            | 99.6<br>+.1/1                            | 88.4<br>+.6/6                            | 99.6<br>+.1/1                            | 90.3<br>+.5/5                            |
| Device Survival Probability (%) | Years After Implant                                                                                     | 2 yr                                                                            | 99.7<br>+.1/1                            | 96.7<br>+.2/3                                                                                                                 | 99.9<br>+.1/1                            | 97.6<br>+.3/4                            | 9.99<br>+.0/1                            | 97.7<br>+.2/2                            | 99.8<br>+.1/1                            | 97.5<br>+.2/3                            | 9.99<br>+.0/-1                           | 97.8<br>+.2/3                            |
| Device                          | Years Af                                                                                                | 1 yr                                                                            | 9.99<br>+.0/.+                           | 99.7<br>+.1/.+                                                                                                                | 100.0<br>+.0/1                           | 99.7<br>+.1/1                            | 100.0<br>+.0/0                           | 99.8<br>+.2/1                            | 100.0<br>+.0/0                           | 99.8<br>+.1/1                            | 100.0<br>+.0/0                           | 99.8<br>+.1/1                            |
|                                 |                                                                                                         |                                                                                 | Excluding<br>Normal Battery<br>Depletion | Including<br>Normal Battery<br>Depletion                                                                                      | Excluding<br>Normal Battery<br>Depletion | Including<br>Normal Battery<br>Depletion | Excluding<br>Normal Battery<br>Depletion | Including<br>Normal Battery<br>Depletion | Excluding<br>Normal Battery<br>Depletion | Including<br>Normal Battery<br>Depletion | Excluding<br>Normal Battery<br>Depletion | Including<br>Normal Battery<br>Depletion |
|                                 |                                                                                                         |                                                                                 |                                          |                                                                                                                               |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                          |
| Malfunctions (US)               | alapy Function<br>besimorqu<br>iction Vot<br>besimorqu<br>besimorqu                                     | ru7<br>5AT<br>Fur                                                               | <b>32</b> + 268 = 300                    | (9) + 0 = 9<br>(advisory-related subset)                                                                                      | 2 + 36 = 38                              |                                          | <mark>9</mark> + 124 = 133               |                                          | 7 + 64 = 71                              |                                          | <b>3</b> + 73 = 76                       |                                          |
| Malfunctions (US)               | npromised<br>stapy<br>bor Not<br>bosimonqu                                                              | I9D<br>In<br>In<br>Io<br>Io<br>Io<br>Io<br>Io<br>Io<br>Io                       | + 268 =                                  |                                                                                                                               | + 36                                     |                                          | + 124 =                                  |                                          | + 64 =                                   |                                          | + 73 =                                   |                                          |
| Malfunctions (US)               | oletions (US)<br>srapy Function<br>propy<br>sction Not<br>notronised                                    | Act<br>Imp<br>Dep<br>Dep<br>Dep<br>Dep<br>Dep<br>Dep<br>Dep<br>Dep<br>Dep<br>De | 32 + 268 =                               |                                                                                                                               | 2 + 36 =                                 |                                          | 9 + 124 =                                |                                          | 7 + 64 =                                 |                                          | 3 + 73 =                                 |                                          |
| Malfunctions (US)               | ive US<br>solants<br>rmal Battery<br>pretions (US)<br>mpromised<br>notomised<br>notion Not              | US<br>Esti<br>Act<br>Inp<br>Iot<br>Del<br>Del<br>The<br>Cor<br>The<br>Cor       | 6,470 32 + 268 =                         |                                                                                                                               | 2,336 2 + 36 =                           |                                          | 5,920 9 + 124 =                          |                                          | 4,557 7 + 64 =                           |                                          | 3,000 3 + 73 =                           |                                          |
| Malfunctions (US)               | Implants<br>ive US<br>solants<br>reapy Function<br>mpromised<br>rotion Not<br>rotion Not<br>rotion Not  | Red<br>US<br>Est<br>Del<br>Del<br>Del<br>The<br>Con<br>The<br>Con<br>The<br>Con | 100 6,470 32 + 268 =                     |                                                                                                                               | 4 2,336 2 + 36 =                         |                                          | 3,000 5,920 9 + 124 =                    |                                          | 20 4,557 7 + 64 =                        |                                          | 3,000 3,000 3 + 73 =                     |                                          |
| Malfunctions (US)               | easee<br>jistered<br>implants<br>sinal Battery<br>oletions (US)<br>proponised<br>intromised<br>promised | Red<br>US<br>Est<br>Del<br>Del<br>Del<br>The<br>Con<br>The<br>Con<br>The<br>Con | 28,000 100 6,470 32 + 268 =              | Advisories: See page 145 - 2005 Potential Premature(9) + 0 = 9Battery Depletion Due to Battery Short(advisory-related subset) | 9,000 4 2,336 2 + 36 =                   |                                          | 31,000 3,000 5,920 9 + 124 =             |                                          | 17,000 20 4,557 7 + 64 =                 |                                          | 19,000 3,000 3,000 3 + 73 =              |                                          |

|                                                                     |                                                                                         |                                            |                    |                         | E                            | Malfunctions (US)                  | tions (U                       | 2)    |                                          | Device         | Device Survival Probability (%) | robabilit         | y (%)                         |                                      |                         |                   |                               |                                |
|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------|--------------------|-------------------------|------------------------------|------------------------------------|--------------------------------|-------|------------------------------------------|----------------|---------------------------------|-------------------|-------------------------------|--------------------------------------|-------------------------|-------------------|-------------------------------|--------------------------------|
| :                                                                   |                                                                                         | Narket<br>235e                             | istered<br>stnslqm | bətem<br>ve US<br>stnsi | yəətfən ləm<br>(SU) snoitəli | rapy Function<br>npromised<br>rapy | rapy<br>ction Not<br>besimorqr | le    |                                          | Years A        | Years After Implant             | int               |                               |                                      |                         |                   |                               |                                |
| Model<br>Number                                                     | Family                                                                                  | ələЯ<br>V SU                               | I SN<br>ნəუ        | İJDA                    | Nori                         |                                    | no⊃                            | stoT  |                                          | 1 yr           | 2 yr                            | 3 yr              | 4 yr                          | 5 yr                                 | 6 yr                    | 7 yr              | 8 yr                          | 10 yr                          |
| 8040                                                                | InSync                                                                                  | Aug-01                                     | 15,000             | 1,000                   | 1,000                        | 22 +                               | - 2                            | 29    | Excluding<br>Normal Battery<br>Depletion | 100.0<br>+.0/0 | 100.0<br>+.0/1                  | 99.9<br>+.0/-1    | 99.8<br>+.1/1                 | 99.7<br>+.1/2                        | 99.6<br>+.1/2           | 99.6<br>+.1/2     | 99.6<br>+.1/2                 | 99.5<br>+.2/3<br>at 107 mo     |
|                                                                     |                                                                                         |                                            |                    |                         |                              |                                    |                                |       | Including<br>Normal Battery<br>Depletion | 99.9<br>+.1/1  | 99.6<br>+.1/1                   | 98.1<br>+.3/3     | 95.8<br>+.4/5                 | 90.8<br>+.7/7                        | <b>83.5</b><br>+.9/-1.0 | 72.9<br>+1.3/-1.3 | 57.5<br>+1.6/-1.7             | 33.6<br>+3.4/-3.4<br>at 107 mo |
| 8042                                                                | InSync III                                                                              | Feb-03                                     | 39,000             | 19,000                  | 758                          | +                                  | 4                              | 7     | Excluding<br>Normal Battery<br>Depletion | 100.0<br>+.0/0 | 100.0<br>+.0/0                  | 100.0<br>+.0/0    | 100.0<br>+.0/0                | 99.9<br>+.0/1                        | 99.9<br>+.0/1           | 99.9<br>+.1/2     | 99.9<br>+.1/2<br>at 92 mo     |                                |
|                                                                     |                                                                                         |                                            |                    |                         |                              |                                    |                                |       | Including<br>Normal Battery<br>Depletion | 9.99<br>+.0/0  | <b>99.8</b><br>+.0/1            | 99.2<br>+.1/1     | 97.5<br>+.3/3                 | 94.3<br>+.5/5                        | 87.7<br>+.8/8           | 74.5<br>+1.5/-1.5 | 51.2<br>+3.5/-3.6<br>at 92 mo |                                |
| C154DWK,<br>C164AWK,<br>C174AWK<br>(Non-<br>advisory<br>population) | Concerto                                                                                | May-06                                     | 81,000             | 48,000                  | 2,321                        | - +                                | 230 =                          | 256   | Excluding<br>Normal Battery<br>Depletion | 100.0<br>+.0/0 | 8.99<br>0/0.+                   | 99.5<br>+.1/1     | 99.0<br>+.2/2                 | 98.5<br>+.7/-1.5<br>at 51 mo         |                         |                   |                               |                                |
|                                                                     | See page 150 – Performance note on Anomalies in MOSFET<br>Integrated Circuit Technology | Performance<br>uit Technolo                | e note on Al<br>gy | nomalies in <i>l</i>    | MOSFET                       |                                    |                                |       | Including<br>Normal Battery<br>Depletion | 99.8<br>+.0/0  | 97.8<br>+.1/1                   | 90.6<br>+.3/3     | 68.9<br>+1.3/-1.3             | <b>59.5</b><br>+3.0/-3.2<br>at 51 mo |                         |                   |                               |                                |
| C154DWK,<br>C164AWK,<br>C174AWK<br>(Advisory<br>population)         | Concerto                                                                                | May-06                                     | 4,000              | 0                       | 205                          | +<br>∞                             | 1,211 =                        | 1,219 | Excluding<br>Normal Battery<br>Depletion | 99.9<br>+.1/2  | 99,4<br>+.2/4                   | 76.5<br>+1.8/-1.9 | 60.8<br>+2.2/-2.3<br>at 39 mo |                                      |                         |                   |                               |                                |
|                                                                     | Advisories: <u>Se</u><br>Longevity                                                      | See page 139-2009 Potential Reduced Device | – 2009 Pote        | ential Reduce           | ed Device                    |                                    |                                |       | Including<br>Normal Battery<br>Depletion | 99.7<br>+.1/3  | 96.8<br>+.6/7                   | 44.3<br>+2.1/-2.2 | 6.4<br>+1.4/-1.2<br>at 39 mo  |                                      |                         |                   |                               |                                |
|                                                                     | See page 150 – Performance note on Anomalies in MOSFET<br>Integrated Circuit Technology | - Performanc<br>uit Technolo               | e note on A<br>qy  | nomalies in             | MOSFET                       |                                    |                                |       |                                          |                |                                 |                   |                               |                                      |                         |                   |                               |                                |

Device Survival Summary continued

|                                                 | yr                              |                                          |                                          |                                          |                                          |                                          |                                          |
|-------------------------------------------------|---------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|
|                                                 | 10 yr                           |                                          |                                          |                                          |                                          |                                          |                                          |
|                                                 | 8 yr                            |                                          |                                          |                                          |                                          |                                          |                                          |
|                                                 | 7 yr                            |                                          |                                          |                                          |                                          |                                          |                                          |
|                                                 | 6 yr                            |                                          |                                          |                                          |                                          |                                          |                                          |
|                                                 | 5 yr                            |                                          |                                          |                                          |                                          |                                          |                                          |
|                                                 | 4 yr                            |                                          |                                          |                                          |                                          |                                          |                                          |
| t                                               | 3 yr                            | 99.1<br>+.3/5<br>at 26 mo                | 96.1<br>+.8/-1.0<br>at 26 mo             |                                          |                                          | 99.0<br>+.5/-1.0<br>at 26 mo             | 95.4<br>+1.4/-1.9<br>at 26 mo            |
| Years After Implant                             | 2 yr                            | 99.3<br>+.2/3                            | 97.2<br>+.5/7                            | 100.0<br>+.0/0<br>at 15 mo               | 99.9<br>+.0/1<br>at 15 mo                | 99.0<br>+.5/-1.0                         | 96.0<br>+1.1/-1.6                        |
| Years Aft                                       | 1 yr                            | 100.0<br>+.0/0                           | 99.9<br>+.0/1                            | 100.0<br>+.0/0                           | 99.9<br>+.0/1                            | 100.0<br>+.0/0                           | 99.9<br>+.1/1                            |
|                                                 |                                 | Excluding<br>Normal Battery<br>Depletion | Including<br>Normal Battery<br>Depletion | Excluding<br>Normal Battery<br>Depletion | Including<br>Normal Battery<br>Depletion | Excluding<br>Normal Battery<br>Depletion | Including<br>Normal Battery<br>Depletion |
| le                                              | ът                              | 44                                       |                                          | -                                        |                                          | 14                                       |                                          |
| srapy<br>stion Not<br>besimorqn                 | ung                             | 43 =                                     |                                          | Ш<br>О                                   |                                          | 14 =                                     |                                          |
| rapy Function<br>psimorqu                       | Cor                             | +                                        |                                          | +<br>                                    |                                          | +<br>0                                   |                                          |
|                                                 |                                 |                                          |                                          |                                          |                                          |                                          |                                          |
| rinal Battery<br>(SU) snoiteld)                 |                                 | 40                                       |                                          | 7                                        |                                          | 18                                       |                                          |
|                                                 | toA<br>Imp<br>Imp               | 35,000 40                                |                                          | 17,000 2                                 |                                          | 8,000 18                                 |                                          |
| ive US<br>Diants<br>mal Battery                 | US<br>Esti<br>Act<br>Imp        | 35,000                                   |                                          | 17,000                                   |                                          |                                          |                                          |
| Implants<br>ive US<br>shants<br>radits          | Rel<br>Reg<br>Jan<br>Imp<br>Imp |                                          |                                          | Aug-09 19,000 17,000                     |                                          | 8,000                                    |                                          |
| easee<br>jistered<br>ive US<br>siants<br>siants | Rel<br>Reg<br>Jan<br>Imp<br>Imp | 41,000 35,000                            |                                          | 19,000 17,000                            |                                          | 10,000 8,000                             |                                          |

### **Reference Chart**

The longevity estimates provided are mean values calculated for the parameters given. The actual longevity achieved for any device while implanted will depend on the actual programmed parameters and patient factors, and may differ significantly from these estimates.

| 0               | estimates.           |                    |                  |                     | E                                  | stimate           | d Longe           | vity              |                   | <b>F</b> 1         | D                       |                                     |
|-----------------|----------------------|--------------------|------------------|---------------------|------------------------------------|-------------------|-------------------|-------------------|-------------------|--------------------|-------------------------|-------------------------------------|
|                 |                      |                    |                  |                     | ×**                                |                   |                   |                   |                   |                    | Replacement<br>ERI)***  | End of                              |
| Model<br>Number | Family               | Connector<br>Style | Volume/<br>Mass* | Delivered<br>Energy | Charging<br>Frequency              | 100%<br>Pacing‡   | 50%<br>Pacing‡    | 15%<br>Pacing‡    | 100%<br>Sensing   | Battery<br>Voltage | Charge<br>Time          | Life<br>(EOL)<br>Battery<br>Voltage |
| 7289            | InSync II<br>Marquis | DR+LV<br>true      | 38 cc<br>76 g    | 30 J                | Monthly<br>Quarterly<br>Semiannual | 3.3<br>4.2<br>4.5 | 3.6<br>4.9<br>5.4 | 4.0<br>5.5<br>6.1 | 4.2<br>5.8<br>6.6 | ≤ 2.62 V           | > 16 second charge time | 3 months<br>after ERI               |
| 7297            | InSync Sentry        | DR+LV<br>true      | 40 cc<br>78 g    | 35 J                | Monthly<br>Quarterly<br>Semiannual | 3.3<br>4.5<br>5.0 | 3.7<br>5.3<br>6.0 | 4.1<br>6.2<br>7.1 | 4.3<br>6.6<br>7.7 | ≤ 2.62 V           | > 16 second charge time | 3 months<br>after ERI               |
| 7299            | InSync Sentry        | DR+LV<br>true      | 40 cc<br>78 g    | 35 J                | Monthly<br>Quarterly<br>Semiannual | 3.3<br>4.5<br>5.0 | 3.7<br>5.3<br>6.0 | 4.1<br>6.2<br>7.1 | 4.3<br>6.6<br>7.7 | ≤ 2.62 V           | > 16 second charge time | 3 months<br>after ERI               |
| 7303            | InSync<br>Maximo     | DR+LV<br>true      | 40 cc<br>78 g    | 35 J                | Monthly<br>Quarterly<br>Semiannual | 3.3<br>4.5<br>5.0 | 3.7<br>5.3<br>6.0 | 4.1<br>6.2<br>7.1 | 4.3<br>6.6<br>7.7 | ≤ 2.62 V           | > 16 second charge time | 3 months<br>after ERI               |
| 7304            | InSync<br>Maximo     | DR+LV<br>true      | 40 cc<br>78 g    | 35 J                | Monthly<br>Quarterly<br>Semiannual | 3.3<br>4.5<br>5.0 | 3.7<br>5.3<br>6.0 | 4.1<br>6.2<br>7.1 | 4.3<br>6.6<br>7.7 | ≤ 2.62 V           | > 16 second charge time | 3 months<br>after ERI               |

|                 |            | Estimated Lo                                                                 | ngevity            |                     |                                      |
|-----------------|------------|------------------------------------------------------------------------------|--------------------|---------------------|--------------------------------------|
| Model<br>Number | Family     | Amplitude Setting                                                            | 500<br>Lead Ω      | 1000<br>Lead Ω      | Elective Replacement Time Indicators |
| 8040            | InSync     | Low 2.5 V (A, RV)<br>Nominal 3.5 V (A, RV)<br>High 5.0 V (A, RV)             | 11.9<br>8.9<br>6.6 | 13.7<br>11.4<br>9.1 | **                                   |
| 8042            | InSync III | Low 2.5 V (A, RV, LV)<br>Nominal 3.5 V (A, RV, LV)<br>High 5.0 V (A, RV, LV) | 8.3<br>5.9<br>4.1  | 9.9<br>7.8<br>6.0   | **                                   |

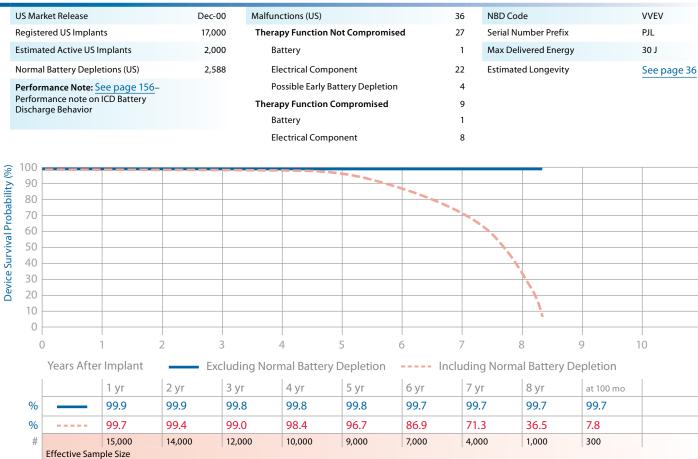

|                                 |                    |                    |                  |                     | Es                                 | timated           | Longe             | vity              |                    |                    | mmended        |                                                       |
|---------------------------------|--------------------|--------------------|------------------|---------------------|------------------------------------|-------------------|-------------------|-------------------|--------------------|--------------------|----------------|-------------------------------------------------------|
|                                 |                    |                    |                  |                     | *                                  |                   |                   |                   |                    | Replace            | ment (RRT)***  | -                                                     |
| Model<br>Number                 | Family             | Connector<br>Style | Volume/<br>Mass* | Delivered<br>Energy | Charging<br>Frequency <sup>*</sup> | 100%<br>Pacing‡   | 50%<br>Pacing‡    | 15%<br>Pacing‡    | 100%<br>Sensing    | Battery<br>Voltage | Charge<br>Time | End of<br>Service<br>(EOS)                            |
| C154DWK,<br>C164AWK,<br>C174AWK | Concerto           | DR+LV<br>true      | 38 cc<br>68 g    | 35 J                | Monthly<br>Quarterly<br>Semiannual | 3.8<br>5.5<br>6.3 | 4.3<br>6.8<br>8.0 | 4.8<br>8.0<br>9.8 | 5.0<br>8.8<br>11.0 | $\leq$ 2.62 V      | _              | 3 month<br>after RRT or<br>> 16-second<br>charge time |
| D224TRK                         | Consulta<br>CRT-D  | DR+LV<br>true      | 38 cc/<br>68 g   | 35 J                | Monthly<br>Quarterly<br>Semiannual | 3.2<br>4.4<br>4.8 | 3.8<br>5.5<br>6.2 | 4.4<br>6.8<br>7.9 | 4.7<br>7.5<br>9.0  | ≤ 2.63 V           | _              | 3 month<br>after RRT or<br>> 16-second<br>charge time |
| D274TRK                         | Concerto II        | DR+LV<br>true      | 38 cc/<br>68 g   | text                | Monthly<br>Quarterly<br>Semiannual | 3.2<br>4.4<br>4.8 | 3.8<br>5.5<br>6.2 | 4.4<br>6.8<br>7.9 | 4.7<br>7.5<br>9.0  | ≤ 2.63 V           | _              | 3 month<br>after RRT or<br>> 16-second<br>charge time |
| D284TRK                         | Maximo II<br>CRT-D | DR+LV<br>true      | 38 cc/<br>68 g   | 35 J                | Monthly<br>Quarterly<br>Semiannual | 3.2<br>4.4<br>4.8 | 3.8<br>5.5<br>6.2 | 4.4<br>6.8<br>7.9 | 4.7<br>7.5<br>9.0  | ≤ 2.63 V           | _              | 3 month<br>after RRT or<br>> 16-second<br>charge time |

\* Volume and mass differ by connector style.

\*\* A full charge is a full energy therapeutic shock or capacitor reformation.

\*\*\* The minimum time between ERI and EOL (or RRT and EOS) is 3 months (100% pacing, two charges per month).

‡ Pacing mode is DDD for CRT models. Parameter settings; lower rate at 60 ppm, sensing rate at 70 bpm, (A, RV, LV) 3.0 V amplitude, 0.4 ms pulse width, and 510-ohm pace load per applicable channel. CRT models with shared biventricular pacing; InSync Marquis 7277 (LV impedance set to 510 ohms), InSync ICD 7272 (RV amplitude set to 4.0 V).




|   | icuis / liter  | inplant  | LAC    | luung nom | lai Dattery L | repletion |       | iung Nonna | in Dattery De | pietion |           |
|---|----------------|----------|--------|-----------|---------------|-----------|-------|------------|---------------|---------|-----------|
|   |                | 1 yr     | 2 yr   | 3 yr      | 4 yr          | 5 yr      | бyr   | 7 yr       | 8 yr          | 9 yr    | at 111 mo |
| % |                | 99.7     | 99.6   | 99.5      | 99.4          | 99.2      | 99.2  | 99.1       | 99.0          | 99.0    | 98.9      |
| % |                | 99.2     | 98.9   | 98.5      | 98.0          | 97.0      | 94.0  | 80.8       | 60.5          | 22.8    | 4.4       |
| # |                | 20,000   | 17,000 | 15,000    | 13,000        | 11,000    | 9,000 | 6,000      | 4,000         | 1,000   | 200       |
|   | Effective Same | ple Size |        |           |               |           |       |            |               |         |           |

### 7230 Marquis VR

#### **Product Characteristics** US Market Release Dec-02 Malfunctions (US) 54 NBD Code VVEV **Registered US Implants** 19,000 **Therapy Function Not Compromised** 27 Serial Number Prefix PKD, PLW, PLY Estimated Active US Implants 6,000 **Electrical Component** 12 Normal Battery Depletions (US) 571 Software/Firmware Max Delivered Energy 30 J 1 Possible Early Battery Depletion 13 Estimated Longevity Advisories: See page 145 – 2005 Potential See page 36 Premature Battery Depletion Due to Other 1 **Battery Short Therapy Function Compromised** 27 Battery (18 malfunctions related to advisory) 19 **Electrical Component** 8 100 Device Survival Probability (%) 90 80 70 60 0 2 3 4 5 6 7 8 9 10 ----- Including Normal Battery Depletion Years After Implant Excluding Normal Battery Depletion 2 yr 3 yr 4 yr 5 yr бyr 7 yr at 94 mo 1 yr % 100.0 99.9 99.9 99.8 99.7 99.6 99.4 99.2 % 99.8 99.5 99.1 98.8 98.0 93.7 83.8 70.0 # 17,000 13,000 11,000 10,000 9,000 6,000 3,000 200 **Effective Sample Size**

### 7231Cx GEM III VR



### 7232 Maximo VR

| US Mai | ket Release     |                                    | Oct-0  | 3 Malfun | nctions (US)      |                                         |       | 51     | NBD Code       |        | VVED              |
|--------|-----------------|------------------------------------|--------|----------|-------------------|-----------------------------------------|-------|--------|----------------|--------|-------------------|
|        | ered US Implar  | nts                                | 44,00  |          | apy Function N    | lot Compromi                            | sed   | 38     | Serial Number  | Prefix | PRN               |
|        | ted Active US I |                                    | 24,00  |          | lectrical Comp    |                                         |       | 18     | Max Delivered  | Energy | 35 J              |
|        | l Battery Deple | •                                  | 64     |          | ossible Early Ba  |                                         | on    | 19     | Estimated Long |        | See page 36       |
|        |                 |                                    |        |          | ther              | , , , , , , , , , , , , , , , , , , , , |       | 1      |                |        | <u>bee page b</u> |
|        |                 | e 145–2005 Pote<br>epletion Due to | ntial  |          | apy Function C    | ompromised                              |       | 13     |                |        |                   |
|        | / Short         |                                    |        |          | lectrical Comp    |                                         |       | 11     |                |        |                   |
|        |                 |                                    |        |          | lectrical Interco |                                         |       | 1      |                |        |                   |
|        |                 |                                    |        | Po       | ossible Early Ba  | attery Depletic                         | on    | 1      |                |        |                   |
| 100    |                 |                                    |        |          |                   |                                         |       |        |                |        |                   |
| 90     |                 |                                    |        |          |                   |                                         |       |        |                |        |                   |
| 80     |                 |                                    |        |          |                   |                                         |       |        |                |        |                   |
| 70     |                 |                                    |        |          |                   |                                         |       |        |                |        |                   |
| (      | )               | 1 2                                | 3      | }        | 4                 | 5                                       | 6     | 7      | 8              | 9      | 10                |
|        | Years Afte      | r Implant                          |        |          | mal Battery       | Depletion                               | -     | cludin | g Normal Bati  | -      |                   |
|        |                 |                                    |        |          | 1                 |                                         | 1     |        | 5              |        |                   |
|        |                 | -                                  | 2 yr   | 3 yr     | 4 yr              | 5 yr                                    | 6 yr  | 7 y    |                |        |                   |
| %      |                 | 100.0                              | 99.9   | 99.9     | 99.9              | 99.8                                    | 99.8  | 99.    | .8             |        | <br>              |
| %      |                 | 99.9                               | 99.7   | 99.4     | 99.1              | 97.3                                    | 88.3  | 78     | .9             |        |                   |
| #      |                 | 39,000                             | 35,000 | 30,000   | 23,000            | 14,000                                  | 3,000 | 100    | )              |        |                   |
|        | Effective Sam   | ple Size                           |        |          |                   |                                         |       |        |                |        |                   |

22 Medtronic CRDM Product Performance Report www.medtronic.com/CRDMProductPerformance **Product Characteristics** 

**Product Characteristics** 



7,000

5,000

4,000

### 7274 Marquis DR

13,000

Effective Sample Size

12,000

10,000

9,000

#

%

#

----

**Effective Sample Size** 

#### **Product Characteristics**

1,000

200

|        | Mar-02                                                                           | Malfun                                 | ctions (US)                                                        |                                                                                                                               |                                                                                                                                                                                                      | 188                                                                                                                                                                                                                      | NBD Co                                                                                                                                                                                                                               | de                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                    | VVED                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------|----------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | 48,000                                                                           | Thera                                  | py Function N                                                      | ot Compromise                                                                                                                 | ed                                                                                                                                                                                                   | 82                                                                                                                                                                                                                       | Serial N                                                                                                                                                                                                                             | umber Prefix                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                    | PKC                                                                                                                                                                                                                                                                                                                                                                                                   |
| s      | 3,000                                                                            | Ba                                     | attery (3 malfur                                                   | nctions related to                                                                                                            | advisory)                                                                                                                                                                                            | 5                                                                                                                                                                                                                        | Max De                                                                                                                                                                                                                               | livered Energy                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                    | 30 J                                                                                                                                                                                                                                                                                                                                                                                                  |
| JS)    | 6,511                                                                            | El                                     | ectrical Compo                                                     | onent                                                                                                                         |                                                                                                                                                                                                      | 26                                                                                                                                                                                                                       | Estimat                                                                                                                                                                                                                              | ed Longevity                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                    | See page                                                                                                                                                                                                                                                                                                                                                                                              |
|        | ıl                                                                               | Po                                     | ossible Early Ba                                                   | ttery Depletion                                                                                                               |                                                                                                                                                                                                      | 51                                                                                                                                                                                                                       |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                       |
| Due to |                                                                                  | Thera                                  | py Function Co                                                     | ompromised                                                                                                                    |                                                                                                                                                                                                      | 106                                                                                                                                                                                                                      |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                       |
|        |                                                                                  | Ba                                     | ttery (73 malfu                                                    | nctions related t                                                                                                             | o advisory)                                                                                                                                                                                          | 79                                                                                                                                                                                                                       |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                       |
|        |                                                                                  | Ele                                    | ectrical Compo                                                     | nent                                                                                                                          |                                                                                                                                                                                                      | 27                                                                                                                                                                                                                       |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                       |
|        |                                                                                  |                                        |                                                                    |                                                                                                                               |                                                                                                                                                                                                      |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                       |
|        |                                                                                  |                                        |                                                                    |                                                                                                                               |                                                                                                                                                                                                      |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                       |
|        |                                                                                  |                                        |                                                                    |                                                                                                                               |                                                                                                                                                                                                      |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                       |
|        |                                                                                  |                                        |                                                                    |                                                                                                                               |                                                                                                                                                                                                      |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                       |
|        |                                                                                  |                                        |                                                                    |                                                                                                                               |                                                                                                                                                                                                      |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                       |
|        |                                                                                  |                                        |                                                                    |                                                                                                                               |                                                                                                                                                                                                      |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                       |
|        |                                                                                  |                                        |                                                                    |                                                                                                                               |                                                                                                                                                                                                      |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                       |
|        |                                                                                  |                                        |                                                                    |                                                                                                                               |                                                                                                                                                                                                      |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                       |
|        |                                                                                  |                                        |                                                                    |                                                                                                                               |                                                                                                                                                                                                      |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                       |
|        |                                                                                  |                                        |                                                                    |                                                                                                                               |                                                                                                                                                                                                      |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                       |
|        | 3                                                                                |                                        | 1                                                                  | 5 (                                                                                                                           | 5                                                                                                                                                                                                    |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                      | 8                                                                                                                                                                                                                                                      | 9                                                                                                                                                                                                                                                                                                                                                                                                  | 10                                                                                                                                                                                                                                                                                                                                                                                                    |
|        | s<br>JS)<br>• 2005 Potentia<br>• Due to<br>• • • • • • • • • • • • • • • • • • • | s 3,000<br>JS) 6,511<br>2005 Potential | s 3,000 Ba<br>JS) 6,511 El<br>2005 Potential<br>Due to Thera<br>Ba | s 3,000 Battery (3 malfur<br>JS) 6,511 Electrical Compo<br>2005 Potential<br>Due to Therapy Function Co<br>Battery (73 malfur | s 3,000 Battery (3 malfunctions related to<br>JS) 6,511 Electrical Component<br>2005 Potential<br>Due to Therapy Function Compromised<br>Battery (73 malfunctions related to<br>Electrical Component | s 3,000 Battery (3 malfunctions related to advisory)<br>JS) 6,511 Electrical Component<br>2005 Potential<br>Due to Therapy Function Compromised<br>Battery (73 malfunctions related to advisory)<br>Electrical Component | s 3,000 Battery (3 malfunctions related to advisory) 5<br>JS) 6,511 Electrical Component 26<br>2005 Potential Due to Therapy Function Compromised 106<br>Battery (73 malfunctions related to advisory) 79<br>Electrical Component 27 | s 3,000 Battery (3 malfunctions related to advisory) 5 Max De<br>JS) 6,511 Electrical Component 26 Estimat<br>2005 Potential<br>Due to Therapy Function Compromised 106<br>Battery (73 malfunctions related to advisory) 79<br>Electrical Component 27 | s     3,000     Battery (3 malfunctions related to advisory)     5     Max Delivered Energy       JS)     6,511     Electrical Component     26     Estimated Longevity       2005 Potential     Possible Early Battery Depletion     51     51       Due to     Therapy Function Compromised     106       Battery (73 malfunctions related to advisory)     79       Electrical Component     27 | s     3,000     Battery (3 malfunctions related to advisory)     5     Max Delivered Energy       J5)     6,511     Electrical Component     26     Estimated Longevity       2005 Potential<br>Due to     Possible Early Battery Depletion     51     51       Therapy Function Compromised<br>Battery (73 malfunctions related to advisory)     106     54       Electrical Component     27     27 |

90.2

18,000

64.7

10,000

5.6

1,000

0

Source: Medtronic Device Registration and Returned Product Analysis Data as of January 31, 2011

99.4

34,000

98.4

26,000

96.8

22,000

99.7

42,000

# 7275 GEM III DR

#### Product Characteristics

| JS Market Release                                     | Nov-00 | Malfunctions (US)                | 39 | NBD Code             | VVED       |
|-------------------------------------------------------|--------|----------------------------------|----|----------------------|------------|
| Registered US Implants                                | 20,000 | Therapy Function Not Compromised | 28 | Serial Number Prefix | PJM        |
| Estimated Active US Implants                          | 400    | Battery                          | 1  | Max Delivered Energy | 30 J       |
| Normal Battery Depletions (US)                        | 4,250  | Electrical Component             | 9  | Estimated Longevity  | See page 3 |
| Performance Note: <u>See page 156</u> –               |        | Software/Firmware                | 1  |                      |            |
| Performance note on ICD Battery<br>Discharge Behavior |        | Possible Early Battery Depletion | 17 |                      |            |
| Discharge benavior                                    |        | Therapy Function Compromised     | 11 |                      |            |
|                                                       |        | Battery                          | 2  |                      |            |
|                                                       |        | Electrical Component             | 8  |                      |            |
| 100                                                   |        | Electrical Interconnect          | 1  |                      |            |
| 100                                                   |        |                                  |    |                      |            |
| 90                                                    |        |                                  |    |                      |            |
| 80                                                    |        |                                  |    |                      |            |
| 70                                                    |        |                                  |    |                      |            |
| 60                                                    |        |                                  |    |                      |            |
| 50                                                    |        |                                  |    |                      |            |
| 40                                                    |        |                                  |    |                      |            |
| 30                                                    |        |                                  |    |                      |            |
| 20                                                    |        |                                  |    |                      |            |
| 10                                                    |        |                                  |    |                      |            |
| 0                                                     |        |                                  |    |                      |            |
| 0 1 2                                                 | 3      | 4 5 6                            | 7  | 8 9                  | 10         |

|   |               |          |        | _      | -      |       |      |  |  |
|---|---------------|----------|--------|--------|--------|-------|------|--|--|
|   |               | 1 yr     | 2 yr   | 3 yr   | 4 yr   | 5 yr  | 6 yr |  |  |
| % |               | 99.9     | 99.9   | 99.8   | 99.8   | 99.7  | 99.7 |  |  |
| % |               | 99.6     | 99.0   | 96.9   | 90.2   | 64.6  | 8.4  |  |  |
| # |               | 18,000   | 15,000 | 13,000 | 10,000 | 5,000 | 400  |  |  |
|   | Effective Sam | ple Size |        |        |        |       |      |  |  |

#### 7278 Maximo DR

| IS Ma | irket Release                |                             | Oct-     | 03 Malf    | unctions (US)     |                  |          | 45    | NBD Code                  | VVED     |
|-------|------------------------------|-----------------------------|----------|------------|-------------------|------------------|----------|-------|---------------------------|----------|
| egist | ered US Implant              | S                           | 38,0     | 00         |                   |                  |          | 37    | Serial Number Prefix      | PRM      |
| stima | ated Active US In            | nplants                     | 14,0     | 00         | Electrical Comp   | onent            |          | 16    | Max Delivered Energy      | 35 J     |
| lorm  | al Battery Deple             | tions (US)                  | 2,9      | 23         | Possible Early Ba | attery Depletion | n        | 21    | Estimated Longevity       | See page |
| dvis  | ories: See page              | <mark>. 145 –</mark> 2005 P | otential | The        | erapy Function C  | ompromised       |          | 8     |                           |          |
| rema  | ature Battery Dej<br>y Short | pletion Due to              | •        |            | Electrical Compo  | onent            |          | 7     |                           |          |
| atter | y short                      |                             |          |            | Possible Early Ba | attery Depletior | n        | 1     |                           |          |
| 100   |                              |                             |          |            |                   |                  |          |       |                           |          |
| 90    |                              |                             |          |            |                   |                  |          |       |                           |          |
| 80    |                              |                             |          |            |                   |                  |          |       |                           |          |
| 70    |                              |                             |          |            |                   |                  |          |       |                           |          |
| 60    |                              |                             |          |            |                   |                  |          |       |                           |          |
| 50    |                              |                             |          |            |                   |                  |          |       |                           |          |
| 40    |                              |                             |          |            |                   |                  |          |       |                           |          |
| 30    |                              |                             |          |            |                   |                  |          | _     |                           |          |
| 20    |                              |                             |          |            |                   |                  |          |       |                           |          |
| 10    |                              |                             |          |            |                   |                  | <u> </u> | _     |                           |          |
| 0     |                              |                             |          |            |                   |                  |          |       |                           |          |
|       | 0 1                          |                             | 2        | 3          | 4                 | 5                | 6        | 7     | 8 9                       | 10       |
|       | Years After                  | Implant                     | — Fx     | cludina Na | ormal Battery     | Depletion        | Inc      | ludin | g Normal Battery Depletic | n        |
|       |                              |                             | I        |            | 1                 |                  | 1        |       |                           |          |
|       |                              | 1 yr                        | 2 yr     | 3 yr       | 4 yr              | 5 yr             | 6 yr     |       | 0 mo                      |          |
| %     |                              | 100.0                       | 99.9     | 99.9       | 99.9              | 99.8             | 99.8     | 99.   |                           |          |
| %     |                              | 99.9                        | 99.6     | 99.1       | 97.4              | 88.4             | 55.6     | 11.   |                           |          |
| #     | Effective Samp               | 34,000                      | 29,000   | 25,000     | 20,000            | 13,000           | 3,000    | 100   |                           |          |

24 Medtronic CRDM Product Performance Report www.medtronic.com/CRDMProductPerformance Source: Medtronic Device Registration and Returned Product Analysis Data as of January 31, 2011

**Product Characteristics** 

### 7288 Intrinsic

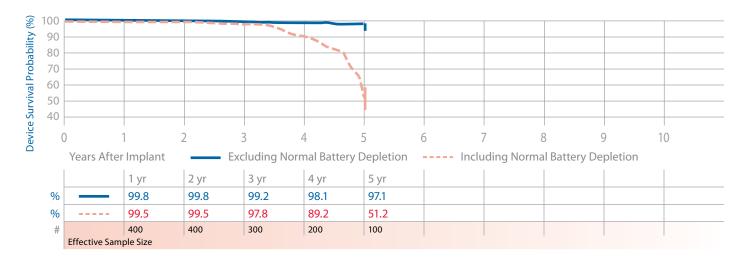
#### **Product Characteristics**

 $\Box$ 

| JS Market Rele | ease            | Aug           | g-04 N    | Aalfunctions (US) |                |       | 57      | NBD Code      |               | VVED       |
|----------------|-----------------|---------------|-----------|-------------------|----------------|-------|---------|---------------|---------------|------------|
| Registered US  | Implants        | 31            | ,000      | Therapy Function  | Not Comprom    | ised  | 50      | Serial Number | r Prefix      | PUB        |
| Estimated Acti | ve US Implants  | 14            | ,000      | Battery           |                |       | 2       | Max Delivered | l Energy      | 35 J       |
| Normal Batter  | y Depletions (U | 5) 1          | ,897      | Electrical Comp   | onent          |       | 17      | Estimated Lor | ngevity       | See page 3 |
| Advisories     |                 | N             | lone      | Software/Firm     | ware           |       | 1       |               |               |            |
|                |                 |               |           | Possible Early B  | attery Depleti | on    | 30      |               |               |            |
|                |                 |               |           | Therapy Function  | Compromised    |       | 7       |               |               |            |
|                |                 |               |           | Electrical Comp   | onent          |       | 7       |               |               |            |
| 100            |                 |               |           |                   |                |       |         |               |               |            |
| 90<br>80       |                 |               |           |                   |                |       |         |               |               |            |
| 70             |                 |               |           |                   |                |       |         |               |               |            |
| 60             |                 |               |           |                   |                |       |         |               |               |            |
| 50             |                 |               |           |                   |                |       |         |               |               |            |
| 40             |                 |               |           |                   |                | 1     |         |               |               |            |
| 30             |                 |               |           |                   |                |       |         |               |               |            |
| 0              | 1               | 2             | 3         | 4                 | 5              | 6     | 7       | 8             | 9             | 10         |
| Years          | After Impla     | nt <u> </u> E | Excluding | Normal Battery    | Depletion      |       | ncludir | ig Normal Bat | ttery Depleti | on         |
|                | 1 yr            | 2 yr          | 3 yr      | 4 yr              | 5 yr           | 6 yr  | at      | 73 mo         |               |            |
| % —            | - 100.0         | 99.9          | 99.9      | 99.8              | 99.8           | 99.7  | 99      | .7            |               |            |
| %              | 99.9            | 99.6          | 99.1      | 98.0              | 88.3           | 52.0  | 43      | .5            |               |            |
| #              | 28,000          | 26,000        | 23,000    | 19,000            | 12,000         | 1,000 | 30      | )             |               |            |
| Effecti        | ve Sample Size  |               |           |                   |                |       |         |               |               |            |

#### 7290Cx Onyx

### **Product Characteristics**


| JS Market Release                                              | Mar-04     | Malfunctions (US)                  |                   | 5            | Ν      | BD Code             |    | VVEV       |
|----------------------------------------------------------------|------------|------------------------------------|-------------------|--------------|--------|---------------------|----|------------|
| Registered US Implants                                         | 1,000      | Therapy Function                   | Not Compromise    | e <b>d</b> 4 | Se     | erial Number Prefix | (  | PRP        |
| Estimated Active US Implants                                   | 500        | Electrical Com                     | ponent            | 3            | M      | ax Delivered Energ  | ау | 30 J       |
| Normal Battery Depletions (US)                                 | 51         | Possible Early                     | Battery Depletion | 1            | Es     | timated Longevity   | /  | See page 3 |
| Advisories                                                     | None       | Therapy Function                   | Compromised       | 1            |        |                     |    |            |
|                                                                |            | Electrical Com                     | ponent            | 1            |        |                     |    |            |
| 100         90           90         80           70         90 |            |                                    | ~`,               |              |        |                     |    |            |
| 60                                                             | 3          |                                    |                   | 6 7          |        | 8                   | 9  | 10         |
| Years After Implant                                            | -          | 4<br>ing Normal Batter<br>r   4 yr |                   |              | ding N | o<br>lormal Battery | -  | 10         |
| i yi                                                           | _ yı _ J y | yi                                 | 5 yı              | at 021110    |        |                     |    |            |

% - -#

| Tears Arter   | Implant  | LAG   | liuunig Non | nai battery L | repletion | incluui  | ing normai |  |
|---------------|----------|-------|-------------|---------------|-----------|----------|------------|--|
|               | 1 yr     | 2 yr  | 3 yr        | 4 yr          | 5 yr      | at 69 mo |            |  |
|               | 99.9     | 99.5  | 99.5        | 99.4          | 99.4      | 99.4     |            |  |
|               | 99.8     | 98.8  | 98.0        | 96.5          | 91.1      | 74.5     |            |  |
|               | 1,000    | 1,000 | 1,000       | 1,000         | 400       | 100      |            |  |
| Effective Sam | ple Size |       |             |               |           |          |            |  |
|               |          |       |             |               |           |          |            |  |
|               |          |       |             |               |           |          |            |  |

# D153ATG, D153DRG EnTrust

#### US Market Release DDED, VVED Jun-05 Malfunctions (US) 8 NBD Code **Registered US Implants** 500 **Therapy Function Not Compromised** 7 Serial Number Prefix PNR 7 30 J Estimated Active US Implants Possible Early Battery Depletion Max Delivered Energy 100 Normal Battery Depletions (US) 97 **Therapy Function Compromised** Estimated Longevity 1 See page 37 Advisories None **Electrical Component** 1



### D154ATG, D154DRG EnTrust

| JS Market Release         |                  | Jun-       | 05 Mal            | functions (US)              |                          |          | 82          | NBD Code  | e           |   | DDED, VV |
|---------------------------|------------------|------------|-------------------|-----------------------------|--------------------------|----------|-------------|-----------|-------------|---|----------|
| Registered US Imp         | ants             | 28,0       | 00 Th             | erapy Function              | Not Compromi             | sed      | 73          | Serial Nu | mber Prefix |   | PNR      |
| Estimated Active L        | S Implants       | 17,0       | 00                | Electrical Comp             | ponent                   |          | 18          | Max Deliv | vered Energ | y | 35 J     |
| Normal Battery De         | pletions (US)    | 4          | 53                | Software/Firm               | ware                     |          | 2           | Estimated | d Longevity |   | See page |
| Advisories                |                  | No         | ne                | Possible Early B            | Battery Depletic         | 'n       | 53          |           |             |   |          |
|                           |                  |            | Th                | erapy Function              | Compromised              |          | 9           |           |             |   |          |
|                           |                  |            |                   | Electrical Comp             | oonent                   |          | 9           |           |             |   |          |
| 100                       |                  |            |                   |                             |                          |          |             |           |             |   |          |
|                           | 1                | 2          | 3                 | 4                           | 5                        | 6        | 7           | 8         | }           | 9 | 10       |
| 90<br>80<br>0             | 1<br>ter Implant |            |                   |                             | 5                        |          | 7<br>cludir |           | Battery [   |   |          |
| 90<br>80<br>0             | 1<br>ter Implant |            |                   | 4                           | 5                        |          | 7<br>cludir |           |             |   |          |
| 90<br>80<br>0             |                  | Ex         | cluding N         | 4<br>lormal Battery         | 5<br>7 Depletion         | In       | 7<br>cludir |           |             |   |          |
| 90<br>80<br>0<br>Years Af | 1 yr             | Ex<br>2 yr | cluding N<br>3 yr | 4<br>lormal Battery<br>4 yr | 5<br>7 Depletion<br>5 yr | at 64 mo | 7<br>cludir |           |             |   |          |

**Product Characteristics** 

**Product Characteristics** 

### D154AWG, D164AWG Virtuoso DR

| US Market Release                                                            | May-06 |
|------------------------------------------------------------------------------|--------|
| Registered US Implants                                                       | 72,000 |
| Estimated Active US Implants                                                 | 56,000 |
| Normal Battery Depletions (US)                                               | 134    |
| Advisories: <u>See page 139</u> – 2009<br>Potential Reduced Device Longevity |        |
|                                                                              |        |
| D ( N ) Common 150                                                           |        |

Performance Note: See page 150-Anomalies in MOSFET Integrated Circuit Technology

#### Product Characteristics

(N) (A)

64

41

10

1

30

23

23

| 1,542 | NBD Code             | VVED        |
|-------|----------------------|-------------|
| 1,537 | Serial Number Prefix | PVV, PUL    |
| 1,537 | Max Delivered Energy | 35 J        |
|       | Estimated Longevity  | See page 37 |
|       |                      |             |
| 5     |                      |             |
| 5     |                      |             |

| 90  -       |                        |                                                     | _                              |                                                        |                                                                          | WG (Non-adviso                          | , population) 33 |                     |                 |                        |    |
|-------------|------------------------|-----------------------------------------------------|--------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------|------------------|---------------------|-----------------|------------------------|----|
| 30 -        |                        |                                                     |                                |                                                        |                                                                          |                                         |                  |                     |                 |                        |    |
| 70 -        |                        |                                                     |                                |                                                        |                                                                          |                                         |                  |                     |                 |                        |    |
| 50 -        |                        |                                                     |                                |                                                        | 154AWG, D164                                                             | AWG (Advisory po                        | opulation) 55.1% |                     |                 |                        |    |
| 50 -        |                        |                                                     |                                |                                                        |                                                                          |                                         |                  |                     |                 |                        |    |
| 40          |                        |                                                     |                                |                                                        |                                                                          |                                         |                  |                     |                 |                        |    |
| 30 -        |                        |                                                     |                                | <u> </u>                                               |                                                                          |                                         |                  |                     |                 |                        |    |
| 20          |                        |                                                     |                                |                                                        |                                                                          |                                         |                  |                     |                 |                        |    |
| 10          |                        |                                                     |                                | 1                                                      |                                                                          |                                         |                  |                     |                 |                        |    |
|             |                        |                                                     |                                |                                                        |                                                                          |                                         |                  |                     |                 |                        |    |
| 0           | Years After            |                                                     | 1                              | 3<br>Excluding No                                      |                                                                          | 1                                       | 6<br>Inc         | 7<br>7<br>uding Nor | 8<br>mal Batter | 9<br>9<br>Ty Depletion | 10 |
| %           |                        |                                                     |                                |                                                        |                                                                          |                                         |                  | ,                   |                 | -                      |    |
| %           | Years After<br>Non-Adv | 1 yr<br>100.0                                       | 2 yr<br>99.9                   | Excluding No<br>3 yr<br>99.9                           | rmal Battery<br>4 yr<br>99.7                                             | y Depletion<br>at 52 mo<br>99.7         |                  | ,                   |                 | -                      |    |
| 0<br>%<br># | Years After<br>Non-Adv | 1 yr<br>100.0<br>99.9<br>65,000                     | 2 yr<br>99.9<br>99.7           | Excluding No<br>3 yr<br>99.9<br>99.3                   | rmal Battery<br>4 yr<br>99.7<br>98.4                                     | y Depletion<br>at 52 mo<br>99.7<br>97.8 |                  | ,                   |                 | -                      |    |
| %<br>%<br># | Years After<br>Non-Adv | 1 yr<br>100.0<br>99.9<br>65,000                     | 2 yr<br>99.9<br>99.7           | Excluding No<br>3 yr<br>99.9<br>99.3                   | rmal Battery<br>4 yr<br>99.7<br>98.4                                     | y Depletion<br>at 52 mo<br>99.7<br>97.8 |                  | ,                   |                 | -                      |    |
| %<br>#      | Years After<br>Non-Adv | 1 yr<br>100.0<br>99.9<br>65,000                     | 2 yr<br>99.9<br>99.7           | Excluding No<br>3 yr<br>99.9<br>99.3                   | rmal Battery<br>4 yr<br>99.7<br>98.4                                     | y Depletion<br>at 52 mo<br>99.7<br>97.8 |                  | ,                   |                 | -                      |    |
| %<br>#      | Years After<br>Non-Adv | 1 yr<br>100.0<br>99.9<br>65,000<br>ple Size         | 2 yr<br>99.9<br>99.7<br>49,000 | Excluding No<br>3 yr<br>99.9<br>99.3<br>23,000         | rmal Battery<br>4 yr<br>99.7<br>98.4<br>2,000                            | y Depletion<br>at 52 mo<br>99.7<br>97.8 |                  | ,                   |                 | -                      |    |
| 0<br>%<br># | Years After<br>Non-Adv | 1 yr<br>100.0<br>99.9<br>65,000<br>ple Size<br>1 yr | 2 yr<br>99.9<br>99.7<br>49,000 | Excluding No<br>3 yr<br>99.9<br>99.3<br>23,000<br>3 yr | rmal Battery       4 yr       99.7       98.4       2,000       at 46 mo | y Depletion<br>at 52 mo<br>99.7<br>97.8 |                  | ,                   |                 | -                      |    |

Malfunctions (US)

**Therapy Function Not Compromised** 

Possible Early Battery Depletion

**Electrical Component** 

Electrical Interconnect

Therapy Function Compromised

**Electrical Component** 

| US Market Release                  |                        | Jun-    | 05              | Malfunctions (US)       |                 | 4        | 14        | NBD Code          |        | VVEV     |
|------------------------------------|------------------------|---------|-----------------|-------------------------|-----------------|----------|-----------|-------------------|--------|----------|
| Registered US Implar               | nts                    | 14,0    | 00              | Therapy Function        | n Not Comprom   | ised 3   | 36        | Serial Number P   | refix  | PNT      |
| Estimated Active US                | Implants               | 9,0     | 00              | Battery                 |                 |          | 2         | Max Delivered E   | inergy | 35 J     |
| Normal Battery Deple               | etions (US)            |         | 47              | Electrical Com          | nponent         |          | 13        | Estimated Long    | evity  | See page |
| Advisories                         |                        | No      | ne              | Possible Early          | Battery Depleti | on 2     | 21        |                   |        |          |
|                                    |                        |         |                 | Therapy Function        | n Compromised   | I        | 8         |                   |        |          |
|                                    |                        |         |                 | Electrical Com          | nponent         |          | 8         |                   |        |          |
|                                    |                        |         |                 |                         |                 |          |           |                   |        |          |
| 100                                |                        |         |                 |                         |                 |          |           |                   |        |          |
| 100                                |                        |         |                 |                         | _               |          |           |                   |        |          |
| 100                                |                        |         |                 |                         |                 |          |           |                   |        |          |
| 80                                 | 1                      | 2       | 2               |                         | 5               | 6        | 7         |                   | 0      | 10       |
| 100<br>90<br>80<br>0               | 1                      | 2       | 3               | 4                       | 5               | 6        | 7         | 8                 | 9      | 10       |
| 100<br>90<br>80<br>0<br>Years Afte | 1<br>r Implant         | _       | -               | 4<br>J Normal Batter    | -               | -        | 7<br>udir | 8<br>Normal Batte | -      |          |
| 100<br>90<br>80<br>0<br>Years Afte | 1<br>r Implant<br>1 yr | _       | -               |                         | -               | -        | 7<br>udir | _                 | -      |          |
| 100<br>90<br>80<br>0<br>Years Afte |                        | E>      | cluding         | Normal Batter           | ry Depletion    | Incl     | 7<br>udir | _                 | -      |          |
| 90<br>90<br>0<br>Years Afte        | 1 yr                   | Ex 2 yr | cluding<br>3 yr | y Normal Batter<br>4 yr | ry Depletion    | at 63 mo | 7<br>udir | _                 | -      |          |

# D154VWC, D164VWC Virtuoso VR

| IS Mar                            | rket Release                      |                          | May-0        | 5 Malfun                    | ctions (US)                     |       | 21 | NBD Code             |          | VVEV |
|-----------------------------------|-----------------------------------|--------------------------|--------------|-----------------------------|---------------------------------|-------|----|----------------------|----------|------|
| Registered US Implants 33,0       |                                   |                          |              | D Thera                     | py Function Not Compror         | mised | 10 | Serial Number Pre    | PUN, PUP |      |
| stimated Active US Implants 26,00 |                                   |                          |              | D Ele                       | ectrical Component              |       | 5  | Max Delivered En     | 35 J     |      |
| lormal Battery Depletions (US)    |                                   |                          |              | 2 Ele                       | ectrical Interconnect           |       | 1  | Estimated Longev     | See page |      |
|                                   | ories: See page                   |                          |              | Pc                          | ossible Early Battery Deple     | tion  | 4  |                      |          |      |
|                                   | ial Reduced Dev                   |                          |              | Thera                       | py Function Compromise          | d     | 11 |                      |          |      |
| Anon                              | mance Note: Se<br>nalies in MOSFE |                          | ircuit       | Ele                         | ectrical Component              |       | 11 |                      |          |      |
| echno                             | ology                             | -                        |              |                             |                                 |       |    |                      |          |      |
| 100                               |                                   |                          |              |                             |                                 |       |    |                      |          |      |
| 100<br>90<br>80                   |                                   |                          |              |                             |                                 |       |    |                      |          |      |
| 90                                | ) 1                               |                          | 2 3          | 3                           | 4 5                             | 6     | 7  | 8                    | 9        | 10   |
| 90<br>80                          | ) 1<br>Years After                | Implant                  | Exc          | luding Norr                 | mal Battery Depletion           | -     | 1  | 8<br>g Normal Batter | -        |      |
| 90<br>80<br>0                     |                                   | Implant<br>1 yr          | Exc          | luding Norr<br>3 yr         | mal Battery Depletion           | -     | 1  | _                    | -        |      |
| 90<br>80<br>0                     |                                   | Implant<br>1 yr<br>100.0 | 2 yr<br>99.9 | luding Norr<br>3 yr<br>99.9 | mal Battery Depletion 4 yr 99.9 | -     | 1  | _                    | -        |      |
| 90<br>80<br>0                     |                                   | Implant<br>1 yr          | Exc          | luding Norr<br>3 yr         | mal Battery Depletion           | -     | 1  | _                    | -        |      |

**Product Characteristics** 

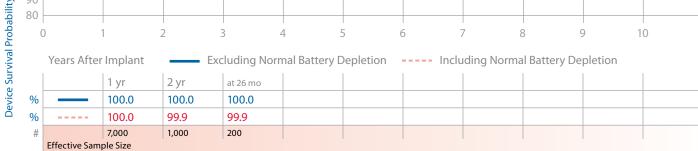
| JS Mai  | ket Release      |               | Aug                                                       | g-08 N    | Malfunctions (US)                |                                |    | 8       | NBD Code       | NBD Code            |    |  |  |
|---------|------------------|---------------|-----------------------------------------------------------|-----------|----------------------------------|--------------------------------|----|---------|----------------|---------------------|----|--|--|
| Registe | ered US Implan   | ts            |                                                           |           | herapy Func                      | erapy Function Not Compromised |    |         | Serial Number  | PUG                 |    |  |  |
| stima   | ted Active US li | nplants       | 29                                                        | .000      | Electrical Component             |                                |    | 2       | Max Delivered  | 35 J                |    |  |  |
| Vorma   | l Battery Deple  | tions (US)    | 24                                                        |           | Possible Early Battery Depletion |                                |    |         | Estimated Long | Estimated Longevity |    |  |  |
| Adviso  | ries             |               | None Therapy Function Compromised<br>Electrical Component |           |                                  |                                |    | 4       | 4<br>3         |                     |    |  |  |
|         |                  |               |                                                           |           |                                  |                                |    | 3       |                |                     |    |  |  |
|         |                  |               |                                                           |           | Software/I                       | Firmware                       |    | 1       |                |                     |    |  |  |
| 100     |                  |               | _                                                         |           |                                  |                                |    |         |                |                     |    |  |  |
| 90      |                  |               |                                                           |           |                                  |                                |    |         |                |                     |    |  |  |
| 80      |                  |               |                                                           |           |                                  |                                |    |         |                |                     |    |  |  |
| (       | )                | 1             | 2                                                         | 3         | 4                                | 5                              | б  | 7       | 8              | 9                   | 10 |  |  |
|         | Years After      | Implant       | E                                                         | Excluding | Normal Bat                       | tery Depleti                   | on | Includi | ng Normal Bat  | tery Depletion      | n  |  |  |
|         |                  | 1 yr          | 2 yr                                                      | at 26 mo  | )                                |                                |    |         |                |                     |    |  |  |
|         |                  |               | 000                                                       | 99.9      |                                  |                                |    |         |                |                     |    |  |  |
| %       |                  | 100.0         | 99.9                                                      | 55.5      |                                  |                                |    |         |                |                     |    |  |  |
| %<br>%  |                  | 100.0<br>99.8 | 99.9<br>99.4                                              | 99.4      |                                  |                                |    |         |                |                     |    |  |  |

### D224VRC Secura VR

| US Market Release                                      |                  | Aug            | g-08 Malfunctions (US) |                   |                                                                      | 3 | NBD Code |   | VVEV                |          |    |
|--------------------------------------------------------|------------------|----------------|------------------------|-------------------|----------------------------------------------------------------------|---|----------|---|---------------------|----------|----|
| Registered US Implants<br>Estimated Active US Implants |                  |                | 12,                    | 000               | Therapy Function Not Compromised<br>Possible Early Battery Depletion |   |          |   | Serial Number P     | PUX      |    |
|                                                        |                  |                | 11,                    | 000               |                                                                      |   |          |   | Max Delivered E     | 35 J     |    |
| Norma                                                  | al Battery Deple | etions (US)    |                        | 5                 | Therapy Function Compromised                                         |   |          |   | Estimated Long      | See page |    |
| Adviso                                                 | ories            |                | Ν                      | one               | Electrical Component                                                 |   |          | 1 |                     |          |    |
|                                                        |                  |                |                        | Software/Firmware |                                                                      |   |          | 1 |                     |          |    |
| 100<br>90                                              |                  |                | _                      |                   |                                                                      |   |          |   |                     |          |    |
| 100<br>90<br>80                                        |                  |                | -                      |                   |                                                                      |   |          |   |                     |          |    |
| 90<br>80                                               | 0                | 1              | 2                      | 3                 | 4                                                                    | 5 | 6        | 7 | 8                   | 9        | 10 |
| 90<br>80                                               |                  | 1<br>Implant   | E                      |                   | 4<br>Normal Bat                                                      |   |          | Ι | 8<br>g Normal Batte | -        |    |
| 90<br>80                                               | 0                | 1              |                        |                   | Normal Bat                                                           |   |          | Ι | -                   | -        |    |
| 90<br>80                                               | 0                | 1<br>Implant   | E                      | xcluding          | Normal Bat                                                           |   |          | Ι | -                   | -        |    |
| 90<br>80<br>(                                          | 0                | 1<br>1<br>1 yr | E<br>2 yr              | at 26 m           | Normal Bat                                                           |   |          | Ι | -                   | -        |    |

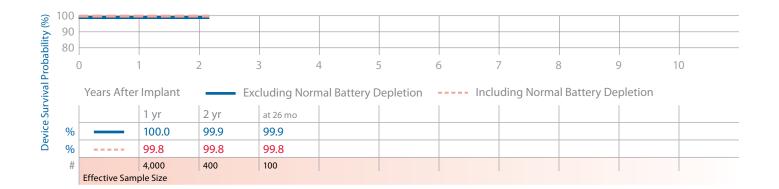
**Product Characteristics** 

<u>0</u>


| 274DRG Virtuoso II DR          |        |                                  |   | Product Characteristics |             |
|--------------------------------|--------|----------------------------------|---|-------------------------|-------------|
| US Market Release              | Aug-09 | Malfunctions (US)                | 0 | NBD Code                | VVED        |
| Registered US Implants         | 13,000 | Therapy Function Not Compromised | 0 | Serial Number Prefix    | PZT         |
| Estimated Active US Implants   | 12,000 | Therapy Function Compromised     | 0 | Max Delivered Energy    | 35 J        |
| Normal Battery Depletions (US) | 0      |                                  |   | Estimated Longevity     | See page 37 |
| Advisories                     | None   |                                  |   |                         |             |



#### **D274VRC** Virtuoso II VR


| 74VRC              | <b>Virtuos</b>                   | o II VR |          |              |                                  |                   |                |          |            | Produc               | t Character  | istics       |             |
|--------------------|----------------------------------|---------|----------|--------------|----------------------------------|-------------------|----------------|----------|------------|----------------------|--------------|--------------|-------------|
| US Marke           | JS Market Release Aug-09         |         |          |              |                                  | Malfunctions (US) |                |          |            |                      | NBD Code     |              |             |
| Registere          | egistered US Implants 5,000      |         |          |              | Therapy Function Not Compromised |                   |                |          |            | Serial Number Prefix |              |              | PUY, PZH    |
| Estimated          | timated Active US Implants 5,000 |         |          |              | Therapy Function Compromised     |                   |                |          | 0          | Max Deli             | vered Energy |              | 35 J        |
| Normal B           | Normal Battery Depletions (US)   |         |          | 0            |                                  |                   |                |          |            | Estimate             | d Longevity  |              | See page 37 |
| Advisorie          | s                                |         | Non      | e            |                                  |                   |                |          |            |                      |              |              |             |
| 90<br>80<br>0<br>Y | 1<br>/ears After Im              |         | —— Exc   | 3<br>Sluding | 4<br>Norm                        | al Battery I      | 5<br>Depletion | 6<br>Inc | 7<br>Iudin | ۶<br>g Norma         | Battery De   | 9<br>Pletion | 10          |
|                    | 1                                | yr      | at 14 mo |              |                                  |                   |                |          | _          |                      |              |              |             |
| %                  | 10                               | 0.00    | 100.0    |              |                                  |                   |                |          |            |                      |              |              |             |
| %                  | 10                               | 0.0     | 100.0    |              |                                  |                   |                |          |            |                      |              |              |             |
| #                  |                                  | 000     | 100      |              |                                  |                   |                |          |            |                      |              |              |             |
| Ef                 | ffective Sample                  | Size    |          |              |                                  |                   |                |          |            |                      |              |              |             |

| 84DRG Maximo II DR             |        |                                  |   | Product Characteristics |            |
|--------------------------------|--------|----------------------------------|---|-------------------------|------------|
| US Market Release              | Mar-08 | Malfunctions (US)                | 1 | NBD Code                | VVED       |
| Registered US Implants         | 13,000 | Therapy Function Not Compromised | 0 | Serial Number Prefix    | PUG        |
| Estimated Active US Implants   | 12,000 | Therapy Function Compromised     | 1 | Max Delivered Energy    | 35 J       |
| Normal Battery Depletions (US) | 2      | Electrical Component             | 1 | Estimated Longevity     | See page 3 |
| Advisories                     | None   |                                  |   |                         |            |
|                                |        |                                  |   |                         |            |
|                                |        |                                  |   |                         |            |
| 100                            |        |                                  |   |                         |            |
| 90                             |        |                                  |   |                         |            |



### **D284VRC** Maximo II VR

| D284VRC Maximo II VR           |        |                                  |   | Product Characteristics |             |
|--------------------------------|--------|----------------------------------|---|-------------------------|-------------|
| US Market Release              | Mar-08 | Malfunctions (US)                | 3 | NBD Code                | VVEV        |
| Registered US Implants         | 8,000  | Therapy Function Not Compromised | 0 | Serial Number Prefix    | PZN         |
| Estimated Active US Implants   | 7,000  | Therapy Function Compromised     | 3 | Max Delivered Energy    | 35 J        |
| Normal Battery Depletions (US) | 4      | Electrical Component             | 2 | Estimated Longevity     | See page 37 |
| Advisories                     | None   | Software/Firmware                | 1 |                         |             |



| Ē                                          |             |
|--------------------------------------------|-------------|
| 2a                                         | 1           |
| ce Inter                                   |             |
| idenc                                      | •           |
| nfi                                        | •           |
| (95% Co                                    |             |
| >                                          | 1           |
| 5                                          |             |
| Survival Summary (95% Confidence Interval) |             |
| _                                          | •           |
| a                                          |             |
| ÷.                                         |             |
| nr<br>V                                    |             |
| S                                          | 1           |
| evice S                                    | :<br>;<br>; |
| Ó                                          | i           |

The following table shows ICD device survival estimates with 95% confidence intervals. Estimates are shown both with and without normal battery depletions included.

|                                                                                                                               |                                                                                  |                      | Malfunctions (US)                            |                                            | Device S             | Device Survival Probability (%) | obability     | (%)           |               |               |                          |                               |                                   |
|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------|----------------------------------------------|--------------------------------------------|----------------------|---------------------------------|---------------|---------------|---------------|---------------|--------------------------|-------------------------------|-----------------------------------|
| jistered<br>implants<br>ive US<br>strad<br>pletions (US)<br>pletions (US)<br>pletions (US)                                    | stants<br>rmal Battery<br>pletions (US)<br>crapy Function<br>grapy<br>baironised | erapy.               | toN noitor<br>bəsimorqm                      |                                            | Years Aft            | Years After Implant             | t             | -             |               |               |                          | -                             |                                   |
| Est<br>Act<br>Inn<br>No<br>De<br>De                                                                                           | oN<br>⊳dT<br>oN                                                                  |                      | ıny                                          |                                            | 1 yr                 | 2 yr                            | 3 yr          | 4 yr          | 5 yr          | 6 yr          | 7 yr                     | 8 yr                          | 10 yr                             |
| Oct-98 22,000 1,000 3,058 —                                                                                                   |                                                                                  | I                    | - 154                                        | t Excluding<br>Normal Battery<br>Depletion | 99.7<br>+.1/1        | 99.6<br>+.1/1                   | 99.5<br>+.1/1 | 99.4<br>+.1/1 | 99.2<br>+.1/1 | 99.2<br>+.1/1 | 99.1<br>+.1/2            | 99.0<br>+.2/2                 | 98.9<br>+.2/2<br>at 111 mo        |
|                                                                                                                               |                                                                                  |                      |                                              | Including<br>Normal Battery<br>Depletion   | 99.2<br>+.1/1        | 98.9<br>+.1/2                   | 98.5<br>+.2/2 | 98.0<br>+.2/2 | 97.0<br>+.3/3 | 94.0<br>+.4/4 | 80.8<br>+.8/8            | 60.5<br>+1.1/-1.1             | <b>4.4</b><br>+1.0/8<br>at 111 mo |
| Dec-02 19,000 6,000 571 27 +                                                                                                  | 571 27                                                                           |                      | 27 = 54                                      | Excluding<br>Normal Battery<br>Depletion   | 100.0<br>+.0/0       | 99.9<br>+.0/1                   | 99.9<br>+.0/1 | 99.8<br>+.1/1 | 99.7<br>+.1/1 | 99.6<br>+.1/1 | 99.4<br>+.2/2            | 99.2<br>+.2/3<br>at 94 mo     |                                   |
| Advisories: <u>See page 145</u> – 2005 Potential Premature Battery (18) +<br>Depletion Due to Battery Short (advisor)         |                                                                                  | (18) +<br>(advisor)  | (18) + (0) (18)<br>(advisory-related subset) | ) Including<br>Normal Battery<br>Depletion | 99.8<br>+.1/1        | 99.5<br>+.1/1                   | 99.1<br>+.1/2 | 98.8<br>+.2/2 | 98.0<br>+.2/3 | 93.7<br>+.5/5 | 83.8<br>+1.0/-1.0        | 70.0<br>+2.4/-2.6<br>at 94 mo |                                   |
| Dec-00 17,000 2,000 2,588 9 +                                                                                                 | 2,588 9                                                                          |                      | 27 = 36                                      | Excluding<br>Normal Battery<br>Depletion   | 99.9<br>+.0/1        | 99.9<br>+.0/1                   | 99.8<br>+.1/1 | 99.8<br>+.1/1 | 99.8<br>+.1/1 | 99.7<br>+.1/1 | 99.7<br>+.1/1            | 99.7<br>+.1/1                 | 99.7<br>+.1/1<br>at 100 mo        |
| See page 156 – Performance note on ICD Battery<br>Discharge Behavior                                                          | ttery                                                                            |                      |                                              | Including<br>Normal Battery<br>Depletion   | 99.7<br>+.1/1        | 99.4<br>+.1/1                   | 99.0<br>+.2/2 | 98.4<br>+.2/2 | 96.7<br>+.3/4 | 86.9<br>+.7/7 | 71.3<br>+1.0/-1.1        | 36.5<br>+1.4/-1.4             | 7.8<br>+1.3/-1.2<br>at 100 mo     |
| Oct-03 44,000 24,000 645 13 +                                                                                                 | 645 13                                                                           |                      | 38 = 51                                      | Excluding<br>Normal Battery<br>Depletion   | 100.0<br>+.0/0       | 9.99<br>+.0/0                   | 9.99<br>/0.+  | 9.99<br>0/0.+ | 99.8<br>+.0/1 | 99.8<br>+.0/1 | 99.8<br>+.1/1            |                               |                                   |
| Advisories: <u>See page 145</u> – 2005 Potential Premature Battery (0) +<br>Depletion <u>Due to Battery</u> Short (advisory)  | (0)<br>(advi                                                                     | (0) +<br>(advisory-  | + (0) = (0)<br>sory-related subset)          | Including<br>Normal Battery<br>Depletion   | <b>9.66</b><br>0/0.+ | 99.7<br>+.0/1                   | 99.4<br>+.1/1 | 99.1<br>+.1/1 | 97.3<br>+.2/2 | 88.3<br>+.7/8 | 78.9<br>+2.2/-2.4        |                               |                                   |
| Oct-98 15,000 300 2,067 —                                                                                                     |                                                                                  | 1                    | - 100                                        | ) Excluding<br>Normal Battery<br>Depletion | 9.99<br>1/0.+        | 99.8<br>+.1/1                   | 99.7<br>+.1/1 | 99.5<br>+.1/2 | 99.3<br>+.1/2 | 99.1<br>+.2/2 | 99.0<br>+.2/2            | 98.8<br>+.2/3                 | 98.8<br>+.2/3<br>at 104 mo        |
|                                                                                                                               |                                                                                  |                      |                                              | Including<br>Normal Battery<br>Depletion   | 99.6<br>+.1/1        | 99.4<br>+.1/1                   | 98.7<br>+.2/2 | 97.7<br>+.3/3 | 95.3<br>+.4/5 | 88.9<br>+.7/7 | <b>74.7</b><br>+1.1/-1.1 | 40.2<br>+1.5/-1.5             | 9.3<br>+1.4/-1.3<br>at 104 mo     |
| Mar-02 48,000 3,000 6,511 106 +                                                                                               | 6,511 106                                                                        |                      | 82 = 188                                     | 3 Excluding<br>Normal Battery<br>Depletion | 100.0<br>+.0/0       | 9.99<br>+.0/0                   | 99.8<br>+.0/1 | 99.6<br>+.1/1 | 99.4<br>+.1/1 | 99.3<br>+.1/1 | 99.2<br>+.1/1            |                               |                                   |
| Advisories: <u>See page 145</u> – 2005 Potential Premature Battery (73) +<br>Depletion <u>Due to Battery</u> Short (advisory- | (73)<br>(advi                                                                    | (73) +<br>(advisory- | + (3) = (76)<br>sory-related subset)         | ) Including<br>Normal Battery<br>Depletion | 7.99.7<br>1/0.+      | 99.4<br>+.1/1                   | 98.4<br>+.1/1 | 96.8<br>+.2/2 | 90.2<br>+.4/4 | 64.7<br>+.7/7 | 5.6<br>+.7/7             |                               |                                   |

continued

32 Medtronic CRDM Product Performance Report www.medtronic.com/CRDMProductPerformance

| Malfunctions                   |
|--------------------------------|
| continued                      |
| <b>Device Survival Summary</b> |

Device Survival Probability (%)

|                                         |                                                                                                             | 5                                       |                      | 5                          |                          | Malfunctions                                          |              |                                          | ר שטואסת         |                     | ODADIILY          | (70)              |                           |                               |                               |      |       |
|-----------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------|----------------------------|--------------------------|-------------------------------------------------------|--------------|------------------------------------------|------------------|---------------------|-------------------|-------------------|---------------------------|-------------------------------|-------------------------------|------|-------|
| e: Medtronic C                          |                                                                                                             | təxhatkət<br>əssə                       | jistered<br>stnslqml | bətemi<br>VU əvi<br>stnalo | rnal Battery<br>snoitaic | riapy Function<br>mpromised<br>iction Not<br>pormised | le           |                                          | Years Aft        | Years After Implant | ÷                 |                   |                           |                               |                               |      |       |
|                                         | Family                                                                                                      |                                         | I SN<br>ɓəy          | †2Å                        |                          | an<br>JoJ                                             | toT          |                                          | 1 yr             | 2 yr                | 3 yr              | 4 yr              | 5 yr                      | 6 yr                          | 7 yr 8                        | 8 yr | 10 yr |
| <b>7275</b>                             | GEM III DR                                                                                                  | Nov-00                                  | 20,000               | 400                        | 4,250                    | 11 + 28 =                                             | 39           | Excluding<br>Normal Battery<br>Depletion | 9.99<br>/0.+     | 99.9<br>+.0/1       | 99.8<br>+.1/1     | 99.8<br>+.1/1     | 99.7<br>+.1/1             | 99.7<br>+.1/1                 |                               |      |       |
| tration                                 | <u>See page 156</u> – Performance note on ICD Battery<br>Discharge Behavior                                 | – Performanc<br>Iavior                  | e note on lC         | CD Battery                 |                          |                                                       |              | Including<br>Normal Battery<br>Depletion | 99.6<br>+.1/1    | 99.0<br>+.1/2       | 96.9<br>+.3/3     | 90.2<br>+.5/5     | 64.6<br>+1.0/-1.0         | 8.4<br>+1.0/9                 |                               |      |       |
| <b>1278</b>                             | Maximo DR                                                                                                   | Oct-03                                  | 38,000               | 14,000                     | 2,923                    | <mark>8</mark> + 37 =                                 | 45           | Excluding<br>Normal Battery<br>Depletion | 100.0<br>+.0/0   | 9.99<br>/0.+        | 9.99<br>/0.+      | 99.9<br>+.0/1     | 99.8<br>+.0/1             | 99.8<br>+.0/1                 | 99.8<br>+.0/1<br>at 80 mo     |      |       |
| urp od Di                               | Advisories: <u>See page 145</u> – 2005 Potential Premature Battery<br>Depletion <u>Due to Battery</u> Short | <u>ee page 145 –</u><br>e to Battery Sh | 2005 Poten<br>hort   | tial Premature             |                          | (0) + (0) = (0)<br>(advisory-related subset)          | (0)<br>bset) | Including<br>Normal Battery<br>Depletion | 9.99<br>0/0.+    | 99.6<br>+.1/1       | 99.1<br>+.1/1     | 97.4<br>+.2/2     | 88.4<br>+.5/5             | 55.6<br>+1.1/-1.1             | 11.1<br>+2.4/-2.1<br>at 80 mo |      |       |
| <b>7288</b>                             | Intrinsic                                                                                                   | Aug-04                                  | 31,000               | 14,000                     | 1,897                    | 7 + 50 =                                              | 57           | Excluding<br>Normal Battery<br>Depletion | 100.0<br>+.0/0   | 9.99<br>/0.+        | 9.99<br>0/0.+     | 99.8<br>+.0/1     | 99.8<br>+.1/1             | 99.7<br>+.1/1                 | 99.7<br>+.1/1<br>at 73 mo     |      |       |
| nalucia                                 |                                                                                                             |                                         |                      |                            |                          |                                                       |              | Including<br>Normal Battery<br>Depletion | 9.99<br>0/0.+    | 99.6<br>+.1/1       | 99.1<br>+.1/1     | 98.0<br>+.2/2     | 88.3<br>+.5/5             | 52.0<br>+1.9/-1.9             | 43.5<br>+2.6/-2.6<br>at 73 mo |      |       |
| 7290Cx                                  | Onyx                                                                                                        | Mar-04                                  | 1,000                | 500                        | 51                       | +<br>+<br>=                                           | S            | Excluding<br>Normal Battery<br>Depletion | 99.9<br>+.1/7    | 99.5<br>+.3/8       | 99.5<br>+.3/8     | 99.4<br>+.4/9     | 99.4<br>+.4/9             | 99.4<br>+.4/9<br>at 69 mo     |                               |      |       |
|                                         |                                                                                                             |                                         |                      |                            |                          |                                                       |              | Including<br>Normal Battery<br>Depletion | 99.8<br>+.2/7    | 98.8<br>+.5/-1.0    | 98.0<br>+.8/-1.2  | 96.5<br>+1.1/-1.6 | 91.1<br>+2.1/-2.7         | 74.5<br>+4.8/-5.7<br>at 69 mo |                               |      |       |
| D153ATG,<br>D153DRG                     | EnTrust DR                                                                                                  | Jun-05                                  | 500                  | 100                        | 26                       | 1 + 7 =                                               | ω            | Excluding<br>Normal Battery<br>Depletion | 99.8<br>+.2/-1.4 | 99.8<br>+.2/-1.4    | 99.2<br>+.5/-1.7  | 98.1<br>+1.0/-2.3 | 97.1<br>+1.5/-2.9         |                               |                               |      |       |
|                                         |                                                                                                             |                                         |                      |                            |                          |                                                       |              | Including<br>Normal Battery<br>Depletion | 99.5<br>+.3/-1.4 | 99.5<br>+.3/-1.4    | 97.8<br>+1.1/-2.2 | 89.2<br>+3.1/-4.2 | 51.2<br>+6.9/-7.3         |                               |                               |      |       |
| D154ATG,<br>D154DRG                     | EnTrust DR                                                                                                  | Jun-05                                  | 28,000               | 17,000                     | 453                      | <mark>9</mark> + 73 =                                 | 82           | Excluding<br>Normal Battery<br>Depletion | 100.0<br>+.0/0   | 9.99<br>/0.+        | 99.8<br>+.0/1     | 99.7<br>+.1/1     | 99.5<br>+.1/1             | 99.5<br>+.1/1<br>at 64 mo     |                               |      |       |
| Madt                                    |                                                                                                             |                                         |                      |                            |                          |                                                       |              | Including<br>Normal Battery<br>Depletion | 9.99<br>1/0.+    | 99.7<br>1/1.+       | 99.1<br>+.1/1     | 97.6<br>+.2/2     | 89.7<br>+.7/8             | 85.7<br>+1.3/-1.4<br>at 64 mo |                               |      |       |
| D154AWG<br>(Non-advisory<br>population) | Virtuoso DR                                                                                                 | May-06                                  | 72,000               | 56,000                     | 134                      | 23 + 41 =                                             | 64           | Excluding<br>Normal Battery<br>Depletion | 100.0<br>+.0/0   | 9.99<br>0/0.+       | 9.99<br>0/0.+     | 99.7<br>1/1.+     | 99.7<br>+.1/1<br>at 52 mo |                               |                               |      |       |
| M Drodu                                 |                                                                                                             |                                         |                      |                            |                          |                                                       |              | Including<br>Normal Battery<br>Depletion | 9.99<br>0/0.+    | 99.7<br>+.0/0       | 99.3<br>+.1/1     | 98.4<br>+.2/3     | 97.8<br>+.6/8<br>at 52 mo |                               |                               |      |       |

ICD Implantable Cardioverter Defibrillators, continued

Source: Medtronic Device Registration and Returned Product Analysis Data as of January 31, 2011

Medtronic CRDM Product Performance Report 33 www.medtronic.com/CRDMProductPerformance

 $\underline{\Box}$ 

Device Survival Summary continued

| 34 | Medtronic CRDM Product Performance Report |
|----|-------------------------------------------|
|    | www.medtronic.com/CRDMProductPerformance  |

continued

| Family<br>Virtuoso DR May-06 4,000 US Implan<br>Registere<br>Registere US Marke<br>Estimated<br>Controso DR May-06 4,000 100 Active US<br>Estimated<br>Povice Longevity | Active US<br>Constructions<br>Constructions<br>Constructions<br>Constructions | ۰ Therapy Function<br>+ Therapy<br>50 Compromised<br>50 Compromised | = 1,542 Total | Excluding<br>Normal Battery<br>Depletion<br>Including<br>Normal Battery<br>Depletion                                | Years Af<br>1 yr<br>+.0/0<br>99.9         | Years After Implant<br>1 yr 2 yr 3<br>100.0 99.9 99<br>40.2 99.6 88<br>1,1/-2 14 | nt<br>3 yr<br>90.4<br>+1.0/-1.1<br>+1.3/-1.4 | 4 yr<br>55.1<br>+1.9/-1.9<br>at 46 mo<br>at 46 mo<br>at 46 mo | 5 yr          | 6 yr                              | 7 yr | 8 yr |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------|---------------|-----------------------------------|------|------|
| See page 150 – Performance note on Anomalies in<br>MOSFET Integrated Circuit Technology<br>EnTrust VR Jun-05 14,000 9,000                                               | omalies in<br>9,000 47                                                        | 39<br>+<br>8                                                        | = 44          | Excluding<br>Normal Battery<br>Depletion<br>Including                                                               | 9.99<br>1/0.+                             | 99.9<br>+.0/1                                                                    | 99.8<br>+.1/1<br>99.2                        | 99.7<br>1:-/1:+<br>98.7                                       | 99.4<br>+.2/3 | 99.4<br>+.2/3<br>at 63 mo<br>97.0 |      |      |
| Virtuoso VR May-06 33,000 26,000<br>Advisories: See page 139 – 2009 Potential Reduced<br>Device Longevity                                                               | 26,000 32                                                                     | 11 + 10                                                             | = 21          | Normal Battery<br>Depletion<br>Excluding<br>Normal Battery<br>Depletion<br>Including<br>Normal Battery<br>Depletion | 1.0.1<br>100.0<br>+.0/0<br>+.0/0<br>+.0/0 | 1/1.+<br>0/0.+<br>7.99<br>7.29                                                   | /+<br>9.99<br>1/0.+<br>9.96<br>1/1.+         | 99.9<br>+.0/-1<br>+.0/-1<br>+.1/-1                            | o/c.+         | +.o./8<br>at 63 mo                |      |      |
| See page 150 – Performance note on Anomalies in<br>MOSFET Integrated Circuit Technology<br>Secura DR Aug-08 32,000 29,000                                               | omalies in<br>29,000 24                                                       | 4 + 4                                                               | ∞             | Excluding<br>Normal Battery                                                                                         | 100.0<br>+.0/0                            | 99.9<br>+.1/-2                                                                   | 99.9<br>+1/2                                 |                                                               |               |                                   |      |      |
|                                                                                                                                                                         |                                                                               |                                                                     |               | Depletion<br>Including<br>Normal Battery<br>Depletion                                                               | 99.8<br>+.1/1                             | 99.4<br>+.2/3                                                                    | at 26 mo<br>99.4<br>+.2/3<br>at 26 mo        |                                                               |               |                                   |      |      |
| 12,000 11,                                                                                                                                                              | 11,000 5                                                                      | -<br>+                                                              | ς,<br>Π       | Excluding<br>Normal Battery<br>Depletion                                                                            | 100.0<br>+.0/1                            | 100.0<br>+.0/1                                                                   | 100.0<br>+.0/1<br>at 26 mo                   |                                                               |               |                                   |      |      |
|                                                                                                                                                                         |                                                                               |                                                                     |               | Including<br>Normal Battery<br>Depletion                                                                            | 99.9<br>+.0/1                             | 99.5<br>+.3/7                                                                    | 99.5<br>+.3/7<br>at 76m0                     |                                                               |               |                                   |      |      |

|                                 |                                                                                                                                               | 8 yr                                                                              |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                          |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|
|                                 |                                                                                                                                               | 7 yr                                                                              |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                          |
|                                 |                                                                                                                                               | 6 yr                                                                              |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                          |
|                                 |                                                                                                                                               | 5 yr                                                                              |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                          |
| (%)                             |                                                                                                                                               | 4 yr                                                                              |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                          |
| obability                       | t                                                                                                                                             | 3 yr                                                                              |                                          |                                          |                                          |                                          | 100.0<br>+.0/0<br>at 26 mo               | 99.9<br>+.0/1<br>at 26 mo                | 99.9<br>+.0/1<br>at 26 mo                | 99.8<br>+.1/2<br>at 26 mo                |
| Device Survival Probability (%) | Years After Implant                                                                                                                           | 2 yr                                                                              | 100.0<br>+.0/0<br>at 14 mo               | 100.0<br>+.0/0<br>at 14 mo               | 100.0<br>+.0/0<br>at 14 mo               | 100.0<br>+.0/0<br>at 14 mo               | 100.0<br>+.0/0                           | 99.9<br>+.0/1                            | 99.9<br>+.0/1                            | 99.8<br>+.1/2                            |
| Device S                        | Years Afr                                                                                                                                     | 1 yr                                                                              | 100.0<br>+.0/0                           | 100.0<br>+.0/0                           | 100.0<br>+.0/0                           | 100.0<br>+.0/0                           | 100.0<br>+.0/0                           | 100.0<br>+.0/1                           | 100.0<br>+.0/1                           | 99.8<br>+.1/1                            |
|                                 |                                                                                                                                               |                                                                                   | Excluding<br>Normal Battery<br>Depletion | Including<br>Normal Battery<br>Depletion |
|                                 |                                                                                                                                               |                                                                                   |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                          |
|                                 | le                                                                                                                                            | тоt                                                                               | 0                                        |                                          | 0                                        |                                          | -                                        |                                          | m                                        |                                          |
| ions                            | ıction Not<br>npromised                                                                                                                       | ru7<br>ToD                                                                        | 0 = 0                                    |                                          | 0 = 0                                    |                                          | 0 = 1                                    |                                          | 0<br>=                                   |                                          |
| Malfunctions                    | npromised                                                                                                                                     | Cor<br>The<br>Fur<br>Cor                                                          | II                                       |                                          | II                                       |                                          | II                                       |                                          | П                                        |                                          |
| Malfunctions                    | npromised<br>srapy<br>detion Not<br>bezimorqn                                                                                                 | I9D<br>ID<br>ID<br>ID<br>ID<br>ID<br>ID<br>ID<br>ID<br>ID<br>ID<br>ID<br>ID<br>ID | <br>0<br>+                               |                                          | =<br>0<br>+                              |                                          | =<br>0                                   |                                          | <br>0<br>+                               |                                          |
| Malfunctions                    | oletions<br>prapy Function<br>propy<br>stron Not<br>notron Sot                                                                                | Act<br>Imp<br>Noi<br>Dep<br>The<br>Coi<br>Fur<br>Fur                              | <br>0<br>+<br>0                          |                                          | <br>0<br>+<br>0                          |                                          | -<br>-                                   |                                          | <br>0<br>+<br>m                          |                                          |
| Malfunctions                    | ive US<br>plants<br>plants<br>pletions<br>pletions<br>promised<br>notion Not<br>notion Sed                                                    | US<br>Esti<br>Imp<br>Imp<br>Imp<br>Imp<br>Imp<br>Imp<br>Imp<br>Imp<br>Imp<br>Imp  | <br>0<br>+<br>0<br>0                     |                                          | =<br>0 +<br>0                            |                                          | 2 1 + 0 =                                |                                          | 4 3 4 0 =                                |                                          |
| Malfunctions                    | Implants<br>ive US<br>solatts<br>plants<br>plattons<br>plations<br>plations<br>plations<br>plation<br>promised<br>notion Not<br>notion<br>sed | Rel<br>Rec<br>US<br>Esti<br>Rod<br>Moi<br>Del<br>Del<br>The<br>Coi<br>The<br>Coi  | Aug-09 13,000 12,000 0 + 0 =             |                                          | Aug-09 5,000 5,000 0 + 0 =               |                                          | 12,000 2 1 + 0 =                         |                                          | 7,000 4 3 + 0 =                          |                                          |
| Malfunctions                    | easee<br>jistered<br>mplants<br>sitepy Function<br>plants<br>srapy<br>mpromised<br>mpromised<br>mpromised                                     | Rel<br>Rec<br>US<br>Esti<br>Rod<br>Moi<br>Del<br>Del<br>The<br>Coi<br>The<br>Coi  | 13,000 12,000 0 + 0 =                    |                                          | 5,000 5,000 0 + 0 =                      |                                          | 13,000 12,000 2 1 + 0 =                  |                                          | 8,000 7,000 4 3 + 0 =                    |                                          |

Source: Medtronic Device Registration and Returned Product Analysis Data as of January 31, 2011

Device Survival Summary continued

### **Reference Chart**

The longevity estimates provided are mean values calculated for the parameters given. The actual longevity achieved for any device while implanted will depend on the actual programmed parameters and patient factors, and may differ significantly from these estimates.

|                 |            |                    |                  |                     | E                                  | stimate           | d Longe            | vity               |                    | Elective           | Replacement             |                                     |
|-----------------|------------|--------------------|------------------|---------------------|------------------------------------|-------------------|--------------------|--------------------|--------------------|--------------------|-------------------------|-------------------------------------|
|                 |            |                    |                  |                     | در<br>بر                           |                   |                    |                    |                    |                    | ERI)***                 | End of<br>Life                      |
| Model<br>Number | Family     | Connector<br>Style | Volume/<br>Mass* | Delivered<br>Energy | Charging<br>Frequency**            | 100%<br>Pacing‡   | 50%<br>Pacing‡     | 15%<br>Pacing‡     | 100%<br>Sensing    | Battery<br>Voltage | Charge<br>Time          | Life<br>(EOL)<br>Battery<br>Voltage |
| 7227            | GEM        | B, Cx, D, E        | 49 cc*<br>90 g   | 35 J                | Monthly<br>Quarterly<br>Semiannual | 5.3<br>7.7<br>8.8 | 5.7<br>8.5<br>10.0 | 6.0<br>9.3<br>11.0 | 6.1<br>9.6<br>11.5 | ≤ 2.55 V           | —                       | $\leq 2.40  V^{\S}$                 |
| 7230            | Marquis VR | B, Cx, E           | 36 cc<br>75 g    | 30 J                | Monthly<br>Quarterly<br>Semiannual | 4.9<br>7.3<br>8.5 | 5.2<br>8.0<br>9.3  | 5.4<br>8.5<br>10.0 | 5.5<br>8.7<br>10.4 | ≤ 2.62 V           | > 16-second charge time | 3 months<br>after ERI               |
| 7231Cx          | GEM III VR | Cx                 | 39 cc<br>77 g    | 30 J                | Monthly<br>Quarterly<br>Semiannual | 4.3<br>6.0<br>6.6 | 4.7<br>6.8<br>7.5  | 5.0<br>7.4<br>8.5  | 5.2<br>7.8<br>8.9  | ≤ 2.55 V           | _                       | ≤ 2.40 V                            |
| 7232            | Maximo VR  | B, Cx, E           | 39 cc<br>76 g    | 35 J                | Monthly<br>Quarterly<br>Semiannual | 4.4<br>7.0<br>8.2 | 4.7<br>7.5<br>9.0  | 4.8<br>8.0<br>9.7  | 4.9<br>8.3<br>10.0 | ≤ 2.62 V           | > 16-second charge time | 3 months<br>after ERI               |
| 7271            | GEM DR     | DR                 | 62 cc<br>115 g   | 35 J                | Monthly<br>Quarterly<br>Semiannual | 6.0<br>7.4<br>7.9 | 6.9<br>8.4<br>9.0  | 7.5<br>9.3<br>10.0 | 7.8<br>9.8<br>10.6 | ≤ 4.91 V           | _                       | ≤ 4.57 V <sup>§</sup>               |
| 7274            | Marquis DR | DR+LV              | 36 cc<br>75 g    | 30 J                | Monthly<br>Quarterly<br>Semiannual | 4.0<br>5.6<br>6.2 | 4.4<br>6.4<br>7.2  | 4.8<br>7.1<br>8.1  | 4.9<br>7.5<br>8.6  | ≤ 2.62 V           | > 16-second charge time | 3 months<br>after ERI               |
| 7275            | GEM III DR | DR                 | 39.5 cc<br>78 g  | 30 J                | Monthly<br>Quarterly<br>Semiannual | 3.3<br>4.2<br>4.5 | 3.8<br>5.0<br>5.5  | 4.3<br>5.8<br>6.5  | 4.4<br>6.3<br>7.0  | ≤ 2.55 V           | —                       | ≤ 2.40 V                            |
| 7278            | Maximo DR  | DR                 | 39 cc<br>77 g    | 35 J                | Monthly<br>Quarterly<br>Semiannual | 3.7<br>5.3<br>6.0 | 4.1<br>6.1<br>7.0  | 4.3<br>6.8<br>8.0  | 4.5<br>7.1<br>8.5  | ≤ 2.62 V           | > 16-second charge time | 3 months<br>after ERI               |
| 7288            | Intrinsic  | DR                 | 38 cc<br>76 g    | 35 J                | Monthly<br>Quarterly<br>Semiannual | 3.7<br>5.4<br>6.1 | 4.1<br>6.1<br>7.0  | 4.3<br>6.8<br>8.0  | 4.5<br>7.1<br>8.5  | ≤ 2.62 V           | > 16-second charge time | 3 months<br>after ERI               |
| 7290Cx          | Onyx       | Сх                 | 39 cc<br>77 g    | 30 J                | Monthly<br>Quarterly<br>Semiannual | 3.8<br>5.0<br>5.4 | 4.1<br>5.6<br>6.1  | 4.3<br>6.2<br>6.7  | 4.5<br>6.4<br>7.0  | ≤ 2.55 V           | > 16-second charge time | ≤ 2.40 V                            |

\* Volume and mass differ by connector style.

 $^{\ast\ast}$  A full charge is a full energy the rapeutic shock or capacitor reformation.

\*\*\* The minimum time between ERI and EOL is 3 months (100% pacing, two charges per month).

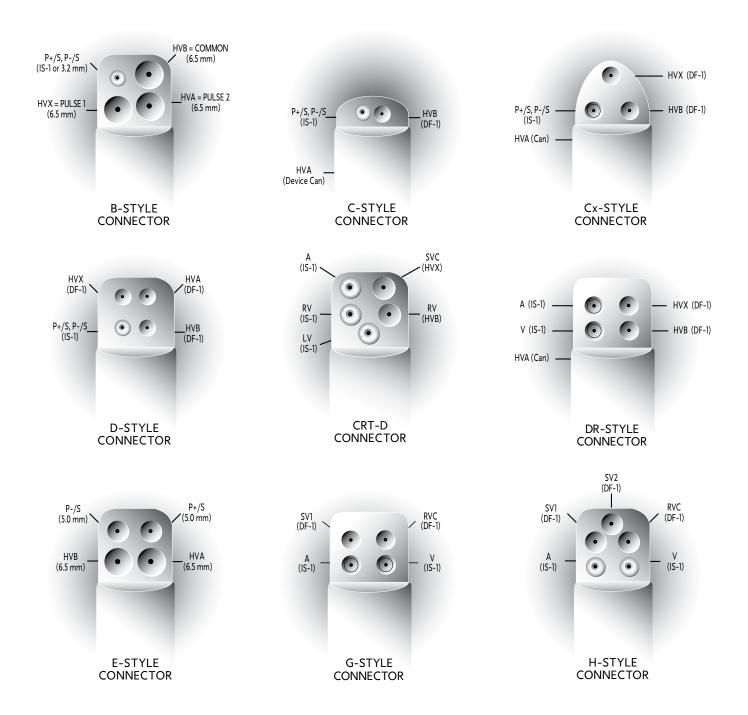
‡ Pacing mode is VVI for single chamber models and DDD for dual chamber and CRT models. Parameter settings; lower rate at 60 ppm, sensing rate at 70 bpm, (A, RV, LV) 3.0 V amplitude, 0.4 ms pulse width, and 510-ohm pace load per applicable channel. CRT models with shared biventricular pacing; InSync Marquis 7277 (LV impedance set to 510 ohms), InSync ICD 7272 (RV amplitude set to 4.0 V).

§ For Model 7271 and 7227 devices, if charge time exceeds 30 seconds, the device is at EOL. Immediate replacement is recommended. If three consecutive charge cycles exceed 30 seconds, the "charge circuit inactive" indicator is tripped and all therapies except emergency VVI pacing are disabled.

continued

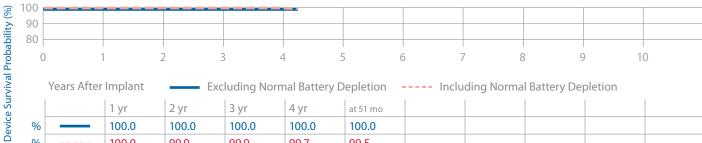
## Reference Chart continued

|                     |                |                    |                  |                     |                                    | stimate              | d Longe              | vity                 |                       | Repl               | nmended<br>acement<br>RT)*** |                                                        |
|---------------------|----------------|--------------------|------------------|---------------------|------------------------------------|----------------------|----------------------|----------------------|-----------------------|--------------------|------------------------------|--------------------------------------------------------|
| Model<br>Number     | Family         | Connector<br>Style | Volume/<br>Mass* | Delivered<br>Energy | Charging<br>Frequency**            | 100%<br>Pacing‡      | 50%<br>Pacing‡       | 15%<br>Pacing‡       | 100%<br>Sensing       | Battery<br>Voltage | Charge<br>Time               | End of<br>Service<br>(EOS)                             |
| D153ATG,<br>D153DRG | EnTrust        | DR                 | 33 cc<br>63 g    | 30 J                | Monthly<br>Quarterly<br>Semiannual | 3.5<br>4.8<br>5.3    | 3.8<br>5.4<br>6.1    | 4.1<br>6.0<br>6.9    | 4.2<br>6.3<br>7.2     | ≤ 2.61 V           | _                            | 3 months<br>after RRT or<br>> 16-second<br>charge time |
| D154ATG,<br>D154DRG | EnTrust        | DR                 | 35 cc<br>68 g    | 35 J                | Monthly<br>Quarterly<br>Semiannual | 3.8<br>5.5<br>6.1    | 4.2<br>6.1<br>7.0    | 4.4<br>6.8<br>7.9    | 4.6<br>7.0<br>8.3     | ≤ 2.61 V           | _                            | 3 months<br>after RRT or<br>> 16-second<br>charge time |
| D154AWG,<br>D164AWG | Virtuoso       | DR                 | 37 cc<br>68 g    | 35 J                | Monthly<br>Quarterly<br>Semiannual | 4.1<br>6.3<br>7.3    | 4.5<br>7.3<br>8.7    | 4.8<br>8.3<br>10.1   | 5.0<br>8.8<br>11.0    | ≤ 2.62 V           | _                            | 3 months<br>after RRT or<br>> 16-second<br>charge time |
| D154VRC             | EnTrust        | Cx                 | 35 cc<br>68 g    | 35 J                | Monthly<br>Quarterly<br>Semiannual | 4.8<br>7.5<br>9.0    | 5.0<br>8.3<br>10.0   | 5.2<br>8.8<br>10.7   | 5.3<br>9.0<br>11.0    | ≤ 2.61 V           | _                            | 3 months<br>after RRT or<br>> 16-second<br>charge time |
| D154VWC,<br>D164VWC | Virtuoso       | Cx                 | 37 cc<br>68 g    | 35 J                | Monthly<br>Quarterly<br>Semiannual | 4.8<br>8.1<br>10.0   | 5.1<br>9.0<br>11.2   | 5.3<br>9.6<br>12.3   | 5.4<br>10.0<br>12.9   | ≤ 2.62 V           | _                            | 3 months<br>after RRT or<br>> 16-second<br>charge time |
| D224DRG             | Secura DR      | DR                 | 37 cc<br>68 g    | 35 J                | Monthly<br>Quarterly<br>Semiannual | 3.60<br>5.07<br>5.70 | 4.08<br>6.05<br>7.00 | 4.50<br>7.00<br>8.27 | 4.67<br>7.50<br>9.00  | ≤ 2.63 V           | _                            | 3 months<br>after RRT or<br>> 16-second<br>charge time |
| D224VRC             | Secura VR      | Cx                 | 37 cc<br>68 g    | 35 J                | Monthly<br>Quarterly<br>Semiannual | 4.33<br>6.67<br>7.76 | 4.67<br>7.45<br>8.85 | 4.92<br>8.05<br>9.79 | 5.00<br>8.41<br>10.25 | ≤ 2.63 V           | _                            | 3 months<br>after RRT or<br>> 19-second<br>charge time |
| D274DRG             | Virtuoso II DR | DR                 | 37 cc<br>68 g    | 35 J                | Monthly<br>Quarterly<br>Semiannual | 3.6<br>5.0<br>5.7    | 4.0<br>6.0<br>7.0    | 4.5<br>7.0<br>8.3    | 4.7<br>7.5<br>9.0     | ≤ 2.63 V           | _                            | 3 months<br>after RRT or<br>> 16-second<br>charge time |
| D274VRC             | Virtuoso II VR | Cx                 | 37 cc<br>68 g    | 35 J                | Monthly<br>Quarterly<br>Semiannual | 4.3<br>6.7<br>7.8    | 4.7<br>7.5<br>8.9    | 4.9<br>8.0<br>9.8    | 5.0<br>8.4<br>10.3    | ≤ 2.63 V           | _                            | 3 months<br>after RRT or<br>> 19-second<br>charge time |
| D284DRG             | Maximo II DR   | DR                 | 37 cc<br>68 g    | 35 J                | Monthly<br>Quarterly<br>Semiannual | 3.60<br>5.07<br>5.70 | 4.08<br>6.05<br>7.00 | 4.50<br>7.00<br>8.27 | 4.67<br>7.50<br>9.00  | ≤ 2.63 V           | _                            | 3 months<br>after RRT or<br>> 16-second<br>charge time |
| D284VRC             | Maximo II VR   | Cx                 | 37 cc<br>68 g    | 35 J                | Monthly<br>Quarterly<br>Semiannual | 4.33<br>6.67<br>7.76 | 4.67<br>7.45<br>8.85 | 4.92<br>8.05<br>9.79 | 5.00<br>8.41<br>10.25 | ≤ 2.63 V           | _                            | 3 months<br>after RRT or<br>> 19-second<br>charge time |


\* Volume and mass differ by connector style.

\*\* A full charge is a full energy therapeutic shock or capacitor reformation.

\*\*\* The minimum time between RRT and EOS is 3 months (100% pacing, two charges per month).


<sup>‡</sup> Pacing mode is VVI for single chamber models and DDD for dual chamber models. Parameter settings; lower rate at 60 ppm, sensing rate at 70 bpm, (A, RV, LV) 3.0 V amplitude, 0.4 ms pulse width, and 510-ohm pace load per applicable channel.

# **ICD Connector Styles**



### Adapta DR ADDR01, ADDR03, ADDR06, ADD01

|                                                                                                                        |                                  |    |                      | DDDR, DDD              |
|------------------------------------------------------------------------------------------------------------------------|----------------------------------|----|----------------------|------------------------|
| Registered US Implants 232,000                                                                                         | Therapy Function Not Compromised | 23 | Serial Number Prefix | PWB, PWD,              |
| Estimated Active US Implants 189,000                                                                                   | Electrical Component             | 23 |                      | PWC, PWF,<br>NWB, NWC, |
| Normal Battery Depletions (US) 54                                                                                      | Therapy Function Compromised     | 13 |                      | NWD                    |
| Performance Note: <u>See page 148</u> –<br>Performance note on Dual Chamber<br>Pacemakers with Measurement Lock-up ERI | Electrical Component             | 13 | Estimated Longevity  | See page 73            |



| a<br>a |   |               | Tyr      | 2 yr   | 3 yr   | 4 yr  | at 51 mo |  |  |  |
|--------|---|---------------|----------|--------|--------|-------|----------|--|--|--|
| evic   | % |               | 100.0    | 100.0  | 100.0  | 100.0 | 100.0    |  |  |  |
| Ω      | % |               | 100.0    | 99.9   | 99.9   | 99.7  | 99.5     |  |  |  |
|        | # |               | 160,000  | 96,000 | 44,000 | 5,000 | 200      |  |  |  |
|        |   | Effective Sam | ple Size |        |        |       |          |  |  |  |

# Adapta DR ADDRL1

| S Mar         | ket Release                                                  |                 | Jul-06  | 5 Malfun                       | ctions (US)                    |               |   | 3          | NBG Coo             | le                 |   | DDDR       |
|---------------|--------------------------------------------------------------|-----------------|---------|--------------------------------|--------------------------------|---------------|---|------------|---------------------|--------------------|---|------------|
| egiste        | ered US Implant                                              | ts              | 35,000  | ) Thera                        | py Function No                 | ot Compromise | d | 2          | Serial Nu           | ımber Prefix       |   | PWE, NWE   |
| stimat        | ted Active US In                                             | mplants         | 30,000  | ) El                           | ectrical Compo                 | nent          |   | 2          |                     |                    |   |            |
| lormal        | l Battery Deple                                              | tions (US)      | 3       | 3 Therapy Function Compromised |                                |               |   | 1          | Estimated Longevity |                    |   | See page 7 |
| erforn        | nance Note: <u>Seo</u><br>nance note on [<br>akers with Meas |                 | up ERI  | El                             | ectrical Intercor              | nnect         |   | 1          |                     |                    |   |            |
| 100 🗖         |                                                              |                 |         |                                |                                |               |   |            |                     |                    |   |            |
| 90            |                                                              |                 |         |                                |                                |               |   |            |                     |                    |   |            |
| 90<br>80<br>0 | 1                                                            | 2               | . 3     |                                | 4 5                            | 5 (           | 5 | 7          | 8                   | 3                  | 9 | 10         |
| 80            | Years After                                                  |                 |         |                                | 4 5<br>mal Battery [<br>  4 yr |               | - | 7<br>ludin |                     | 3<br>Il Battery De | - | 10         |
| 80            |                                                              | Implant         | ——— Exc | luding Norr                    | mal Battery [                  |               | - | 7<br>ludin |                     |                    | - | 10         |
| 80 -<br>0     |                                                              | Implant<br>1 yr | Exc     | luding Norr<br>3 yr            | mal Battery [<br>4 yr          |               | - | 7<br>ludin |                     |                    | - | 10         |

#### **Product Characteristics**

| 3 | NBG Code             | DDDR        |
|---|----------------------|-------------|
| 2 | Serial Number Prefix | PWE, NWE    |
| 2 |                      |             |
| 1 | Estimated Longevity  | See page 73 |
| 1 |                      |             |

| Adapta DR ADDRS1                                                                                               |        |                                  |   | Product Characterist | ics         |
|----------------------------------------------------------------------------------------------------------------|--------|----------------------------------|---|----------------------|-------------|
| US Market Release                                                                                              | Jul-06 | Malfunctions (US)                | 2 | NBG Code             | SSIR        |
| Registered US Implants                                                                                         | 22,000 | Therapy Function Not Compromised | 1 | Serial Number Prefix | PWA         |
| Estimated Active US Implants                                                                                   | 17,000 | Electrical Component             | 1 |                      |             |
| Normal Battery Depletions (US)                                                                                 | 22     | Therapy Function Compromised     | 1 | Estimated Longevity  | See page 73 |
| Performance Note: See page 148 –<br>Performance note on Dual Chamber<br>Pacemakers with Measurement Lock-up Ef |        | Electrical Component             | 1 |                      |             |
|                                                                                                                |        |                                  |   |                      |             |
| 00         00         100           00         1         2                                                     |        |                                  |   |                      |             |
|                                                                                                                | 3      | 4 5 6                            | 7 | 8 9                  | 10          |

| Irviva |   | Years After   | Implant  | E>    | Excluding Normal Battery Depletion Including Normal Battery Depletion |       |          |  |  |  |  |  |  |
|--------|---|---------------|----------|-------|-----------------------------------------------------------------------|-------|----------|--|--|--|--|--|--|
| e Su   |   |               | 1 yr     | 2 yr  | 3 yr                                                                  | 4 yr  | at 49 mo |  |  |  |  |  |  |
| evic   | % |               | 100.0    | 100.0 | 100.0                                                                 | 100.0 | 100.0    |  |  |  |  |  |  |
| Δ      | % |               | 100.0    | 99.8  | 99.7                                                                  | 97.7  | 97.7     |  |  |  |  |  |  |
|        | # |               | 14,000   | 8,000 | 4,000                                                                 | 400   | 200      |  |  |  |  |  |  |
|        |   | Effective Sam | ple Size |       |                                                                       |       |          |  |  |  |  |  |  |

# Adapta SR ADSR01, ADSR03, ADSR06

| ·                             |               |               |                   |                                      |                         |     |               |                    |                  |           |
|-------------------------------|---------------|---------------|-------------------|--------------------------------------|-------------------------|-----|---------------|--------------------|------------------|-----------|
| JS Market Release             |               | Jul-          | 06 Ma             | alfunctions (US)                     |                         |     | 2             | NBG Code           |                  | SSIR      |
| Registered US Implants        |               | 43,0          | 00 T              | herapy Function                      | Not Compromi            | sed | 0             | Serial Number      | Prefix           | NWN, NWM, |
| Estimated Active US Imp       | plants        | 32,0          | 00 T              | herapy Function                      | Compromised             |     | 2             |                    | NWP              |           |
| Normal Battery Depletic       | ons (US)      |               | 18                | Electrical Component                 |                         |     | 1             | Estimated Long     | See page 73      |           |
| Advisories                    |               | No            | ne                | Electrical Interc                    | connect                 |     | 1             |                    |                  |           |
| 90 80                         |               |               |                   |                                      |                         |     |               |                    |                  |           |
| 80 0 1<br>Vears After In<br>% | 1 yr<br>100.0 | Ex 2 yr 100.0 | 3 yr<br>100.0     | 4<br>Normal Battery<br>4 yr<br>100.0 | at 50 mo                | 6   | 7<br>Includir | 8<br>ng Normal Bat | 9<br>tery Deplet | 10<br>ion |
| 80 1<br>Vears After In<br>%   | 1 yr          | Ex<br>2 yr    | cluding 1<br>3 yr | Normal Battery                       | / Depletion<br>at 50 mo |     | 7<br>Includir |                    |                  |           |

| 01                                 |                |                   |               |      |      | Produc               | t Character  | ristics  |            |
|------------------------------------|----------------|-------------------|---------------|------|------|----------------------|--------------|----------|------------|
|                                    | Jul-06 M       | alfunctions (US)  |               |      | 0    | NBG Cod              | le           |          | VDO        |
|                                    | 1,000 <b>T</b> | herapy Function N | ot Compromise | d    | 0    | Serial Number Prefix |              | PWG, NWG |            |
| s                                  | 1,000 <b>T</b> | herapy Function C | ompromised    |      | 0    | Estimate             | d Longevity  |          | See page 7 |
| JS)                                | 0              |                   |               |      |      |                      |              |          |            |
| 148 –<br>namber<br>ent Lock-up ERI |                |                   |               |      |      |                      |              |          |            |
|                                    |                |                   |               |      |      |                      |              |          |            |
| 2                                  | 3              | 4                 | 5             | 6    | 7    | 8                    | 3            | 9        | 10         |
| ant2 yr                            | Excluding      | Normal Battery    | Depletion     | Incl | udin | g Norma              | l Battery De | epletion |            |
| .0 100.0                           | 100.0          | 100.0             |               |      |      |                      |              |          |            |
| .0 100.0                           | 100.0          | 100.0             |               |      |      |                      |              |          |            |
| 400                                | 200            | 100               |               |      |      |                      |              |          |            |
|                                    |                |                   |               |      |      |                      |              |          |            |

# AT500 AT501, 7253

| -               |                                | -                      |       |             |                     |                 |       |         |                      |           |            |
|-----------------|--------------------------------|------------------------|-------|-------------|---------------------|-----------------|-------|---------|----------------------|-----------|------------|
| IS Mar          | ket Release                    |                        | Mar-  | 03 M        | lalfunctions (US)   |                 |       | 10      | NBG Code             |           | DDDRP      |
| egiste          | ered US Implan                 | nts                    | 11,0  | 00 <b>1</b> | Therapy Function N  | ot Compromis    | ed    | 5       | Serial Number Prefix |           | IJF        |
| stimat          | ted Active US I                | mplants                | 5     | 00          | Electrical Compo    | nent            |       | 2       | Estimated Longevity  | ,         | See page 7 |
| lormal          | Battery Deple                  | etions (US)            | 2,0   | 44          | Possible Early Ba   | ttery Depletior | I     | 3       |                      |           |            |
|                 |                                | ee page 154            |       | 1           | Therapy Function Co | ompromised      |       | 5       |                      |           |            |
| erforn<br>ystem | nance note on<br>Follow-Up Pro | AT500 Pacing<br>otocol |       |             | Electrical Compo    | nent            |       | 3       |                      |           |            |
|                 |                                |                        |       |             | Electrical Interco  | nnect           |       | 1       |                      |           |            |
|                 |                                |                        |       |             | Possible Early Ba   | ttery Depletion |       | 1       |                      |           |            |
|                 |                                |                        |       |             |                     |                 |       |         |                      |           |            |
| 100             |                                |                        |       |             |                     |                 |       |         |                      |           |            |
| 90              |                                |                        |       |             |                     |                 |       |         |                      |           |            |
| 80              |                                |                        |       |             |                     |                 |       |         |                      |           |            |
| 70              |                                |                        |       |             |                     |                 |       |         |                      |           |            |
| 60              |                                |                        |       |             |                     |                 |       |         |                      |           |            |
| 50              |                                |                        |       |             |                     |                 | •     |         |                      |           |            |
| 40              |                                |                        |       |             |                     |                 |       |         |                      |           |            |
| 30              |                                |                        |       |             |                     |                 |       |         |                      |           |            |
| 20              |                                |                        |       |             |                     |                 |       |         |                      |           |            |
| 10              |                                |                        |       |             |                     |                 |       |         |                      |           |            |
| 0               |                                |                        |       |             |                     | -               |       |         |                      |           |            |
| 0               | )                              | 1                      | 2     | 3           | 4                   | 5               | 6     | 7       | 8                    | 9         | 10         |
|                 | Years After                    | r Implant              | Ex    | cluding     | Normal Battery      | Depletion       | Ir    | cluding | g Normal Battery     | Depletion |            |
|                 |                                | 1 yr                   | 2 yr  | 3 yr        | 4 yr                | 5 yr            | бyr   | at 7    | 78 mo                |           |            |
| %               |                                | 100.0                  | 100.0 | 100.0       | 99.9                | 99.9            | 99.9  | 99      | .9                   |           |            |
| %               |                                | 99.9                   | 99.8  | 99.4        | 97.3                | 82.2            | 42.5  | 4.1     |                      |           |            |
| #               |                                | 10,000                 | 9,000 | 8,000       | 7,000               | 5,000           | 1,000 | 100     | )                    |           |            |
|                 | Effective Sam                  | nple Size              |       |             |                     |                 |       |         |                      |           |            |

| Pulse DR E1DR01, E1DR03, E                                              | 1DR06  |                     |                |   | Product Characte     | ristics |          |
|-------------------------------------------------------------------------|--------|---------------------|----------------|---|----------------------|---------|----------|
| JS Market Release                                                       | Dec-03 | Malfunctions (US)   |                | 1 | NBG Code             |         | DDDR     |
| Registered US Implants                                                  | 7,000  | Therapy Function N  | ot Compromised | 1 | Serial Number Prefix |         | PRA      |
| Estimated Active US Implants                                            | 3,000  | Electrical Compo    | onent          | 1 | Estimated Longevity  |         | See page |
| Normal Battery Depletions (US)                                          | 180    | Therapy Function Co | ompromised     | 0 |                      |         |          |
| Performance note on Dual Chamber<br>Pacemakers with Measurement Lock-up | ERI    |                     | ++             |   |                      |         |          |
| 90                                                                      |        |                     |                |   |                      |         |          |
| 80                                                                      |        |                     |                | • |                      |         |          |
|                                                                         |        |                     |                |   |                      |         |          |

|   | Years After   | r Implant | E     | Excluding Normal Battery Depletion Including Normal Battery Depletion |       |       |       |          |  |  |  |  |  |
|---|---------------|-----------|-------|-----------------------------------------------------------------------|-------|-------|-------|----------|--|--|--|--|--|
|   |               | 1 yr      | 2 yr  | 3 yr                                                                  | 4 yr  | 5 yr  | 6 yr  | at 82 mo |  |  |  |  |  |
| % |               | 100.0     | 100.0 | 100.0                                                                 | 100.0 | 100.0 | 100.0 | 100.0    |  |  |  |  |  |
| % |               | 100.0     | 100.0 | 99.8                                                                  | 99.1  | 98.2  | 96.4  | 84.6     |  |  |  |  |  |
| # |               | 6,000     | 6,000 | 5,000                                                                 | 4,000 | 4,000 | 3,000 | 300      |  |  |  |  |  |
|   | Effective Sam | ple Size  |       |                                                                       |       |       |       |          |  |  |  |  |  |

## EnPulse DR E1DR21

| US Market Release                                                                                                      | Dec-03                       | Malfunctions (US)                | 0 | NBG Code             | DDDR        |
|------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------|---|----------------------|-------------|
| Registered US Implants                                                                                                 | 2,000                        | Therapy Function Not Compromised | 0 | Serial Number Prefix | PPT         |
| Estimated Active US Implants                                                                                           | mated Active US Implants 100 |                                  | 0 | Estimated Longevity  | See page 73 |
| Normal Battery Depletions (US)                                                                                         | 250                          |                                  |   |                      |             |
| Performance Note: <u>See page 148</u> –<br>Performance note on Dual Chamber<br>Pacemakers with Measurement Lock-up ERI |                              |                                  |   |                      |             |
|                                                                                                                        |                              |                                  |   |                      |             |
| 90                                                                                                                     |                              |                                  |   |                      |             |

| ()<br>() |    |             |         |     |              |               |          |           |             |              |         |   |
|----------|----|-------------|---------|-----|--------------|---------------|----------|-----------|-------------|--------------|---------|---|
| (%) A    | 90 |             |         |     |              |               |          |           |             |              |         |   |
| bility   | 30 |             |         |     |              |               |          |           |             |              |         |   |
| bab      | 70 |             |         |     |              |               |          |           |             |              |         |   |
| Pro      | 50 |             |         |     |              |               |          |           |             |              |         |   |
| _        | 50 |             |         |     |              |               |          | <u>``</u> |             |              |         |   |
| ž        | 40 |             |         |     |              |               |          |           |             |              |         |   |
| S        | 30 |             |         |     |              |               |          | Ч         |             |              |         |   |
| vice     |    |             |         |     |              |               | -        |           |             |              |         | 0 |
| De       | (  | )           | I .     | 2 : | 3 4          | 4 .           |          | о         | / 8         | 5            | ) 1     | 0 |
|          |    |             |         |     |              |               |          |           |             |              |         |   |
|          |    | Years After | Implant | Exc | cluding Norn | nal Battery D | epletion | Inclu     | iding Norma | l Battery De | pletion |   |

|   |               | 1 yr     | 2 yr  | 3 yr  | 4 yr  | 5 yr  | бyr   | at 78 mo |  |  |
|---|---------------|----------|-------|-------|-------|-------|-------|----------|--|--|
| % |               | 100.0    | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0    |  |  |
| % |               | 99.9     | 99.6  | 98.9  | 96.4  | 91.9  | 60.3  | 32.7     |  |  |
| # |               | 2,000    | 1,000 | 1,000 | 1,000 | 1,000 | 400   | 100      |  |  |
|   | Effective Sam | ole Size |       |       |       |       |       |          |  |  |

#### Product Characteristics

42 Medtronic CRDM Product Performance Report www.medtronic.com/CRDMProductPerformance

# EnPulse 2 DR E2DR01, E2DR03, E2DR06

| US Market Release                                                           | Feb-04  | Malfunctions (US)                | 20 | NBG Code             | DDDR         |
|-----------------------------------------------------------------------------|---------|----------------------------------|----|----------------------|--------------|
| Registered US Implants                                                      | 101,000 | Therapy Function Not Compromised | 16 | Serial Number Prefix | PNB, PNC, PN |
| Estimated Active US Implants                                                | 55,000  | Electrical Component             | 14 |                      |              |
| Normal Battery Depletions (US)                                              | 659     | Possible Early Battery Depletion | 2  | Estimated Longevity  | See page 73  |
| Performance Note: See page 148 –                                            |         | Therapy Function Compromised     | 4  |                      |              |
| Performance note on Dual Chamber<br>Pacemakers with Measurement Lock-up ERI |         | Battery                          | 1  |                      |              |
| rucentalers with medsalentent book up en                                    |         | Electrical Component             | 2  |                      |              |
|                                                                             |         | Electrical Interconnect          | 1  |                      |              |
|                                                                             |         |                                  |    |                      |              |
| - 100                                                                       |         |                                  |    |                      |              |
|                                                                             |         |                                  |    |                      |              |
| £ 90                                                                        |         |                                  |    |                      |              |

**Product Characteristics** 

**Product Characteristics** 

| %)    | 90 |             |           |    |             |             |           |      |             |               |         |   |
|-------|----|-------------|-----------|----|-------------|-------------|-----------|------|-------------|---------------|---------|---|
| lity  |    |             |           |    |             |             |           |      |             |               |         |   |
| abi   | 80 |             |           |    |             |             |           |      |             |               |         |   |
| qo    |    | 0           | 1         | 2  | 3           | 4           | 5         | 6    | 7           | 8             | ) 1     | 0 |
| al Pi |    |             |           | _  |             |             |           |      |             |               |         |   |
| ٧i    |    | Years After | r Implant | E> | cluding Nor | mal Battery | Depletion | Incl | uding Norma | al Battery De | pletion |   |

| ≦     |   |               |          |        |        |        |        |        |          |  |  |
|-------|---|---------------|----------|--------|--------|--------|--------|--------|----------|--|--|
| e Su  |   |               | 1 yr     | 2 yr   | 3 yr   | 4 yr   | 5 yr   | бyr    | at 80 mo |  |  |
| evice | % |               | 100.0    | 100.0  | 100.0  | 100.0  | 100.0  | 100.0  | 100.0    |  |  |
| ă     | % |               | 100.0    | 99.9   | 99.8   | 99.5   | 98.7   | 96.7   | 90.9     |  |  |
|       | # |               | 91,000   | 81,000 | 73,000 | 64,000 | 38,000 | 12,000 | 200      |  |  |
|       |   | Effective Sam | ole Size |        |        |        |        |        |          |  |  |

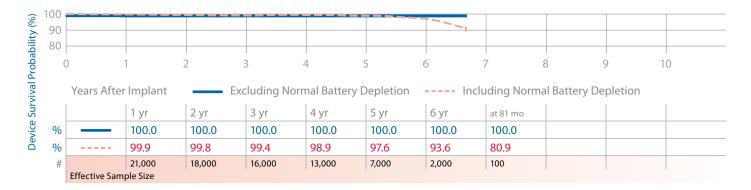
### EnPulse 2 DR E2DR21

| US Market Release                                                    | Feb-04 | Malfunctions (US)                | 1 | NBG Code             | DDDR        |
|----------------------------------------------------------------------|--------|----------------------------------|---|----------------------|-------------|
| Registered US Implants                                               | 12,000 | Therapy Function Not Compromised | 0 | Serial Number Prefix | PMU         |
| Estimated Active US Implants                                         | 5,000  | Therapy Function Compromised     | 1 | Estimated Longevity  | See page 73 |
| Normal Battery Depletions (US)                                       | 586    | Electrical Component             | 1 |                      |             |
| Performance Note: See page 148 –<br>Performance note on Dual Chamber |        |                                  |   |                      |             |

Pacemakers with Measurement Lock-up ERI






|   |               | 1 yr     | 2 yr  | 3 yr  | 4 yr  | 5 yr  | бyr   | at 76 mo |  | L |
|---|---------------|----------|-------|-------|-------|-------|-------|----------|--|---|
| % |               | 100.0    | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0    |  |   |
| % |               | 99.9     | 99.6  | 99.2  | 97.6  | 91.3  | 65.3  | 44.5     |  |   |
| # |               | 11,000   | 9,000 | 8,000 | 7,000 | 4,000 | 1,000 | 100      |  |   |
|   | Effective Sam | ple Size |       |       |       |       |       |          |  |   |

| ruise 2                    | DR E2DR31, E2                                                              | 2DR33 |          |                                    |                     |          |            | Product Cha       | racteristi | CS |            |
|----------------------------|----------------------------------------------------------------------------|-------|----------|------------------------------------|---------------------|----------|------------|-------------------|------------|----|------------|
| JS Market R                | Release                                                                    | Fe    | b-04     | Malfunctions (US)                  |                     |          | 0          | NBG Code          |            |    | DDDR       |
| Registered L               | US Implants                                                                | 1     | ,000     | Therapy Function                   | Not Compromise      | d        | 0          | Serial Number P   | refix      |    | PNL        |
| Estimated A                | Active US Implants                                                         |       | 300      | Therapy Function                   | Compromised         |          | 0          | Estimated Long    | evity      |    | See page 7 |
| Normal Batt                | tery Depletions (US)                                                       |       | 1        |                                    |                     |          |            |                   |            |    |            |
| Performance                | e Note: <u>See page 148</u><br>e note on Dual Chamb<br>with Measurement Lo | ber   |          |                                    |                     |          |            |                   |            |    |            |
|                            |                                                                            |       |          |                                    |                     |          |            |                   |            |    |            |
|                            |                                                                            |       |          |                                    |                     |          |            |                   |            |    |            |
| 100                        |                                                                            |       |          |                                    |                     |          |            |                   |            |    |            |
| 90                         |                                                                            |       |          |                                    |                     |          |            |                   |            |    |            |
| 100                        |                                                                            |       |          |                                    |                     |          |            |                   |            |    |            |
| 90                         | 1                                                                          | 2     | 3        | 4                                  | 5 6                 | 6        | 7          | 8                 | 9          |    | 0          |
| 90<br>80<br>0              | 1<br>ars After Implant                                                     | _     | -        | 4<br>g Normal Batter               | _                   | -        | 7<br>uding | 8<br>Normal Batte | -          |    | 0          |
| 90<br>80<br>0              | 1<br>ars After Implant<br>1 yr                                             | _     | -        |                                    | _                   | -        | 7<br>uding | -                 | -          |    | 0          |
| 90<br>80<br>0              |                                                                            |       | Excludin | g Normal Batter<br>4 yr            | y Depletion         | Inclu    | 7<br>uding | -                 | -          |    | 0          |
| 90<br>90<br>80<br>0<br>Yea | 1 yr                                                                       | 2 yr  | Excludin | g Normal Batter<br>4 yr<br>0 100.0 | y Depletion<br>5 yr | at 64 mo | 7<br>uding | -                 | -          |    | 10         |

### EnPulse 2 SR E2SR01, E2SR03, E2SR06

Effective Sample Size

| US Market Release              | Dec-03 | Malfunctions (US)                | 4 | NBG Code             | SSIR       |
|--------------------------------|--------|----------------------------------|---|----------------------|------------|
| Registered US Implants         | 25,000 | Therapy Function Not Compromised | 3 | Serial Number Prefix | PMW, PMY,  |
| Estimated Active US Implants   | 11,000 | Electrical Component             | 2 |                      | PNA        |
| Normal Battery Depletions (US) | 257    | Possible Early Battery Depletion | 1 | Estimated Longevity  | See page 7 |
| Advisories                     | None   | Therapy Function Compromised     | 1 |                      |            |
|                                |        | Other                            | 1 |                      |            |
|                                |        |                                  |   |                      |            |



| JS Mar          | rket Release                                              |                      | Dec          | -03 N            | Malfunctions (US)              |                      |          | 0           | NBG Code            |       | VDD        |
|-----------------|-----------------------------------------------------------|----------------------|--------------|------------------|--------------------------------|----------------------|----------|-------------|---------------------|-------|------------|
| Registe         | ered US Implan                                            | ts                   | 1,           | 000              | Therapy Function               | n Not Compromi       | sed      | 0           | Serial Number P     | refix | PMV        |
| stima           | ated Active US I                                          | mplants              |              | 300              | Therapy Function               | n Compromised        |          | 0           | Estimated Longe     | evity | See page 7 |
| lorma           | al Battery Deple                                          | tions (US)           |              | 20               |                                |                      |          |             |                     |       |            |
| Perforr         | mance Note: <u>Se</u><br>mance note on<br>nakers with Mea | Dual Chamber         | -up ERI      |                  |                                |                      |          |             |                     |       |            |
| 100<br>90<br>80 | 0                                                         | 1                    | 2            | 3                | 4                              | 5                    | 6        | 7           | 8                   | 9     | 10         |
| 90<br>80        | 0<br>Years After                                          | 1<br>Implant         |              |                  | 4<br>Normal Batter             |                      |          | 7           | 8<br>g Normal Batte | -     |            |
| 90<br>80        | -                                                         | 1<br>Implant<br>1 yr |              |                  |                                |                      |          | 7<br>:ludin |                     | -     |            |
| 90<br>80        | -                                                         |                      | _ <b>—</b> E | xcluding         | Normal Batter                  | ry Depletion         | Inc      | 7<br>:ludin |                     | -     |            |
| 90<br>80<br>(   | -                                                         | 1 yr                 | 2 yr         | xcluding<br>3 yr | Normal Batter<br>4 yr<br>100.0 | ry Depletion<br>5 yr | at 66 mo | 7<br>:ludin |                     | -     |            |

#### EnRhythm DR P1501DR

| EnRhy                           | thm DR                                                                                                                                                    | P1501DR      |         |                                  |                               |                                      |           |              | Product Ch         | aracteristic      | S           |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------|----------------------------------|-------------------------------|--------------------------------------|-----------|--------------|--------------------|-------------------|-------------|
| US M                            | arket Release                                                                                                                                             |              | May-05  | Malfu                            | nctions (US)                  |                                      |           | 114          | NBG Code           |                   | DDDRP       |
| Regis                           | tered US Implan                                                                                                                                           | its          | 103,000 | Ther                             | apy Function                  | Not Comprom                          | nised     | 77           | Serial Number      | Prefix            | PNP         |
| Estim                           | ated Active US I                                                                                                                                          | mplants      | 72,000  |                                  | Battery                       |                                      |           | 48           | Estimated Lon      | igevity           | See page 73 |
| Norm                            | al Battery Deple                                                                                                                                          | etions (US)  | 75      |                                  | (33 malfunct<br>Electrical Co | <i>ions related to c</i><br>omponent | advisory) | 11           |                    |                   |             |
|                                 | risories: See page 138 – 2010 Low Battery<br>age Displayed at Device Interrogation<br>formance Note: <u>See page 150</u> –<br>malies in MOSFET Integrated |              |         | Possible Early Battery Depletion |                               |                                      | letion    | 18           |                    |                   |             |
|                                 |                                                                                                                                                           |              | Ther    | Therapy Function Compromised     |                               |                                      | 37        |              |                    |                   |             |
|                                 |                                                                                                                                                           | T Integrated |         | Electrical Co                    | omponent                      |                                      | 34        |              |                    |                   |             |
|                                 | uit Technology                                                                                                                                            |              |         |                                  | Electrical In                 | terconnect                           |           | 2            |                    |                   |             |
| ity (%)<br>06 (%)               |                                                                                                                                                           |              |         |                                  | Possible Ear                  | ly Battery Dep                       | letion    | 1            |                    |                   |             |
| Device Survival Probability (%) | 0<br>Years After                                                                                                                                          |              | 2 3     | uding Nor                        | 4<br>rmal Batter              | 5<br>y Depletion                     | 6         | 7<br>ncludin | 8<br>Ig Normal Bat | 9<br>ttery Deplet | 10<br>tion  |
| ie St                           |                                                                                                                                                           | 1 yr         | 2 yr    | 3 yr                             | 4 yr                          | 5 yr                                 | at 67 mo  |              |                    |                   |             |
| % evic                          |                                                                                                                                                           | 100.0        | 100.0   | 99.9                             | 99.8                          | 99.7                                 | 99.6      |              |                    |                   |             |
| □ %                             | % 100.0 99.9                                                                                                                                              |              |         | 99.8                             | 99.5                          | 98.9                                 | 97.8      |              |                    |                   |             |
| #                               |                                                                                                                                                           |              |         | 47,000                           | 32,000                        | 8,000                                | 100       |              |                    |                   |             |
|                                 | Effective Sample Size                                                                                                                                     |              |         |                                  |                               |                                      |           |              |                    |                   |             |

# Kappa 400 DR KDR401, KDR403

#### DDD/RO **US Market Release** Jan-98 Malfunctions (US) 23 NBG Code PER, PET **Registered US Implants** 47,000 **Therapy Function Not Compromised** 13 Serial Number Prefix 9 Estimated Active US Implants 2,000 Estimated Longevity **Electrical Component** See page 73 Normal Battery Depletions (US) 7,035 **Electrical Interconnect** 1 Advisories None Possible Early Battery Depletion 2 Other 1 **Therapy Function Compromised** 10 **Electrical Component** 7 Electrical Interconnect 3 100 Device Survival Probability (%) 90 80 70 60 50 40 30 20 10 0 2 3 5 7 0 1 4 6 8 9 Excluding Normal Battery Depletion Years After Implant ----- Including Normal Battery Depletion

|   |               | 1 yr     | 2 yr   | 3 yr   | 4 yr   | 5 yr   | бyr    | 7 yr   | 8 yr  | at 101 mo |
|---|---------------|----------|--------|--------|--------|--------|--------|--------|-------|-----------|
| % |               | 100.0    | 100.0  | 100.0  | 100.0  | 99.9   | 99.9   | 99.9   | 99.9  | 99.9      |
| % |               | 99.9     | 99.9   | 99.7   | 99.5   | 98.9   | 96.8   | 86.1   | 46.9  | 6.5       |
| # |               | 42,000   | 38,000 | 34,000 | 30,000 | 27,000 | 22,000 | 16,000 | 5,000 | 1,000     |
|   | Effective Sam | ole Size |        |        |        |        |        |        |       |           |

# Kappa 400 SR KSR401, KSR403

10 0 0

#### Product Characteristics

**Product Characteristics** 

| ippa 400 Sh KSR401, KSR40      | 15     |                                  |   | Product Characteristics |            |
|--------------------------------|--------|----------------------------------|---|-------------------------|------------|
| US Market Release              | Feb-98 | Malfunctions (US)                | 5 | NBG Code                | SSI/R      |
| Registered US Implants         | 15,000 | Therapy Function Not Compromised | 4 | Serial Number Prefix    | PEU, PGD   |
| Estimated Active US Implants   | 1,000  | Electrical Component             | 3 | Estimated Longevity     | See page 7 |
| Normal Battery Depletions (US) | 1,290  | Possible Early Battery Depletion | 1 |                         |            |
| Advisories                     | None   | Therapy Function Compromised     | 1 |                         |            |
|                                |        | Electrical Interconnect          | 1 |                         |            |
| 100                            |        |                                  |   |                         |            |
|                                |        |                                  |   |                         |            |
| 80<br>70                       |        |                                  |   |                         |            |
| 70                             |        |                                  |   |                         |            |
| 60                             |        |                                  |   |                         |            |
| 50 40                          |        |                                  |   |                         |            |
| 40                             |        |                                  |   |                         |            |
| 30                             |        |                                  |   |                         |            |
| 20                             |        |                                  |   |                         |            |

Years After Implant

2

3

4

6

7

5

Excluding Normal Battery Depletion
 Including Normal Battery Depletion

9

10

8

|   |                       | 1 yr   | 2 yr   | 3 yr   | 4 yr  | 5 yr  | бyr   | 7 yr  | 8 yr  | 9 yr  | at 110 mo |
|---|-----------------------|--------|--------|--------|-------|-------|-------|-------|-------|-------|-----------|
| % |                       | 100.0  | 100.0  | 100.0  | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0     |
| % |                       | 99.9   | 99.8   | 99.6   | 99.1  | 98.5  | 96.9  | 90.4  | 64.3  | 20.7  | 9.4       |
| # |                       | 13,000 | 11,000 | 10,000 | 9,000 | 7,000 | 6,000 | 4,000 | 2,000 | 300   | 100       |
|   | Effective Sample Size |        |        |        |       |       |       |       |       |       |           |

1

# Kappa 600 DR KDR601, KDR603, KDR606

|                                 | _                           |                  |                 |             |                                                     |                  |         |
|---------------------------------|-----------------------------|------------------|-----------------|-------------|-----------------------------------------------------|------------------|---------|
|                                 | US Ma                       | rket Release     |                 | Jan-99      | Malfunctions (US)                                   |                  |         |
|                                 | Regist                      | ered US Implant  | s               | 24,000      | Therapy Function                                    | n Not Compromise | ed      |
|                                 | Estima                      | ted Active US In | nplants         | 2           | Electrical Cor                                      | nponent          |         |
|                                 | Norma                       | l Battery Deple  | tions (US)      | 3,495       | Therapy Function                                    | n Compromised    |         |
|                                 | Fractu<br>– 2009<br>Perfori | red Power Supp   |                 | so page 140 | Electrical Con<br>Electrical Inte<br>(34 malfunctio |                  | ory)    |
|                                 |                             |                  | urement Lock-up | o ERI       |                                                     |                  |         |
|                                 |                             |                  |                 |             |                                                     |                  |         |
| %                               | 100                         |                  |                 |             |                                                     |                  | 1 m m m |
| ž                               | 90                          |                  |                 |             |                                                     |                  |         |
| bili                            | 80                          |                  |                 |             |                                                     |                  |         |
| Device Survival Probability (%) | 70                          |                  |                 |             |                                                     |                  |         |
| Pre                             | 60                          |                  |                 |             |                                                     |                  |         |
| iva                             | 50                          |                  |                 |             |                                                     |                  |         |
| un.                             | 40                          |                  |                 |             |                                                     |                  |         |
| e                               | 30                          |                  |                 |             |                                                     |                  |         |
| evi                             | 20                          |                  |                 |             |                                                     |                  |         |
|                                 | 20<br>10                    |                  |                 |             |                                                     |                  |         |
|                                 | 10                          |                  |                 |             |                                                     |                  |         |

#### Product Characteristics

39

34

| NBG Code             | DDD/RO           |
|----------------------|------------------|
| Serial Number Prefix | PHF, PHH,<br>PHG |
| Estimated Longevity  | See page 73      |
|                      |                  |
|                      |                  |

| 00<br>90 |   |      |     |     |     |   |         |           |     |   |
|----------|---|------|-----|-----|-----|---|---------|-----------|-----|---|
| 80       |   |      |     |     |     |   |         |           |     |   |
|          |   |      |     |     |     |   |         |           |     |   |
| 70       |   |      |     |     |     |   |         |           |     |   |
| 60       |   |      |     |     |     |   | · · · · |           |     |   |
| 50       |   |      |     |     |     |   |         |           |     |   |
| 40       |   |      |     |     |     |   |         |           |     |   |
| 30       |   |      |     |     |     |   |         |           |     |   |
| 20       |   |      |     |     |     |   |         |           |     |   |
| 10       |   | <br> |     |     |     |   |         | 1         |     |   |
| 0        |   |      |     |     |     |   |         | · · · · · |     |   |
| 0        |   |      | 1   |     | 1   |   | 1       |           |     |   |
| (        | 0 | 2 3  | 3 4 | 4 ! | 5 6 | ) | / 8     | 3 .       | ) 1 | 0 |

Years After Implant \_\_\_\_\_ Excluding Normal Battery Depletion \_---- Including Normal Battery Depletion

|   |               | 1 yr     | 2 yr   | 3 yr   | 4 yr   | 5 yr   | бyr    | 7 yr  | 8 yr  | at 106 mo |
|---|---------------|----------|--------|--------|--------|--------|--------|-------|-------|-----------|
| % |               | 100.0    | 100.0  | 100.0  | 99.9   | 99.9   | 99.9   | 99.8  | 99.7  | 99.6      |
| % |               | 99.9     | 99.9   | 99.8   | 99.5   | 98.8   | 96.8   | 87.6  | 57.0  | 7.3       |
| # |               | 21,000   | 19,000 | 17,000 | 15,000 | 13,000 | 12,000 | 9,000 | 4,000 | 300       |
|   | Effective Sam | ple Size |        |        |        |        |        |       |       |           |

Mar-01

14,000

100

2,087

# Kappa 600 DR KDR651, KDR653

US Market Release

Interconnect Wires

**Registered US Implants** 

Estimated Active US Implants

Normal Battery Depletions (US)

Performance Note: See page 148 –

Advisories: See page 146 – 2002 Potential Fractured Power Supply Wires; See also page 140 – 2009 Potential Separation of

#### Product Characteristics

| Malfunctions (US)                                                | 33 | NBG Code             |   | DDD/RO      |
|------------------------------------------------------------------|----|----------------------|---|-------------|
| Therapy Function Not Compromised                                 | 2  | Serial Number Prefix |   | PLJ, PLK    |
| Electrical Component                                             | 1  | Estimated Longevity  | , | See page 73 |
| Possible Early Battery Depletion                                 | 1  |                      |   |             |
| Therapy Function Compromised                                     | 31 |                      |   |             |
| Electrical Component                                             | 1  |                      |   |             |
| Electrical Interconnect<br>(22 malfunctions related to advisory) | 30 |                      |   |             |
|                                                                  |    |                      |   |             |
|                                                                  |    |                      |   |             |
|                                                                  |    |                      |   |             |
|                                                                  |    | ×.                   |   |             |

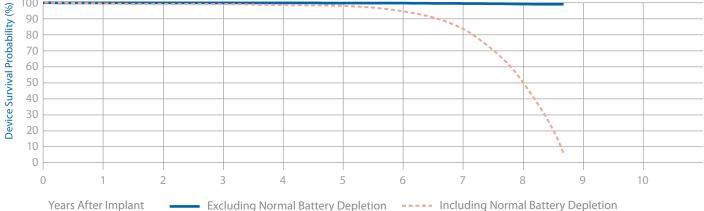
Device Survival Probability (%)

| 0 |   |   |   |   |        |   |   |          |          |   |    |
|---|---|---|---|---|--------|---|---|----------|----------|---|----|
| 0 |   |   |   |   |        |   |   |          |          |   |    |
|   |   |   |   |   |        |   |   |          |          |   |    |
|   |   |   |   |   |        |   |   |          |          |   |    |
| ) |   |   |   |   |        |   |   |          |          |   |    |
| ) |   |   |   |   |        |   |   |          |          |   |    |
| ) |   |   |   |   |        |   |   | <u> </u> |          |   |    |
| ) |   |   |   |   |        |   |   | <u> </u> |          |   |    |
| ) |   |   |   |   |        |   |   | - N      |          |   |    |
|   |   |   |   |   |        |   |   | 1        |          |   |    |
| ) |   |   |   |   |        |   |   |          | <u>i</u> |   |    |
| ) |   |   |   |   |        |   |   |          |          |   |    |
| ) |   |   |   |   |        |   |   |          |          |   |    |
|   | 1 | 2 | 2 | 4 | -<br>- | 6 | - | 8        |          | 9 | 10 |

3 yr 4 yr 7 yr 8 yr 1 yr 2 yr 5 yr бyr at 101 mo % 100.0 100.0 100.0 100.0 100.0 99.9 99.7 99.5 99.4 % 99.9 99.9 99.8 99.4 98.1 94.7 80.3 40.7 6.0 11,000 10,000 7,000 5,000 2,000 200 # 13,000 9,000 8,000 **Effective Sample Size** 

# Карра 700 D КD701, КD703, КD706

|                                 | US Mar            | ket Release                                                                      |                  | Jan-   | 99 Ma     | functions (US)    |               |       | 0     | NBG Cod    | de            | ſ       | DD |
|---------------------------------|-------------------|----------------------------------------------------------------------------------|------------------|--------|-----------|-------------------|---------------|-------|-------|------------|---------------|---------|----|
|                                 | Registe           | ered US Implant                                                                  | ts               | 3      | 00 Tł     | erapy Function N  | ot Compromise | d     | 0     | Serial Nu  | umber Prefix  | F       | PH |
|                                 | Estimat           | ted Active US Ir                                                                 | nplants          |        | 40 Tł     | erapy Function Co | ompromised    |       | 0     | Estimate   | ed Longevity  | 9       | Se |
|                                 | Norma             | l Battery Deple                                                                  | tions (US)       |        | 17        |                   |               |       |       |            |               | -       |    |
|                                 | Fractur<br>page 1 | ries: <u>See page</u><br>ed Power Supp<br>1 <u>40</u> – 2009 Pote<br>nnect Wires | oly Wires; See a | lso    |           |                   |               |       |       |            |               |         |    |
|                                 | Perforn<br>Pacema | nance Note: <u>Se</u><br>nance note on I<br>akers with Meas                      | Dual Chamber     | up ERI |           |                   |               |       |       |            |               |         |    |
| (%)                             | 100               |                                                                                  |                  |        |           |                   | +             |       |       | <b>N</b> 1 |               |         |    |
| ility                           | 90                |                                                                                  |                  |        |           |                   |               |       |       |            |               |         | _  |
| robab                           | 80  <br>08        | )                                                                                | 1                | 2      | 3         | 4                 | 5 (           | 5     | 7     | 1          | 8             | 9 10    | )  |
| Device Survival Probability (%) |                   | Years After                                                                      | Implant          | E×     | cluding N | ormal Battery     | Depletion     | Inclu | uding | g Norma    | al Battery De | pletion |    |
| ie Sl                           |                   |                                                                                  | 1 yr             | 2 yr   | 3 yr      | 4 yr              | 5 yr          | бyr   | 7 yr  |            | at 93 mo      |         |    |
| evio                            | %                 |                                                                                  | 100.0            | 100.0  | 100.0     | 100.0             | 100.0         | 100.0 | 100   | .0         | 100.0         |         |    |
| Δ                               | %                 |                                                                                  | 100.0            | 100.0  | 100.0     | 99.0              | 97.8          | 95.3  | 93.9  | 9          | 88.9          |         |    |
|                                 | #                 |                                                                                  | 300              | 200    | 200       | 200               | 200           | 100   | 100   |            | 100           |         |    |


Effective Sample Size

**Product Characteristics** 

DDD PHK See page 74

# Kappa 700 DR KDR701, KDR703, KDR706

| US Market Release                                                         | Feb-99  | Malfunctions (US)                                                 | 478 | NBG Code             | DDD/RO      |
|---------------------------------------------------------------------------|---------|-------------------------------------------------------------------|-----|----------------------|-------------|
| Registered US Implants                                                    | 192,000 | Therapy Function Not Compromised                                  | 31  | Serial Number Prefix | PGU, PGY,   |
| Estimated Active US Implants                                              | 21,000  | Battery                                                           | 1   |                      | PGW         |
| Normal Battery Depletions (US)                                            | 25,384  | Electrical Component                                              | 24  | Estimated Longevity  | See page 74 |
| Advisories: See page 146 – 2002 Poter                                     | ntial   | Electrical Interconnect                                           | 1   |                      |             |
| Fractured Power Supply Wires; See also                                    | _       | Possible Early Battery Depletion                                  | 3   |                      |             |
| page 140 – 2009 Potential Separation of<br>Interconnect Wires             | of      | Other                                                             | 2   |                      |             |
| Performance Note: See page 148 –                                          |         | Therapy Function Compromised                                      | 447 |                      |             |
| Performance note on Dual Chamber<br>Pacemakers with Measurement Lock-up E | RI      | Electrical Component                                              | 15  |                      |             |
| racemakers with measurement Lock-up L                                     | iu      | Electrical Interconnect<br>(348 malfunctions related to advisory) | 431 |                      |             |
|                                                                           |         | Possible Early Battery Depletion                                  | 1   |                      |             |
|                                                                           |         |                                                                   |     |                      |             |
| 100                                                                       |         |                                                                   |     |                      |             |



|   |               | I        |         |         |         |         |        | 5      |        | I         |
|---|---------------|----------|---------|---------|---------|---------|--------|--------|--------|-----------|
|   |               | 1 yr     | 2 yr    | 3 yr    | 4 yr    | 5 yr    | 6 yr   | 7 yr   | 8 yr   | at 104 mo |
| % |               | 100.0    | 100.0   | 99.9    | 99.9    | 99.9    | 99.8   | 99.7   | 99.5   | 99.3      |
| % |               | 99.9     | 99.8    | 99.6    | 99.1    | 98.0    | 95.1   | 83.9   | 50.7   | 5.0       |
| # |               | 173,000  | 156,000 | 139,000 | 123,000 | 105,000 | 85,000 | 58,000 | 22,000 | 2,000     |
|   | Effective Sam | ole Size |         |         |         |         |        |        |        |           |

# Kappa 700 DR KDR721

| US Market Release                                                                  | Feb-99 | Malfunctions (US)                                               |
|------------------------------------------------------------------------------------|--------|-----------------------------------------------------------------|
| Registered US Implants                                                             | 10,000 | Therapy Function Not Compromised                                |
| Estimated Active US Implants                                                       | 0      | Electrical Component                                            |
| Normal Battery Depletions (US)                                                     | 1,314  | Therapy Function Compromised                                    |
| Advisories: See page 146– 2002 Potential<br>Fractured Power Supply Wires; See also |        | Electrical Interconnect<br>(4 malfunctions related to advisory) |

page 140 – 2009 Potential Separation of Interconnect Wires

Performance Note: See page 148 -Performance note on Dual Chamber Pacemakers with Measurement Lock-up ERI

# **Product Characteristics**

5

1

1

4

4

| NBG Code             | DDD/RO              |
|----------------------|---------------------|
| Serial Number Prefix | PGR                 |
| Estimated Longevity  | See page 74         |
|                      | <u>bee page / i</u> |
|                      |                     |

| 90 |      |  |  |       |      |   |
|----|------|--|--|-------|------|---|
| 80 |      |  |  |       |      |   |
| 70 |      |  |  |       |      |   |
| 60 | <br> |  |  |       | <br> |   |
| 50 |      |  |  |       |      |   |
| 40 |      |  |  |       |      |   |
| 30 |      |  |  |       |      |   |
| 20 |      |  |  | <br>N |      |   |
| 10 |      |  |  | -!    |      |   |
| 0  |      |  |  |       |      | 1 |

Excluding Normal Battery Depletion ----- Including Normal Battery Depletion Years After Implant

|   |                       |       |       | -     | -     |       |       |      |          |  |  |
|---|-----------------------|-------|-------|-------|-------|-------|-------|------|----------|--|--|
|   |                       | 1 yr  | 2 yr  | 3 yr  | 4 yr  | 5 yr  | бyr   | 7 yr | at 85 mo |  |  |
| % |                       | 100.0 | 100.0 | 100.0 | 100.0 | 99.9  | 99.9  | 99.9 | 99.9     |  |  |
| % |                       | 99.9  | 99.6  | 98.8  | 96.6  | 90.8  | 68.2  | 19.7 | 13.7     |  |  |
| # |                       | 8,000 | 7,000 | 6,000 | 5,000 | 4,000 | 2,000 | 300  | 200      |  |  |
|   | Effective Sample Size |       |       |       |       |       |       |      |          |  |  |

### Kappa 700 SR KSR701, KSR703, KSR706

#### NBG Code US Market Release Feb-99 Malfunctions (US) 28 SSI/R **Registered US Implants** 55,000 **Therapy Function Not Compromised** 3 Serial Number Prefix PHT, PHW, PHU Estimated Active US Implants 5,000 **Electrical Component** 2 Normal Battery Depletions (US) 4,193 Possible Early Battery Depletion 1 Estimated Longevity See page 74 Advisories: See page 140 – 2009 Potential Separation of Interconnect Wires **Therapy Function Compromised** 25 **Electrical Component** 4 Electrical Interconnect 21 100 Device Survival Probability (%) 90 80 70 60 50 40 30 20 10 0 2 3 4 5 6 8 9 10 Years After Implant Excluding Normal Battery Depletion ----- Including Normal Battery Depletion 3 yr 4 yr 5 yr бyr 7 yr 8 yr 9 yr 1 yr 2 yr at 110 mo % 100.0 100.0 100.0 100.0 100.0 100.0 99.9 99.8 99.8 99.8 % 99.9 99.7 99.4 98.6 97.0 93.4 56.7 83.2 17.6 8.4 # 46,000 39,000 33,000 28,000 22,000 17,000 11,000 5,000 1,000 200 **Effective Sample Size**

### Карра 700 VDD куррлот

| S Mar                                     | rket Release                                                                       |                                                                     |                      | Jan-99 | Malfund                     | tions (US)                          |                                   |       | 4                  | NBG Cod                      | le                                        |   | VDD/RO   |
|-------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------|--------|-----------------------------|-------------------------------------|-----------------------------------|-------|--------------------|------------------------------|-------------------------------------------|---|----------|
| egiste                                    | ered US Implar                                                                     | nts                                                                 |                      | 2,000  | Therap                      | y Function N                        | lot Compromise                    | ed    | 0                  | Serial Nu                    | ımber Prefix                              |   | PHP      |
| tima                                      | ted Active US I                                                                    | Implants                                                            |                      | 20     | Therap                      | y Function C                        | ompromised                        |       | 4                  | Estimate                     | d Longevity                               |   | See page |
| Normal Battery Depletions (US)            |                                                                                    | ery Depletions (US) 1/                                              |                      |        | 167 Electrical Interconnect |                                     |                                   |       | 4                  |                              |                                           |   |          |
| actur<br>age<br>terco<br>erforr<br>erforr | red Power Sup<br>140 – 2009 Pot<br>onnect Wires<br>mance Note: Se<br>mance note on | tential Separati<br>ee page 148 –<br>Dual Chamber<br>asurement Lock | also<br>on of        |        | (4 r.                       | nalfunctions r                      | elated to advisor                 | y)    |                    |                              |                                           |   |          |
| 00                                        |                                                                                    |                                                                     |                      |        |                             |                                     |                                   |       |                    |                              | 1                                         |   |          |
| 90                                        |                                                                                    |                                                                     |                      |        |                             |                                     |                                   |       | _                  |                              |                                           |   |          |
| 80                                        |                                                                                    |                                                                     |                      |        |                             |                                     |                                   |       | _                  |                              |                                           |   |          |
| 70                                        |                                                                                    |                                                                     |                      |        |                             |                                     |                                   |       |                    |                              |                                           |   |          |
| 60                                        |                                                                                    |                                                                     |                      |        |                             |                                     |                                   |       |                    |                              |                                           |   |          |
| 50                                        |                                                                                    |                                                                     |                      |        |                             |                                     |                                   |       |                    | <u> </u>                     |                                           |   |          |
| 40                                        |                                                                                    |                                                                     |                      |        |                             |                                     |                                   |       |                    | <u>`\</u>                    |                                           |   |          |
| 30                                        |                                                                                    |                                                                     |                      |        |                             |                                     |                                   |       |                    |                              |                                           |   |          |
| (                                         | ן<br>ר                                                                             | 1                                                                   | 2                    | 3      | 2                           | 1                                   | 5                                 | 6     | 7                  |                              | 3                                         | 9 | 10       |
| %                                         | Years Afte                                                                         | r Implant<br>1 yr<br>99.9<br>99.7                                   | 2 yr<br>99.9<br>99.7 |        | 9                           | nal Battery<br>4 yr<br>99.8<br>98.9 | Depletion<br>5 yr<br>99.8<br>98.5 | -     | ludir<br>7 1<br>99 | ng Norma<br>yr<br><b>9.6</b> | al Battery Do<br>at 94 mo<br>99.6<br>39.7 | - |          |
| %<br>#                                    |                                                                                    |                                                                     |                      |        |                             |                                     |                                   |       |                    |                              |                                           |   |          |
| #                                         | Effective Sam                                                                      | 1,000                                                               | 1,000                | 1,00   | 0                           | 1,000                               | 1,000                             | 1,000 | 40                 | 0                            | 100                                       |   |          |

52 Medtronic CRDM Product Performance Report www.medtronic.com/CRDMProductPerformance **Product Characteristics** 

# Kappa 800 DR KDR801, KDR803

| US Market Release              | Jan-02 |
|--------------------------------|--------|
| Registered US Implants         | 4,000  |
| Estimated Active US Implants   | 1,000  |
| Normal Battery Depletions (US) | 349    |

Malfunctions (US) **Therapy Function Not Compromised Therapy Function Compromised** Electrical Interconnect

#### **Product Characteristics**

3

0

3

3

| NBG Code             | DDD/RO      |
|----------------------|-------------|
| Serial Number Prefix | PKW, PKY    |
| Estimated Longevity  | See page 74 |
|                      |             |

Performance Note: See page 148 -Performance note on Dual Chamber

Pacemakers with Measurement Lock-up ERI



2,000

2,000

1,000

28,000

5,000

100

**Product Characteristics** 

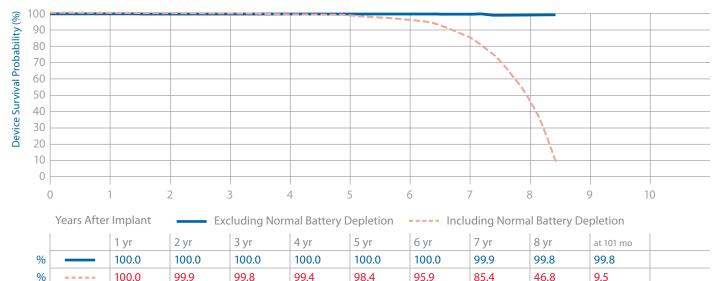
| Kappa 900 DR | KDR901, KDR903, | KDR906 |
|--------------|-----------------|--------|
|--------------|-----------------|--------|

4,000

Effective Sample Size

#

#


# 6

3,000

3,000

3,000

| US Market Release                                                           | Jan-02  | Malfunctions (US)                | 66 | NBG Code             | DDD/RO        |
|-----------------------------------------------------------------------------|---------|----------------------------------|----|----------------------|---------------|
| Registered US Implants                                                      | 125,000 | Therapy Function Not Compromised | 15 | Serial Number Prefix | PKM, PKN, PKP |
| Estimated Active US Implants                                                | 40,000  | Electrical Component             | 14 |                      |               |
| Normal Battery Depletions (US)                                              | 7,689   | Electrical Interconnect          | 1  | Estimated Longevity  | See page 74   |
| Performance Note: See page 148 –                                            |         | Therapy Function Compromised     | 51 |                      |               |
| Performance note on Dual Chamber<br>Pacemakers with Measurement Lock-up ERI |         | Electrical Component             | 9  |                      |               |
| racemakers with measurement Lock-up Eki                                     |         | Electrical Interconnect          | 42 |                      |               |



65,000

49,000

Source: Medtronic Device Registration and Returned Product Analysis Data as of January 31, 2011

101,000

91,000

80,000

113,000

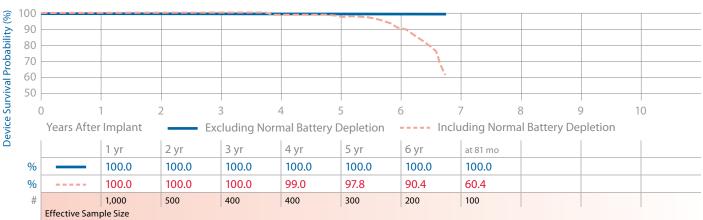
**Effective Sample Size** 

300

### Kappa 900 SR KSR901, KSR903, KSR906

#### **US Market Release** Jan-02 Malfunctions (US) 16 NBG Code VVEV **Registered US Implants** 37,000 **Therapy Function Not Compromised** 8 Serial Number Prefix PLF, PLG, PLH Estimated Active US Implants 10,000 **Electrical Component** 7 Normal Battery Depletions (US) Estimated Longevity 1,391 Possible Early Battery Depletion See page 74 1 **Therapy Function Compromised** See page 140 – 2009 Potential 8 Separation of Interconnect Wires Electrical Interconnect 8 100 Device Survival Probability (%) 90 80 70 60 50 40 30 20 0 2 3 4 5 6 7 8 9 10 Years After Implant **Excluding Normal Battery Depletion** ----- Including Normal Battery Depletion 1 yr 2 yr 3 yr 4 yr 5 yr бyr 7 yr 8 yr at 101 mo 100.0 100.0 100.0 100.0 100.0 99.9 99.9 99.8 99.8 % % 99.9 99.7 99.5 98.8 97.3 94.3 83.4 49.2 26.7 # 30,000 26.000 22.000 19.000 13,000 9,000 5,000 1.000 100

#### **Kappa 900 VDD KVDD901**


**Effective Sample Size** 

| US Market Release              | Jan-02 | Malfunctions (US)                | 0 | NBG Code             | VDD         |
|--------------------------------|--------|----------------------------------|---|----------------------|-------------|
| Registered US Implants         | 1,000  | Therapy Function Not Compromised | 0 | Serial Number Prefix | PLE         |
| Estimated Active US Implants   | 50     | Therapy Function Compromised     | 0 | Estimated Longevity  | See page 74 |
| Normal Battery Depletions (US) | 73     |                                  |   |                      |             |

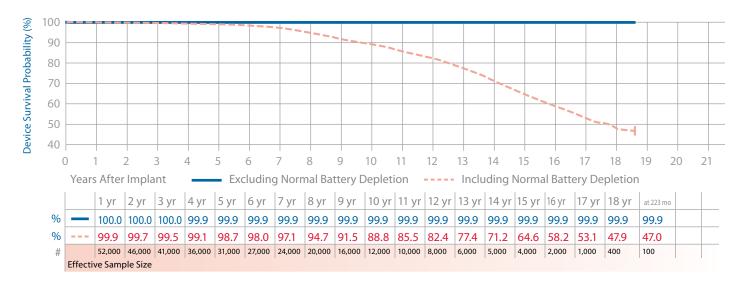
See page 140 – 2009 Potential Separation of Interconnect Wires

Performance Note: See page 148 -Performance note on Dual Chamber

Pacemakers with Measurement Lock-up ERI



**Product Characteristics** 




#### Kappa 920 DR KDR921 **Product Characteristics US Market Release** Jan-02 Malfunctions (US) 4 NBG Code VVEV **Registered US Implants** 16,000 **Therapy Function Not Compromised** 1 Serial Number Prefix PLF, PLG, PLH Estimated Active US Implants 1,000 **Electrical Component** 1 Normal Battery Depletions (US) 2,312 **Therapy Function Compromised** 3 Estimated Longevity See page 74 See page 140 – 2009 Potential Electrical Interconnect 3 Separation of Interconnect Wires Performance Note: See page 148 -Performance note on Dual Chamber Pacemakers with Measurement Lock-up ERI 100 Device Survival Probability (%) 90 80 70 60 50 40 30 20 10 0 2 5 3 6 7 8 9 10 4

|   | Years After Implant |          | Exc    | luding Norm | al Battery D | epletion - | Including Normal Battery Depletion |          |  |  |  |
|---|---------------------|----------|--------|-------------|--------------|------------|------------------------------------|----------|--|--|--|
|   |                     | 1 yr     | 2 yr   | 3 yr        | 4 yr         | 5 yr       | 6 yr                               | at 82 mo |  |  |  |
| % |                     | 100.0    | 100.0  | 100.0       | 100.0        | 100.0      | 99.9                               | 99.9     |  |  |  |
| % |                     | 99.9     | 99.7   | 99.2        | 97.1         | 89.8       | 58.7                               | 7.4      |  |  |  |
| # |                     | 14,000   | 12,000 | 11,000      | 9,000        | 7,000      | 3,000                              | 200      |  |  |  |
|   | Effective Sam       | ple Size |        |             |              |            |                                    |          |  |  |  |

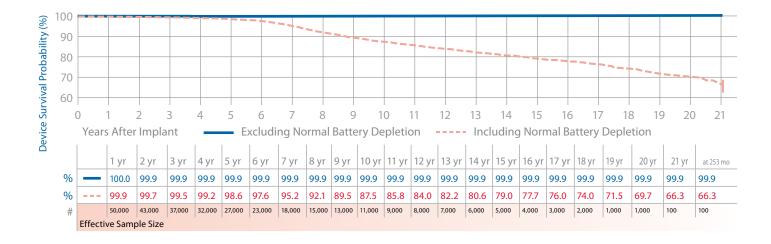
#### Legend II 8424, 8426, 8427

| US Market Release              | Nov-91 | Malfunctions (US) | 34 | NBG Code             | SSIRO       |
|--------------------------------|--------|-------------------|----|----------------------|-------------|
| Registered US Implants         | 58,000 |                   |    | Serial Number Prefix | 2P, 2T, 2U  |
| Estimated Active US Implants   | 2,000  |                   |    | Estimated Longevity  | See page 74 |
| Normal Battery Depletions (US) | 2513   |                   |    |                      |             |
| Advisories                     | None   |                   |    |                      |             |



# Medtronic CRDM Product Performance Report 55 www.medtronic.com/CRDMProductPerformance

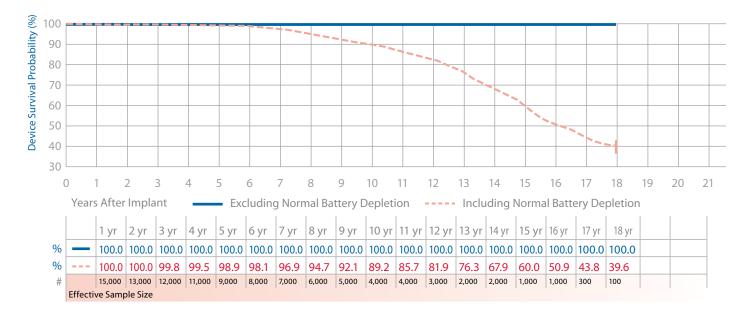
#### Minix/Minix ST 8340, 8341, 8341M, 8342, 8330, 8331, 8331M

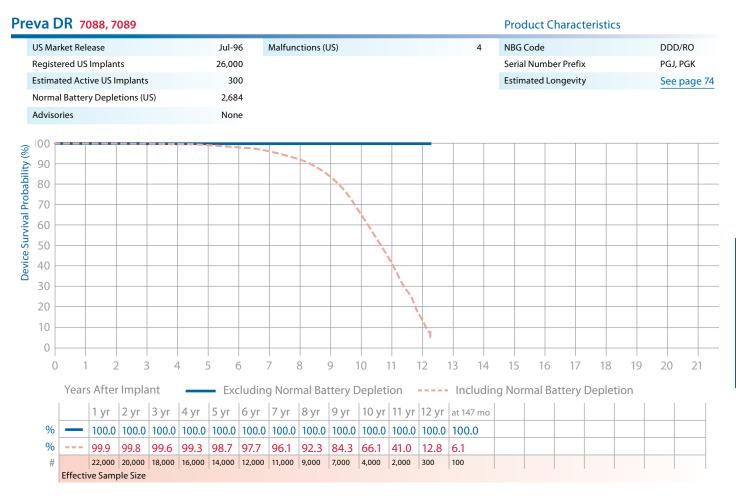

| US Market Release                | Dec-89           |
|----------------------------------|------------------|
| Registered US Implants           | 58,000           |
| Estimated Active US Implants     | 3,000            |
| Normal Battery Depletions (US)   | 1,702            |
| Advisories: See page 147- 1991 P | otential Delayed |

### Product Characteristics

**Product Characteristics** 

| 50 | NBG Code             | SSIRO       |
|----|----------------------|-------------|
|    | Serial Number Prefix | 2P, 2T, 2U  |
|    | Estimated Longevity  | See page 74 |


Advisories: See page 147– 1991 Potential Delayed Restoration of Permanent Settings

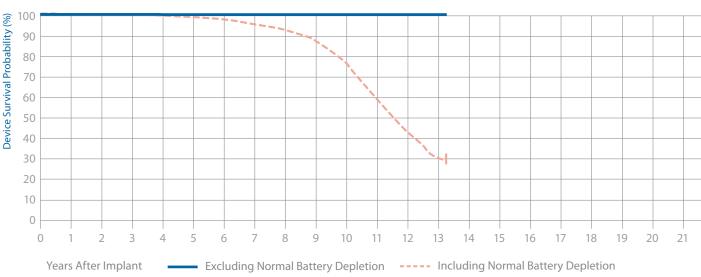



Malfunctions (US)

#### Minuet 7107, 7108

| US Market Release              | Mar-92 | Malfunctions (US) | 4 | NBG Code             | DDDCO       |
|--------------------------------|--------|-------------------|---|----------------------|-------------|
| Registered US Implants         | 17,000 |                   |   | Serial Number Prefix | 1Z1, 2G1    |
| Estimated Active US Implants   | 1,000  |                   |   | Estimated Longevity  | See page 74 |
| Normal Battery Depletions (US) | 922    |                   |   |                      |             |
| Advisories                     | None   |                   |   |                      |             |



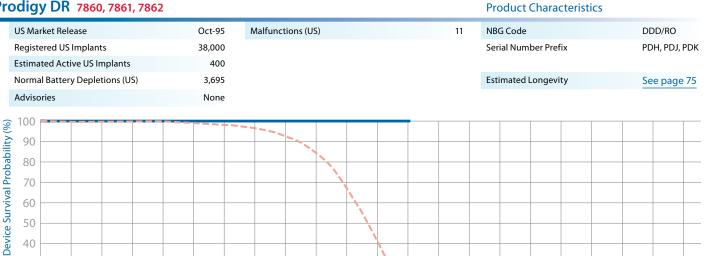



DG

# **IPG** Implantable Pulse Generators, continued

### Preva SR 8088, 8089

#### **Product Characteristics** Malfunctions (US) SSI/R US Market Release Jul-96 1 NBG Code **Registered US Implants** 18,000 Serial Number Prefix PGL, PGM Estimated Active US Implants 1,000 Estimated Longevity See page 74 Normal Battery Depletions (US) 1,006 Advisories None




|   |         | 1 yr    | 2 yr     | 3 yr   | 4 yr  | 5 yr  | 6 yr  | 7 yr  | 8 yr  | 9 yr  | 10 yr | 11 yr | 12 yr | 13 yr | at 159 mo |  |  |  |  |
|---|---------|---------|----------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-----------|--|--|--|--|
| % |         | 100.0   | 100.0    | 100.0  | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0     |  |  |  |  |
| % |         | 99.9    | 99.8     | 99.4   | 99.0  | 98.2  | 97.2  | 94.8  | 91.9  | 86.9  | 74.7  | 58.3  | 42.2  | 29.2  | 28.7      |  |  |  |  |
| # |         | 15,000  | 12,000   | 11,000 | 9,000 | 8,000 | 6,000 | 5,000 | 4,000 | 3,000 | 2,000 | 1,000 | 1,000 | 200   | 100       |  |  |  |  |
|   | Effecti | ve Samp | ole Size |        |       |       |       |       |       |       |       |       |       |       |           |  |  |  |  |

# Prevail S 8085, 8086

| Pr                              | evail  | <b>S</b> 80 | 85, 80    | 86       |       |       |       |        |        |           |         |         |       |              |          |        | Produc    | t Cha   | racte  | eristic | S   |    |        |    |
|---------------------------------|--------|-------------|-----------|----------|-------|-------|-------|--------|--------|-----------|---------|---------|-------|--------------|----------|--------|-----------|---------|--------|---------|-----|----|--------|----|
|                                 | US Ma  | rket Rele   | ease      |          |       |       | Oct-9 | 5      | Malfun | ctions (l | JS)     |         |       |              | 1        | 1      | NBG Coc   | le      |        |         |     | SS |        |    |
|                                 | Regist | ered US     | Implant   | ts       |       |       | 4,00  | 0      |        |           |         |         |       |              |          |        | Serial Nu | ımber f | Prefix |         |     | PG | L, PGM |    |
|                                 | Estima | ted Acti    | ive US Ir | nplants  |       |       | 40    | 0      |        |           |         |         |       |              |          |        | Estimate  | d Long  | jevity |         |     | Se | e page | 74 |
|                                 | Norma  | l Batter    | y Deple   | tions (U | S)    |       | 4     | 8      |        |           |         |         |       |              |          |        |           |         |        |         |     |    |        |    |
|                                 | Adviso | ories       |           |          |       |       | Non   | e      |        |           |         |         |       |              |          |        |           |         |        |         |     |    |        |    |
|                                 |        |             |           |          |       |       |       |        |        |           |         |         |       |              |          |        |           |         |        |         |     |    |        |    |
| (%                              | 100    |             |           | _        | _     |       |       |        | _      |           | _       | _       | _     |              |          | 1      |           |         |        |         |     |    |        |    |
| Device Survival Probability (%) | 90     |             |           |          |       |       |       |        |        |           | +       | ·       |       |              | <u> </u> |        |           |         |        |         |     |    |        |    |
| lide                            | 80     |             |           |          |       |       |       |        |        |           |         |         |       | [ <b>[</b> ] | 1-1      |        |           |         |        |         |     |    |        |    |
| rob                             | 00     |             |           |          |       |       |       |        |        |           |         |         |       |              |          |        |           |         |        |         |     |    |        |    |
| /al P                           | 70     |             |           |          |       |       |       |        |        |           |         |         |       |              |          |        |           |         |        |         |     |    |        |    |
| irviv                           | (      | ) 1         |           | 2 3      | 3 4   | 4     | 5     | 6      | 7      | 8         | 9 .     | 10 1    | 11    | 12           | 13 1     | 14     | 15        | 16      | 17     | 18      | 19  | 20 | 21     |    |
| e SL                            |        | Year        | After     | Impla    | nt    |       | - Exc | luding | n Norn | nal Bat   | tterv [ | )enleti | ion   |              | Inclu    | Idina  | Norma     | l Ratt  | erv [  | Denlet  | ion |    |        |    |
| evio                            |        |             |           |          |       |       |       |        | -      |           |         |         |       |              | 1        | 1      | 1         |         |        |         |     | I. | 1      |    |
|                                 |        |             | 1 yr      | 2 yr     | 3 yr  | 4 yr  | 5 yr  | 6 yr   | 7 yr   | 8 yr      | 9 yr    | 10 yr   | 11 yr | 12 yr        | 13 yr    | at 164 | no        |         | _      |         |     |    |        |    |
|                                 | %      |             | 100.0     | 100.0    | 100.0 | 100.0 | 99.9  | 99.9   | 99.9   | 99.9      | 99.9    | 99.9    | 99.9  | 99.9         | 99.9     | 99.9   |           |         | _      |         |     |    |        |    |
|                                 | %      |             | 99.8      | 99.8     | 99.7  | 99.7  | 99.0  | 98.8   | 98.0   | 97.1      | 95.3    | 93.2    | 89.8  | 89.0         | 87.3     | 86.5   | ;         |         |        |         |     |    |        |    |
|                                 | #      |             |           | 3,000    | 2,000 | 2,000 | 1,000 | 1,000  | 1,000  | 1,000     | 1,000   | 1,000   | 500   | 400          | 200      | 100    |           |         |        |         |     |    |        |    |
|                                 |        | Effectiv    | ve Samp   | Die Size |       |       |       |        |        |           |         |         |       |              |          |        |           |         |        |         |     |    |        |    |





Years After Implant Excluding Normal Battery Depletion ----- Including Normal Battery Depletion -

|   |                       | 1 yr   | 2 yr   | 3 yr   | 4 yr   | 5 yr   | бyr    | 7 yr   | 8 yr   | 9 yr   | 10 yr | 11 yr | 12 yr |  |  |  |  |  |
|---|-----------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|-------|-------|--|--|--|--|--|
| % | —                     | 100.0  | 100.0  | 100.0  | 100.0  | 100.0  | 100.0  | 100.0  | 100.0  | 100.0  | 100.0 | 100.0 | 100.0 |  |  |  |  |  |
| % |                       | 99.9   | 99.8   | 99.7   | 99.3   | 98.7   | 97.9   | 96.3   | 92.3   | 84.4   | 67.9  | 41.5  | 4.3   |  |  |  |  |  |
| # |                       | 33,000 | 30,000 | 27,000 | 24,000 | 21,000 | 19,000 | 16,000 | 13,000 | 10,000 | 6,000 | 2,000 | 100   |  |  |  |  |  |
|   | Effective Sample Size |        |        |        |        |        |        |        |        |        |       |       |       |  |  |  |  |  |

#### Prodiav SR 8158, 8160, 8161, 8162

| Pro                             | odig   | y SR      | 8158,     | , 8160,  | , 8161, | 8162   |        |        |        |           |          |           |       |       |            |          | Prod     | uct Ch  | naract   | eristi | CS    |    |              |
|---------------------------------|--------|-----------|-----------|----------|---------|--------|--------|--------|--------|-----------|----------|-----------|-------|-------|------------|----------|----------|---------|----------|--------|-------|----|--------------|
|                                 | US Ma  | rket Rele | ease      |          |         |        | Oct-9  | 5      | Malfun | ctions (l | JS)      |           |       |       |            | 4        | NBG C    | ode     |          |        |       | SS | I/R          |
|                                 | Regist | ered US   | Implant   | ts       |         |        | 22,00  | 0      |        |           |          |           |       |       |            |          | Serial I | Numbe   | r Prefix |        |       |    | M, PED, PEE, |
|                                 | Estima | ted Acti  | ive US Ir | mplants  |         |        | 1,00   | 0      |        |           |          |           |       |       |            |          |          |         |          |        |       | PE | :F           |
|                                 | Norma  | l Batter  | y Deple   | tions (U | S)      |        | 1,21   | 5      |        |           |          |           |       |       |            |          | Estima   | ted Lor | ngevity  |        |       | Se | ee page 75   |
|                                 | Adviso | ries      |           |          |         |        | Non    | e      |        |           |          |           |       |       |            |          |          |         |          |        |       |    |              |
| (%                              | 100    |           |           |          |         |        |        |        |        |           |          |           |       |       |            |          | -1       |         |          |        |       |    |              |
| Device Survival Probability (%) | 90     |           |           |          |         |        |        |        |        |           |          |           |       |       |            |          |          |         |          |        |       |    |              |
| lide                            | 80     |           |           |          |         |        |        |        |        |           |          |           |       |       |            |          |          |         |          |        |       |    |              |
| Prob                            |        |           |           |          |         |        |        |        |        |           | <u> </u> |           |       |       |            |          |          |         |          |        |       |    |              |
| val F                           | 70     |           |           |          |         |        |        |        |        |           |          |           |       |       |            |          |          |         |          |        |       |    |              |
| urvi                            | 60     |           |           |          |         |        |        |        |        |           |          |           |       |       |            |          |          |         |          |        |       |    |              |
| ce S                            | 50     |           |           |          |         |        |        |        |        |           |          |           |       |       |            |          |          |         | _        | _      |       |    |              |
| Devi                            | 40     |           |           |          |         |        |        |        |        |           |          |           |       |       |            |          |          |         | _        | _      |       |    |              |
|                                 | 30     |           |           |          |         |        |        |        |        |           |          |           |       |       |            |          |          |         | _        | _      |       |    |              |
|                                 | 20     |           |           |          |         |        |        |        |        |           |          |           |       |       | 1          |          |          |         | _        |        |       |    |              |
|                                 | (      | ) 1       | 2         | 2 3      | 4       | - 5    | 5 6    | 5 7    | ' 8    | 9         | ) 10     | ہ<br>11 0 | 1 12  | 2 13  | 14<br>3 14 | 1        | 15       | 16      | 17       | 18     | 19    | 20 | 21           |
|                                 |        |           |           |          |         |        |        |        |        |           |          |           |       |       |            |          |          |         |          |        |       |    |              |
|                                 |        | Years     | s After   | Impla    | nt      |        | Exc    | luding | g Norn | nal Ba    | ttery [  | Deplet    | ion   |       | Inclu      | Iding    | g Norn   | nal Ba  | ttery    | Deple  | etion |    |              |
|                                 |        |           | 1 yr      | 2 yr     | 3 yr    | 4 yr   | 5 yr   | 6 yr   | 7 yr   | 8 yr      | 9 yr     | 10 yr     | 11 yr | 12 yr | 13 yr      | at 161 n | 10       |         |          |        |       |    |              |
|                                 | %      |           | 100.0     | 100.0    | 100.0   | 100.0  | 100.0  | 100.0  | 100.0  | 100.0     | 100.0    | 100.0     | 100.0 | 100.0 | 100.0      | 100.     | 0        |         |          |        |       |    |              |
|                                 | %      |           | 99.8      | 99.6     | 99.2    | 98.6   | 97.7   | 96.5   | 94.7   | 91.5      | 86.0     | 73.9      | 59.7  | 44.7  | 31.5       | 27.9     |          |         |          |        |       |    |              |
|                                 | #      |           |           | 16,000   | 14,000  | 12,000 | 10,000 | 8,000  | 7,000  | 5,000     | 4,000    | 3,000     | 2,000 | 1,000 | 200        | 100      |          |         |          |        |       |    |              |
|                                 |        | Effectiv  | ve Samp   | ole Size |         |        |        |        |        |           |          |           |       |       |            |          |          |         |          |        |       |    |              |

Source: Medtronic Device Registration and Returned Product Analysis Data as of January 31, 2011

# Sensia DR SEDR01, SED01

| US Market Release                                                                                                      | Jul-06 | Malfunctions (US)                | 7 | NBG Code             | DDD, DDDR   |
|------------------------------------------------------------------------------------------------------------------------|--------|----------------------------------|---|----------------------|-------------|
| Registered US Implants                                                                                                 | 84,000 | Therapy Function Not Compromised | 5 | Serial Number Prefix | PWL, PWK,   |
| Estimated Active US Implants                                                                                           | 67,000 | Electrical Component             | 5 |                      | NWL         |
| Normal Battery Depletions (US)                                                                                         | 27     | Therapy Function Compromised     | 2 | Estimated Longevity  | See page 75 |
| Performance Note: <u>See page 148</u> –<br>Performance note on Dual Chamber<br>Pacemakers with Measurement Lock-up ERI |        | Electrical Component             | 2 |                      |             |

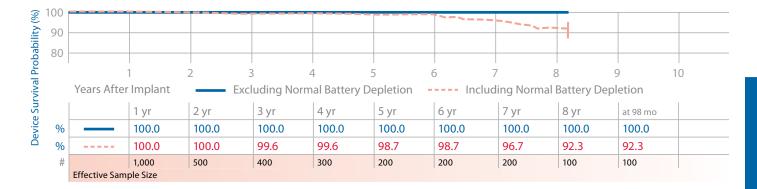
100 Device Survival Probability (%) 90 80 5 9 0 2 3 4 6 7 8 10 Years After Implant **Excluding Normal Battery Depletion** ----- Including Normal Battery Depletion 1 yr 2 yr 3 yr 4 yr at 50 mo 100.0 % 100.0 100.0 100.0 100.0 % 100.0 99.8 99.7 99.4 100.0 # 34,000 1,000 200 58,000 15,000 Effective Sample Size

### Sensia SR SESR01, SES01

#### Product Characteristics

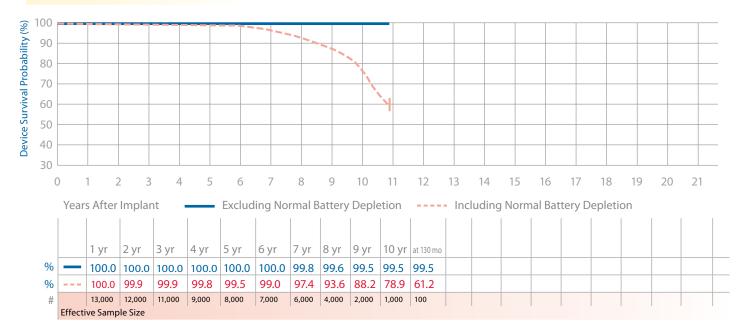
| US Market Release              | Jul-06 | Malfunctions (U | S)            |        | 2         | NBG Code            |           | SSIR, SSI  |
|--------------------------------|--------|-----------------|---------------|--------|-----------|---------------------|-----------|------------|
| Registered US Implants         | 55,000 | Therapy Funct   | ion Not Compr | omised | 1         | Serial Number Prefi | ix        | PWR, PWS,  |
| Estimated Active US Implants   | 40,000 | Electrical C    | omponent      |        | 1         |                     |           | NWR        |
| Normal Battery Depletions (US) | 23     | Therapy Funct   | ion Compromi  | sed    | 1         | Estimated Longevit  | ty        | See page 7 |
| Advisories                     | None   | Electrical Ir   | nterconnect   |        | 1         |                     |           |            |
| 90                             |        |                 |               |        |           |                     |           |            |
| 80                             |        |                 |               |        |           |                     |           |            |
| 0 1                            | 2 3    | 4               | 5             | 6      | 7         | 8                   | 9         | 10         |
|                                |        |                 |               |        |           |                     |           |            |
| Years After Implant            | Exclud | ing Normal Bat  | tery Depletio | on     | Including | Normal Battery      | Depletion |            |

| Su       |   |               | Ι.       | L _    | 1 -   | Ι.    |          | 1 | 1 |  |
|----------|---|---------------|----------|--------|-------|-------|----------|---|---|--|
| <u>e</u> |   |               | 1 yr     | 2 yr   | 3 yr  | 4 yr  | at 49 mo |   |   |  |
| ev       | % |               | 100.0    | 100.0  | 100.0 | 100.0 | 100.0    |   |   |  |
|          | % |               | 100.0    | 99.9   | 99.8  | 99.4  | 99.4     |   |   |  |
|          | # |               | 35,000   | 19,000 | 8,000 | 1,000 | 300      |   |   |  |
|          |   | Effective Sam | ple Size |        |       |       |          |   |   |  |


| gma 100 S SS103, SS106       |        |                                  |   | Product Characteristics |
|------------------------------|--------|----------------------------------|---|-------------------------|
| US Market Release            | Aug-99 | Malfunctions (US)                | 0 | NBG Code                |
| Registered US Implants       | 1,000  | Therapy Function Not Compromised | 0 | Serial Number Prefix    |
| Estimated Active US Implants | 100    | Therapy Function Compromised     | 0 | Estimated Longevity     |

| Estimated Active US Implants   | 100 |
|--------------------------------|-----|
| Normal Battery Depletions (US) | 16  |

SSI PJG, PJH Estimated Longevity See page 75


**Product Characteristics** 

Separation of Interconnect Wires



### Sigma 200 DR SDR203

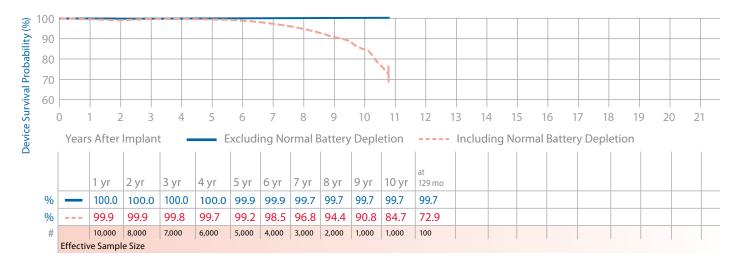
| Malfunctions (US)                                                | 29                                                                                                                                          | NBG Code                                                                                                                           | DDD/RO                                                                                                                                                                                                                                   |
|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Therapy Function Not Compromised                                 | 1                                                                                                                                           | Serial Number Prefix                                                                                                               | PJD                                                                                                                                                                                                                                      |
| Electrical Component                                             | 1                                                                                                                                           | Estimated Longevity                                                                                                                | See page 75                                                                                                                                                                                                                              |
| Therapy Function Compromised                                     | 28                                                                                                                                          |                                                                                                                                    |                                                                                                                                                                                                                                          |
| Electrical Component                                             | 1                                                                                                                                           |                                                                                                                                    |                                                                                                                                                                                                                                          |
| Electrical Interconnect<br>(19 malfunctions related to advisory) | 27                                                                                                                                          |                                                                                                                                    |                                                                                                                                                                                                                                          |
|                                                                  | Therapy Function Not Compromised<br>Electrical Component<br>Therapy Function Compromised<br>Electrical Component<br>Electrical Interconnect | Therapy Function Not Compromised1Electrical Component1Therapy Function Compromised28Electrical Component1Electrical Interconnect27 | Therapy Function Not Compromised     1     Serial Number Prefix       Electrical Component     1     Estimated Longevity       Therapy Function Compromised     28       Electrical Component     1       Electrical Interconnect     27 |



# Sigma 200 SR SSR203

| US Market Release              | Sep-99 |
|--------------------------------|--------|
| Registered US Implants         | 12,000 |
| Estimated Active US Implants   | 2,000  |
| Normal Battery Depletions (US) | 177    |

99 Malfunctions (US) 00 **Therapy Function Not Compromised** 00 **Therapy Function Compromised** 


> **Electrical Interconnect** (12 malfunctions related to advisory)

#### **Product Characteristics**

13

| 13 | NBG Code             | SSI/R       |
|----|----------------------|-------------|
| 0  | Serial Number Prefix | PJG         |
| 13 | Estimated Longevity  | See page 75 |
|    |                      |             |

Advisories: See page 144 – 2005 Potential Separation of Interconnect Wires; See also page 140 – 2009 Potential Separation of Interconnect Wires



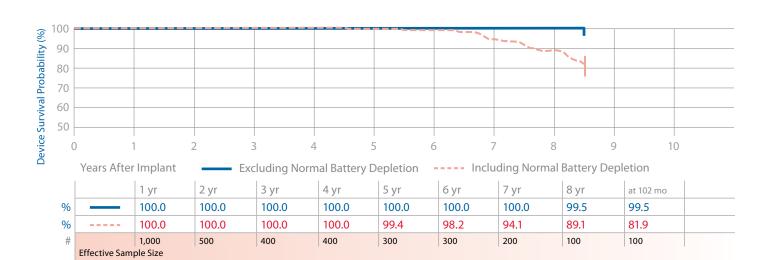
## Sigma 300 DR SDR303, SDR306

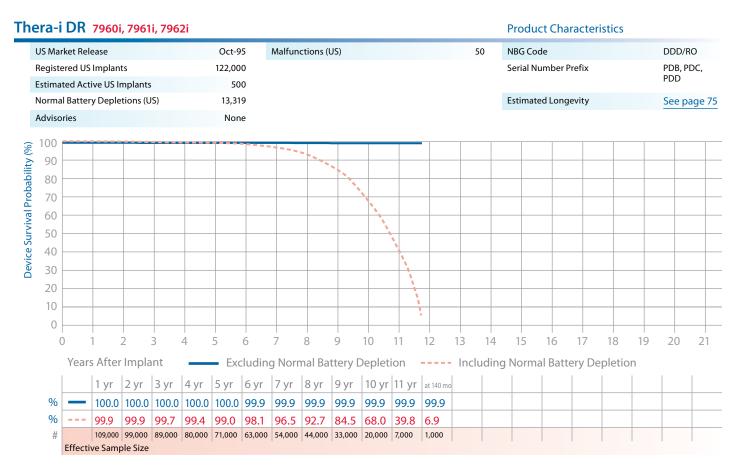
#### **Product Characteristics** Aug-99 US Market Release Malfunctions (US) 190 NBG Code DDD/RO **Registered US Implants** 107,000 **Therapy Function Not Compromised** Serial Number Prefix PJD, PJE 6 **Estimated Active US Implants** 38,000 **Electrical Component** 5 **Estimated Longevity** See page 75 Normal Battery Depletions (US) 1,517 Possible Early Battery Depletion 1 Advisories: See page 144 – 2005 Potential **Therapy Function Compromised** 184 Separation of Interconnect Wires; See also Electrical Component 8 page 140 – 2009 Potential Separation of Interconnect Wires Electrical Interconnect 176 (107 malfunctions related to advisory) 100 Device Survival Probability (%) 90 80 70 60 5 8 0 2 3 6 9 10 11 12 13 15 17 18 19 21 14 16 20 Years After Implant **Excluding Normal Battery Depletion** ----- Including Normal Battery Depletion 9 yr 1 yr 2 yr 3 yr 4 yr 5 yr 6 yr 7 yr 8 yr 10 yr 11 yr % 100.0 100.0 100.0 99.9 99.9 99.9 99.7 99.5 99.5 99.5 99.5 % 99.9 99.9 99.8 99.6 99.3 98.8 97.7 94.8 89.7 81.4 62.4 73,000 62,000 50,000 39,000 28,000 18,000 10,000 4,000 200

# 92,000 82,000 **Effective Sample Size** 

# Sigma 300 SR SSR303, SSR306

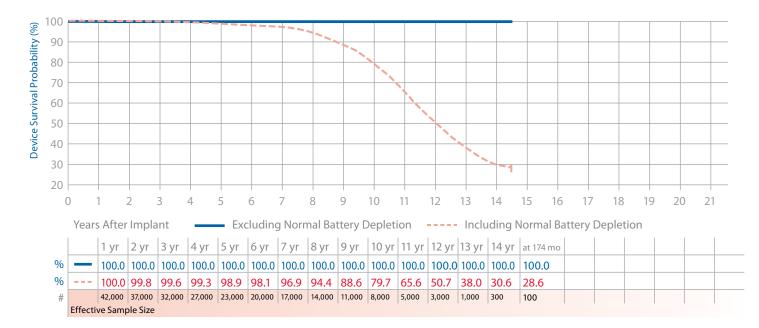
| -                                                                                                        |        |                                                                  |    |                      |             |
|----------------------------------------------------------------------------------------------------------|--------|------------------------------------------------------------------|----|----------------------|-------------|
| US Market Release                                                                                        | Sep-99 | Malfunctions (US)                                                | 39 | NBG Code             | SSI/R       |
| Registered US Implants                                                                                   | 54,000 | Therapy Function Not Compromised                                 | 1  | Serial Number Prefix | PJG, PJH    |
| Estimated Active US Implants                                                                             | 14,000 | Electrical Component                                             | 1  | Estimated Longevity  | See page 75 |
| Normal Battery Depletions (US)                                                                           | 559    | Therapy Function Compromised                                     | 38 |                      |             |
| Advisories: See page 144 – 2005 Poter                                                                    | itial  | Electrical Component                                             | 3  |                      |             |
| Separation of Interconnect Wires; See al<br>page 140 – 2009 Potential Separation o<br>Interconnect Wires |        | Electrical Interconnect<br>(24 malfunctions related to advisory) | 35 |                      |             |

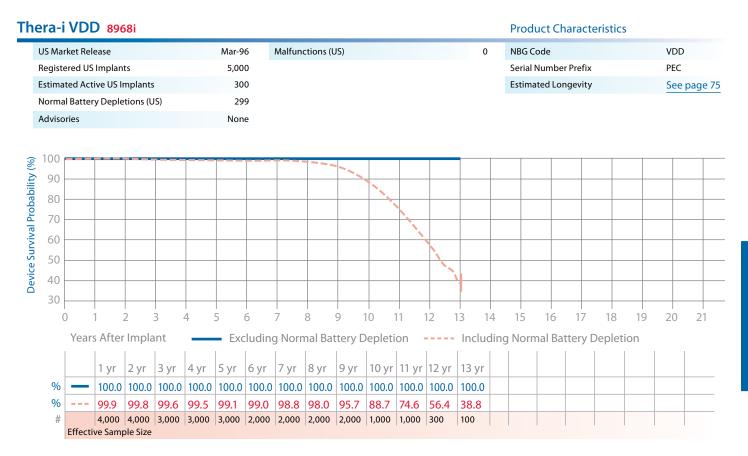

**Product Characteristics** 


**Product Characteristics** 

100 Device Survival Probability (%) 90 80 70 60 0 2 3 4 5 6 7 8 9 13 14 15 16 19 20 10 11 12 17 18 21 Years After Implant **Excluding Normal Battery Depletion** ----- Including Normal Battery Depletion at 2 yr 7 yr 9 yr 1 yr 3 yr 4 yr 5 yr бyr 8 yr 10 yr 130 mo % 100.0 100.0 100.0 100.0 100.0 99.9 99.8 99.7 99.7 99.7 99.7 99.5 % 99.9 99.9 99.7 99.2 98.5 97.1 94.4 89.8 82.2 66.3 # 43,000 36,000 30,000 24,000 18,000 14,000 9,000 6,000 3,000 1,000 100 **Effective Sample Size** 

### Sigma 300 VDD svDD303


#### US Market Release Sep-99 Malfunctions (US) 1 NBG Code VDDD **Registered US Implants** 1,000 **Therapy Function Not Compromised** 0 Serial Number Prefix PJD Estimated Active US Implants Estimated Longevity 100 **Therapy Function Compromised** 1 See page 75 Normal Battery Depletions (US) 35 **Electrical Interconnect** 1 Advisories: See page 144 – 2005 Potential (1 malfunction related to advisory) Separation of Interconnect Wires






#### Thera-i SR 8960i, 8961i, 8962i

| US Market Release              | Oct-95 Ma | alfunctions (US) | 7 | NBG Code             | SSIR        |
|--------------------------------|-----------|------------------|---|----------------------|-------------|
| Registered US Implants         | 50,000    |                  |   | Serial Number Prefix | PDU, PDV,   |
| Estimated Active US Implants   | 2,000     |                  |   |                      | PDW         |
| Normal Battery Depletions (US) | 2,730     |                  |   | Estimated Longevity  | See page 75 |
| Advisories                     | None      |                  |   |                      |             |





#### Versa DR VEDR01

| US Market Release                                                                                                  | Jul-06                      | Malfunctions       | ; (US)                  | 6          |           | NBG Code            |                | DDDR        |
|--------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------|-------------------------|------------|-----------|---------------------|----------------|-------------|
| Registered US Implants                                                                                             | 69,000                      | Therapy Fu         | nction Not Compromise   | d 4        |           | Serial Number Prefi | x              | PWH, NWH    |
| Estimated Active US Implants                                                                                       | 55,000                      | Electrica          | al Component            | 4          |           | Estimated Longevit  | .y             | See page 75 |
| Normal Battery Depletions (US)                                                                                     | 21                          | Therapy Fu         | nction Compromised      | 2          |           |                     |                |             |
| Performance Note: <u>See page 148</u> –<br>Performance note on Dual Chamber<br>Pacemakers with Measurement Lock-up | ERI                         | Electrica          | al Component            | 2          |           |                     |                |             |
| 100                                                                                                                |                             |                    |                         |            |           |                     |                |             |
| 90                                                                                                                 |                             |                    |                         |            |           |                     |                |             |
|                                                                                                                    |                             |                    |                         |            | 7         |                     |                | 10          |
|                                                                                                                    | 3<br>Exclue                 | 4<br>ding Normal B | 5<br>Sattery Depletion  | 6<br>Inclu | 7<br>ding | 8<br>Normal Battery | 9<br>Depletion | 10          |
|                                                                                                                    | Exclue                      |                    | 1                       | -          | 7<br>ding | 0                   | -              | 10          |
|                                                                                                                    | Exclue<br>2 yr 3            | ding Normal B      | 1                       | -          | 7<br>ding | 0                   | -              | 10          |
| 90     90       80     0       1     2       Years After Implant     1       %     100.0     1                     | Exclue<br>2 yr 3<br>100.0 1 | ding Normal B      | r at 50 mo<br>0.0 100.0 | -          | 7<br>ding | 0                   | -              | 10          |

Source: Medtronic Device Registration and Returned Product Analysis Data as of January 31, 2011

Effective Sample Size

| 95%                                                                                                                                | letoT                              | 36                            |                                                                                                   | m         |                                                                                                   | 7         |                                                                                                   | 7                            |         | 0              |                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------------------|---------------------------------------------------------------------------------------------------|-----------|---------------------------------------------------------------------------------------------------|-----------|---------------------------------------------------------------------------------------------------|------------------------------|---------|----------------|---------------------------------------------------------------------------------------------------|
| nfidence Interval)<br>l estimates with 9<br>Malfunctions (US)                                                                      | Compromised                        | П                             |                                                                                                   | Ш         |                                                                                                   | Ш         |                                                                                                   | Ш                            |         | Ш              |                                                                                                   |
| e Int<br>ates                                                                                                                      | Therapy<br>Function Not            | 23                            |                                                                                                   | 5         |                                                                                                   | -         |                                                                                                   | 0                            |         | 0              |                                                                                                   |
| enc<br>fun                                                                                                                         | Compromised                        | +                             |                                                                                                   | +         |                                                                                                   | +         |                                                                                                   | +                            |         | +              |                                                                                                   |
| nfid<br>al es<br>Mal                                                                                                               | Therapy Function                   | 13                            |                                                                                                   | -         |                                                                                                   | -         |                                                                                                   | 7                            |         | 0              |                                                                                                   |
| (95% Cc<br>ce surviv                                                                                                               | Vormal Battery<br>Depletions (US)  | 54                            | Chamber                                                                                           | m         | Chamber                                                                                           | 22        | Chamber                                                                                           | 18                           |         | 0              | Chamber                                                                                           |
| <b>nmary</b><br>.IPG devi                                                                                                          | bətemitz∃<br>Active US<br>stnslqml | 189,000                       | ote on Dual (<br>.ock-up ERI                                                                      | 30,000    | ote on Dual (<br>-ock-up ERI                                                                      | 17,000    | ote on Dual (<br>_ock-up ERI                                                                      | 32,000                       |         | 1,000          | ote on Dual (<br>.ock-up ERI                                                                      |
| Device Survival Summary (95% Confidence Interval)<br>The following table shows IPG device survival estimates with 95%<br>included. | Registered<br>2U arisidaris        | 232,000                       | <u>See page 148</u> – Performance note on Dual Chamber<br>Pacemakers with Measurement Lock-up ERI | 35,000    | <u>See page 148</u> – Performance note on Dual Chamber<br>Pacemakers with Measurement Lock-up ERI | 22,000    | <u>See page 148</u> – Performance note on Dual Chamber<br>Pacemakers with Measurement Lock-up ERI | 43,000                       |         | 1,000          | <u>See page 148</u> – Performance note on Dual Chamber<br>Pacemakers with Measurement Lock-up ERI |
| Survi<br>wing tab                                                                                                                  | US Market<br>Release               | Jul-06                        | i j                                                                                               | Jul-06    |                                                                                                   | Jul-06    | <u>148</u> – Perf<br>rs with Mea                                                                  | Jul-06                       |         | Jul-06         | 148 – Perf<br>rs with Me                                                                          |
| Device<br>The follov<br>included.                                                                                                  | Mumber<br>Model                    | ADDR01,<br>ADDR03,<br>ADDR06, | See page 148<br>Pacemakers w                                                                      | ADDRL1    | <u>See page 148</u> –<br>Pacemakers with                                                          | ADDRS1    | See page<br>Pacemake                                                                              | ADSR01,<br>ADSR03,<br>ADSR06 |         | ADVDD01 Jul-06 | <u>See page 148</u> –<br>Pacemakers with                                                          |
|                                                                                                                                    | VlimeT                             | Adapta DR                     |                                                                                                   | Adapta DR |                                                                                                   | Adapta DR |                                                                                                   | Adapta SR                    |         | Adapta<br>VDD  |                                                                                                   |
| бб Medtronic С                                                                                                                     | RDM Product Perf                   | ormance                       | Report                                                                                            |           |                                                                                                   | 1         |                                                                                                   |                              | Source: | Medtro         | nic Devi                                                                                          |
|                                                                                                                                    | tronic.com/CRDI                    |                               |                                                                                                   |           | e                                                                                                 |           |                                                                                                   |                              |         |                |                                                                                                   |
|                                                                                                                                    |                                    |                               |                                                                                                   |           |                                                                                                   |           |                                                                                                   |                              |         |                |                                                                                                   |

**IPG** Implantable Pulse Generators, continued

|               | included.                            |                                        |                          |                                                                                                   |                             | included. Malfunctions    | nction            | IS (US) |          |                                          | Device                | Surviv              | al Proba       | Device Survival Probability (%) | ()                           |                   |                               |      |       |       |       |       |
|---------------|--------------------------------------|----------------------------------------|--------------------------|---------------------------------------------------------------------------------------------------|-----------------------------|---------------------------|-------------------|---------|----------|------------------------------------------|-----------------------|---------------------|----------------|---------------------------------|------------------------------|-------------------|-------------------------------|------|-------|-------|-------|-------|
|               | lel<br>Iber                          | larket<br>ase                          | istered<br>stnslqm       | bəter<br>ve US<br>stnsi                                                                           | nal Battery<br>(SU) znoitel | rapy Function<br>promised | rapy<br>ction Not | ı<br>ı  |          | <u> </u>                                 | Years A               | Years After Implant | plant          |                                 |                              |                   |                               |      |       |       |       |       |
|               | nuN<br>nuN                           | ələA<br>V SU                           |                          | itoA                                                                                              |                             |                           | unj               |         | etoT     |                                          | 1 yr                  | 2 yr                | 3 yr           | 4 yr                            | 5 yr                         | 6 yr              | 7 yr                          | 8 yr | 10 yr | 12 yr | 14 yr | 16 yr |
| Adapta DR     | ADDR01,<br>ADDR03,<br>ADDR06,        | Jul-06                                 | 232,000                  | 189,000                                                                                           | 54                          |                           | . 23              | с<br>П  | 36 No    | Excluding<br>Normal Battery<br>Depletion | 100.0<br>+.0/0        | 100.0<br>+.0/0      | 100.0<br>+.0/0 | 100.0<br>+.0/0                  | 100.0<br>+.0/0<br>at 51 mo   |                   |                               |      |       |       |       |       |
|               | <mark>See page 1</mark><br>Pacemaker | <u>48</u> – Perfo<br>'s with Mea       | ormance no<br>surement L | <u>See page 148</u> – Performance note on Dual Chamber<br>Pacemakers with Measurement Lock-up ERI | hamber                      |                           |                   |         | No       | Including<br>Normal Battery<br>Depletion | 100.0<br>+.0/0        | 9.99<br>+.0/-,0     | 9.99<br>+.0/0  | 99.7<br>+.1/.+                  | 99.5<br>+.2/2<br>at 51 mo    |                   |                               |      |       |       |       |       |
| Adapta DR     | ADDRL1                               | Jul-06                                 | 35,000                   | 30,000                                                                                            | m                           | +                         | 5                 |         | No       | Excluding<br>Normal Battery<br>Depletion | 100.0<br>+.0/0        | 100.0<br>+.0/0      | 100.0<br>+.0/0 | 100.0<br>+.0/0                  |                              |                   |                               |      |       |       |       |       |
|               | <u>See page 1</u><br>Pacemaker       | <u>48</u> – Perfo<br>s with Mea        | ormance no<br>surement L | <u>See page 148</u> – Performance note on Dual Chamber<br>Pacemakers with Measurement Lock-up ERI | hamber                      |                           |                   |         | No       | Including<br>Normal Battery<br>Depletion | <b>100.0</b><br>+.0/0 | 100.0<br>+.0/0      | 100.0<br>+.0/0 | 99.3<br>+.4/8                   |                              |                   |                               |      |       |       |       |       |
| Adapta DR     | ADDRS1                               | Jul-06                                 | 22,000                   | 17,000                                                                                            | 22                          | +                         | <del>.</del>      |         | 2<br>Noi | Excluding<br>Normal Battery<br>Depletion | 100.0<br>+.0/0        | 100.0<br>+.0/0      | 100.0<br>+.0/0 | 100.0<br>+.0/0                  | 100.0<br>+.0/0<br>at 49 mo   |                   |                               |      |       |       |       |       |
|               | <u>See page 1</u><br>Pacemaker       | <u>48</u> – Perfo<br>'s with Mea       | ormance no<br>surement L | <u>See page 148</u> – Performance note on Dual Chamber<br>Pacemakers with Measurement Lock-up ERI | hamber                      |                           |                   |         | Ň        | Including<br>Normal Battery<br>Depletion | <b>100.0</b><br>+.0/0 | 99.8<br>+.1/1       | 99.7<br>+.1/2  | 97.7<br>+.9/-1.5                | 97.7<br>+.9/-1.5<br>at 49 mo |                   |                               |      |       |       |       |       |
| Adapta SR     | ADSR01,<br>ADSR03,<br>ADSR06         | Jul-06                                 | 43,000                   | 32,000                                                                                            | 18                          | +                         | 0                 |         | 2<br>Noi | Excluding<br>Normal Battery<br>Depletion | 100.0<br>+.0/0        | 100.0<br>+.0/0      | 100.0<br>+.0/1 | 100.0<br>+.0/1                  | 100.0<br>+.0/1<br>at 50 mo   |                   |                               |      |       |       |       |       |
|               |                                      |                                        |                          |                                                                                                   |                             |                           |                   |         | No       | Including<br>Normal Battery<br>Depletion | 100.0<br>+.0/0        | 100.0<br>+.0/0      | 99.8<br>+.1/1  | <b>99.5</b><br>+.2/3            | 99.5<br>+.2/3<br>at 50 mo    |                   |                               |      |       |       |       |       |
| Adapta<br>VDD | ADVDD01                              | Jul-06                                 | 1,000                    | 1,000                                                                                             | 0                           | +                         | 0                 | "       | 0<br>0   | Excluding<br>Normal Battery<br>Depletion | 100.0<br>+.0/0        | 100.0<br>+.0/0      | 100.0<br>+.0/0 | 100.0<br>+.0/0<br>at 39 mo      |                              |                   |                               |      |       |       |       |       |
|               | <mark>See page 1</mark><br>Pacemaker | <u>48</u> – Perfc<br>s with Mea        | ormance nc<br>surement L | <u>See page 148</u> – Performance note on Dual Chamber<br>Pacemakers with Measurement Lock-up ERI | hamber                      |                           |                   |         | No       | Including<br>Normal Battery<br>Depletion | 100.0<br>+.0/0        | 100.0<br>+.0/0      | 100.0<br>+.0/0 | 100.0<br>+.0/0<br>at 39 mo      |                              |                   |                               |      |       |       |       |       |
| AT500         | AT501,<br>7253                       | Mar-03                                 | 11,000                   | 500                                                                                               | 2,044                       | ب<br>+                    | Ŀ<br>O            |         | 10<br>No | Excluding<br>Normal Battery<br>Depletion | 100.0<br>+.0/1        | 100.0<br>+.0/1      | 100.0<br>+.0/1 | 99.9<br>+.1/1                   | 99.9<br>+.1/1                | 99.9<br>+.1/1     | 99.9<br>+.1/1<br>at 78 mo     |      |       |       |       |       |
|               | <u>See page 1</u><br>System Fol      | <mark>54</mark> – Perfoi<br>low-Up Pro | rmance not<br>otocol     | See page 154 – Performance note on AT500 Pacing<br>System Follow-Up Protocol                      | acing                       |                           |                   |         | No       | Including<br>Normal Battery<br>Depletion | 99.9<br>+.0/1         | 99.8<br>+.1/1       | 99.4<br>+.1/2  | 97.3<br>+.3/4                   | 82.2<br>+.9/-1.0             | 42.5<br>+1.5/-1.5 | 4.1<br>+1.3/-1.1<br>at 78 mo  |      |       |       |       |       |
| EnPulse<br>DR | E1DR01,<br>E1DR03,<br>E1DR06         | Dec-03                                 | 7,000                    | 3,000                                                                                             | 180                         | +<br>0                    | -                 | II      | 1<br>Noi | Excluding<br>Normal Battery<br>Depletion | 100.0<br>+.0/0        | 100.0<br>+.0/0      | 100.0<br>+.0/1 | 100.0<br>+.0/1                  | 100.0<br>+.0/1               | 100.0<br>+.0/1    | 100.0<br>+.0/1<br>at 82 mo    |      |       |       |       |       |
|               | <mark>See page 1</mark><br>Pacemaker | <u>48</u> – Perfc<br>s with Mea        | ormance nc<br>surement L | <u>See page 148</u> – Performance note on Dual Chamber<br>Pacemakers with Measurement Lock-up ERI | hamber                      |                           |                   |         | No       | Including<br>Normal Battery<br>Depletion | 100.0<br>+.0/0        | 100.0<br>+.0/0      | 99.8<br>+.1/2  | 99.1<br>+.2/3                   | 98.2<br>+.4/4                | 96.4<br>+.5/6     | 84.6<br>+2.1/-2.3<br>at 82 mo |      |       |       |       |       |
| EnPulse<br>DR | E1DR21                               | Dec-03                                 | 2,000                    | 100                                                                                               | 250                         | +                         | 0                 |         | 0<br>0   | Excluding<br>Normal Battery<br>Depletion | 100.0<br>+.0/0        | 100.0<br>+.0/0      | 100.0<br>+.0/0 | 100.0<br>+.0/0                  | 100.0<br>+.0/0               | 100.0<br>+.0/0    | 100.0<br>+.0/0<br>at 78 mo    |      |       |       |       |       |
|               | <u>See page 1</u><br>Pacemaker       | 48 – Perfo<br>s with Mea               | ormance no<br>surement L | See page 148 – Performance note on Dual Chamber<br>Pacemakers with Measurement Lock-up ERI        | hamber                      |                           |                   |         | No       | Including<br>Normal Battery              | 99.9<br>+.1/4         | 99.6<br>+.2/5       | 98.9<br>+.4/7  | 96.4<br>+.9/-1.2                | 91.9<br>+1.4/-1.7            | 60.3<br>+3.3/-3.5 | 32.7<br>+4.4/-4.4             |      |       |       |       |       |

| Bit         Bit         State         Sta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |                                   |                                     |                                    |                                       | E       | ואומוומווררוסו          |                        |     | E |                |           |      | 1111 |                              |                             |                               |      |       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------------------|-------------------------------------|------------------------------------|---------------------------------------|---------|-------------------------|------------------------|-----|---|----------------|-----------|------|------|------------------------------|-----------------------------|-------------------------------|------|-------|
| 3         3         3         4         5         7         5         7         5         7         5         7         5         7         5         7         5         7         5         7         5         7         5         7         5         7         5         7         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ۷lir             |                                   |                                     | listered<br>anglants               | SU 9vi                                |         | npromised               | ction Not<br>besimorqu | le  |   | Years A        | ufter Imp | Jant |      |                              |                             |                               |      |       |
| Difficult         Total and the state of the state          | ns7              |                                   |                                     | SU<br>Səß                          | †2A                                   |         | Cor                     | ru7<br>Cor             | тоt |   | 1 yr           | 2 yr      | yr   |      | <br>                         |                             | <br>                          | <br> | 16 yr |
| Exercise of endingeneration of the second of the | EnPulse 2<br>DR  | E2DR01,<br>E2DR03,<br>E2DR06      |                                     | 101,000                            | 55,000                                | 659     | +                       |                        |     |   |                |           |      |      |                              | 00.0<br>.0/0<br>t 80 mo     |                               |      |       |
| DR1         Feb dia         2000         1         1         0         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  | <mark>See page</mark><br>Pacemake | - 148 – Perf<br>ers with Mea        | ormance nc<br>asurement L          | ote on Dual Cl<br>Lock-up ERI         | hamber  |                         |                        |     |   |                |           |      |      |                              | 0.9<br>1.4/-1.6<br>t 80 mo  |                               |      |       |
| Component of the function of the functin of the function of the function of the function of the functi | EnPulse 2<br>DR  | E2DR21                            | Feb-04                              | 12,000                             | 5,000                                 | 586     | +                       |                        |     |   |                |           |      |      |                              | 00.0<br>.0/1<br>t 76 mo     |                               |      |       |
| CR081         Fold         100         301         100         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  | <mark>See page</mark><br>Pacemake | - 148 – Perf<br>ers with Mea        | ormance nc<br>asurement L          | ote on Dual Cl<br><u>-</u> ock-up ERI | hamber  |                         |                        |     |   |                |           |      |      |                              | 14.5<br>3.8/-3.9<br>t 76 mo |                               |      |       |
| Separe IS - Performance on Dari form         Separe IS - Information of the second         | EnPulse 2<br>DR  | E2DR31,<br>E2DR33                 |                                     | 1,000                              | 300                                   | -       | +                       |                        |     |   |                |           |      |      | <br>00.0<br>.0/0<br>t 64 mo  |                             |                               |      |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  | See page<br>Pacemake              | 148 – Perf<br>ers with Mea          | ormance nc<br>asurement L          | ote on Dual Cf<br>_ock-up ERI         | hamber  |                         |                        |     |   |                |           | _    |      | 00.0<br>.0/0<br>t 64 mo      |                             |                               |      |       |
| Problem         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | EnPulse 2<br>SR  | E2SR01,<br>E2SR03,<br>E2SR06      | Dec-03                              | 25,000                             | 11,000                                | 257     | +                       |                        |     |   |                |           |      |      |                              | 00.0<br>.0/0<br>t 81 mo     |                               |      |       |
| EVDD1         Lot         20 $1 - 0$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |                                   |                                     |                                    |                                       |         |                         |                        |     |   |                |           |      |      |                              | 0.9<br>3.7/-4.4<br>t 81 mo  |                               |      |       |
| See page 143 - Performance note on Dual Chamber $\cdot$ </td <td>EnPulse 2<br/>VDD</td> <td>E2VDD01</td> <td></td> <td>1,000</td> <td>300</td> <td>20</td> <td>+</td> <td></td> <td></td> <th></th> <td>100.0<br/>+.0/0</td> <td></td> <td></td> <td></td> <td>00.0<br/>.0/0<br/>t 66 mo</td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                  | EnPulse 2<br>VDD | E2VDD01                           |                                     | 1,000                              | 300                                   | 20      | +                       |                        |     |   | 100.0<br>+.0/0 |           |      |      | 00.0<br>.0/0<br>t 66 mo      |                             |                               |      |       |
| Piotone         Naves                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  | <mark>See page</mark><br>Pacemake | - 148 – Perf<br>ers with Mea        | ormance nc<br>asurement L          | ote on Dual Cl<br>Lock-up ERI         | hamber  |                         |                        |     |   |                |           |      |      | )4.7<br>.2.7/-5.5<br>t 66 mo |                             |                               |      |       |
| Advisories: Seepage 138 - 2010 Low Battery<br>tologate $(0) + (33) = 33$<br>tologateIncluding<br>topped to<br>topped topped to<br>topped topped $(0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0) + (0,0$                                  | EnRhythm<br>DR   | P1501DR                           |                                     | 103,000                            | 72,000                                | 75      | +                       |                        |     |   |                |           |      |      | 99.6<br>.1/1<br>t 67 mo      |                             |                               |      |       |
| Geepge 150 - Performance note on anomalies in<br>MOSFET Integrated Circuit Technology       IO       I       IO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | Advisorie<br>Voltage D            | ss: <u>See page</u><br>Visplayed at | <u>e 138</u> – 2010<br>Device Inte | ) Low Battery<br>errogation           |         | (0) + ()<br>(advisory-r |                        | _   |   |                |           |      |      | )7.8<br>4/5<br>t 67 mo       |                             |                               |      |       |
| KDR401         Jan-98         47,000         7,035         10         +         13         =         23         Kextuating<br>Depletion         100.0         100.0         100.0         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         90.0         1.00.0         1.00.0         1.00.0         1.00.0         1.00.0         1.00.0         1.00.0         1.00.0         1.00.0         1.00.0         1.00.0         1.00.0         1.00.0         1.00.0         1.00.0         1.00.0         1.00.0         1.00.0         1.00.0         1.00.0         1.00.0         1.00.0         1.00.0         1.00.0         1.00.0         1.00.0         1.00.0         1.00.0         1.00.0         1.00.0         1.00.0         1.00.0         1.00.0         1.00.0         1.00.0         1.00.0         1.00.0         1.00.0         1.00.0         1.00.0         1.00.0         1.00.0         1.00.0         1.00.0         1.00.0         1.00.0         1.00.0         1.00.0         1.00.0         1.00.0         1.00.0         1.00.0         1.00.0         1.00.0         1.00.0         1.00.0 <th1.00.0< th=""> <th1.00.0< th=""> <th1.00< td=""><td></td><td>See page<br/>MOSFET I<sub>1</sub></td><td>150 – Perfc<br/>ntegrated (</td><td>ormance no<br/>Circuit Techı</td><td>ite on anoma.<br/>nology</td><td>lies in</td><td></td><td></td><td></td><th></th><td></td><td></td><td></td><td></td><td><br/></td><td></td><td></td><td></td><td></td></th1.00<></th1.00.0<></th1.00.0<>                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  | See page<br>MOSFET I <sub>1</sub> | 150 – Perfc<br>ntegrated (          | ormance no<br>Circuit Techı        | ite on anoma.<br>nology               | lies in |                         |                        |     |   |                |           |      |      | <br>                         |                             |                               |      |       |
| See page 148 - Performance note on Dual Chamber       Including       99.9       99.9       99.7       99.5       98.6       86.1       46.9         Pacemakers with Measurement Lock-up ERI       Nomal Battery       +0/-0       +0/-1       +1/-1       +1/-1       +2/-2       +5/-5       +5/-5       +5/-5       +5/-5       +5/-5       +5/-5       +5/-5       +5/-5       +5/-5       +5/-5       +5/-5       +5/-5       +5/-5       +5/-5       +5/-5       +5/-5       +5/-5       +5/-5       +5/-5       +5/-5       +5/-5       +5/-5       +5/-5       +5/-5       +5/-5       +5/-5       +5/-5       +5/-5       +5/-5       +5/-5       +5/-5       +5/-5       +5/-5       +5/-5       +5/-5       +5/-5       +5/-5       +5/-5       +5/-5       +5/-5       +5/-5       +5/-5       +5/-5       +5/-5       +5/-5       +5/-5       +5/-5       +5/-5       +5/-5       +5/-5       +5/-5       +5/-5       +5/-5       +5/-5       +5/-5       +5/-5       +5/-5       +5/-5       +5/-5       +5/-5       +5/-5       +5/-5       +5/-5       +5/-5       +5/-5       +5/-5       +5/-5       +5/-5       +5/-5       +5/-5       +5/-5       +5/-5       +5/-5       +5/-5       +5/-5       +5/-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Kappa 400<br>DR  | KDR401,<br>KDR403                 |                                     | 47,000                             | 2,000                                 | 7,035   | +                       |                        |     |   |                |           |      |      | <br>                         |                             | <br>99.9<br>0/0<br>it 101 mo  |      |       |
| KSR401,Feb-9815,0001,2901+4=5Excluding<br>10.0100.0100.0100.0100.0100.0100.0100.0KSR403PopletionP0.0P0.0P0.0P0.0P0.0P0.0P0.0P0.0P0.0P0.0P0.0KSR403P0.0P0.0P0.0P0.0P0.0P0.0P0.0P0.0P0.0P0.0P0.0P0.0KSR403P0.0P0.0P0.0P0.0P0.0P0.0P0.0P0.0P0.0P0.0P0.0KSR403P0.0P0.0P0.0P0.0P0.0P0.0P0.0P0.0P0.0P0.0P0.0KSR403P0.0P0.0P0.0P0.0P0.0P0.0P0.0P0.0P0.0P0.0P0.0P0.0KSR403P0.0P0.0P0.0P0.0P0.0P0.0P0.0P0.0P0.0P0.0P0.0KSR403P0.0P0.0P0.0P0.0P0.0P0.0P0.0P0.0P0.0P0.0P0.0KSR403P0.0P0.0P0.0P0.0P0.0P0.0P0.0P0.0P0.0P0.0P0.0P0.0KSR403P0.0P0.0P0.0P0.0P0.0P0.0P0.0P0.0P0.0P0.0P0.0KSR404P0.0P0.0P0.0P0.0P0.0P0.0P0.0P0.0P0.0P0.0P0.0KSR404P0.0P0.0P0.0P0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  | <mark>See page</mark><br>Pacemake | - 148 – Perf<br>ers with Mea        | ormance nc<br>asurement L          | ote on Dual Cl<br><u>'</u> ock-up ERI | hamber  |                         |                        |     |   |                |           |      |      |                              |                             | 5.5<br>8/8<br>it 101 mo       |      |       |
| Including<br>Normal Battery<br>Depletion         99.9<br>+0/-1         99.8<br>+1/-1         99.5<br>+1/-1         96.9<br>+2/-3         96.9<br>+4/-4         64.3<br>+1/5/16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Kappa 400<br>SR  |                                   |                                     | 15,000                             | 1,000                                 | 1,290   | +                       |                        |     |   |                |           |      |      |                              |                             | 00.0<br>0/1<br>it 110 mo      |      |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | continued        |                                   |                                     |                                    |                                       |         |                         |                        |     |   |                |           |      |      |                              |                             | 9.4<br>-2.0/-1.8<br>it 110 mo | <br> |       |

Source: Medtronic Device Registration and Returned Product Analysis Data as of January 31, 2011

Medtronic CRDM Product Performance Report 67 www.medtronic.com/CRDMProductPerformance

Ddl

Device Survival Probability (%)

Malfunctions (US)

Device Survival Summary continued

**IPG** Implantable Pulse Generators, continued

|                 |                                                                                                                                                                               |                                                  |                                                     |                                                       |                              | Malfunctions (US)                                                        |                                            | Device          | Device Survival Probability (%) | al Probał       | bility (%)       |                   |                   |                          |                               |                               |       |       |       |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------|------------------------------|--------------------------------------------------------------------------|--------------------------------------------|-----------------|---------------------------------|-----------------|------------------|-------------------|-------------------|--------------------------|-------------------------------|-------------------------------|-------|-------|-------|
| λļiu            | nber                                                                                                                                                                          | tease<br>Asse                                    | istered<br>stnslqm                                  | bətem<br>VU 9v<br>stnsl                               | mal Battery<br>(2U) znoiteld | rapy Function<br>npromised<br>ction Not<br>opy<br>npromised              |                                            | Years           | Years After Implant             | olant           |                  |                   |                   |                          |                               |                               |       |       |       |
| mea             |                                                                                                                                                                               | eleß                                             |                                                     | Acti                                                  |                              | un∃<br>∍dT<br>no⊃                                                        |                                            | 1 yr            | 2 yr                            | 3 yr            | 4 yr             | 5 yr              | 6 yr              | 7 yr                     | 8 yr                          | 10 yr                         | 12 yr | 14 yr | 16 yr |
| Kappa 600<br>DR | KDR601,<br>KDR603,<br>KDR606                                                                                                                                                  | Jan-99                                           | 24,000                                              | 5                                                     | 3,495                        | 36 + 3 = 39                                                              | Excluding<br>Normal Battery<br>Depletion   | 100.0<br>+.0/0  | 100.0<br>+.0/0                  | 100.0<br>+.0/0  | 9.99<br>+.0/0    | 99.9<br>+.0/-1    | 99.9<br>+.0/1     | 99.8<br>+.1/1            | 99.7<br>+.1/1                 | 99.6<br>+.1/2<br>at 106 mo    |       |       |       |
|                 | Advisories: <u>See page</u> 146–2002 Potential Fractured<br>Power Supply Wires; <u>See also page</u> 140 – 2009<br>Potential Separation of Interconnect Wires                 | See page 1<br>ly Wires; <u>Se</u><br>paration of | 46– 2002<br>se also pac<br>Interconr                | Potential Fra<br><u>je 140</u> – 200<br>rect Wires    | actured<br>)9                | (34) + (0) = (34) (advisory-related subset)                              | Including<br>Normal Battery<br>Depletion   | 9.99<br>+.0/-,0 | 99.9<br>+.0/-,1                 | 99.8<br>+.0/1   | 99.5<br>+.1/1    | 98.8<br>+.2/2     | 96.8<br>+.3/3     | 87.6<br>+.6/6            | 57.0<br>+1.1/-1.1             | 7.3<br>+1.1/-1.0<br>at 106 mo |       |       |       |
|                 | See page 148 – Performance note on Dual Chamber<br>Pacemakers with Measurement Lock-up ERI                                                                                    | 8 – Perfori<br>with Measu                        | mance no:<br>urement L                              | te on Dual C<br>ock-up ERl                            | hamber                       |                                                                          |                                            |                 |                                 |                 |                  |                   |                   |                          |                               |                               |       |       |       |
| Kappa 600<br>DR | KDR651, I<br>KDR653                                                                                                                                                           | Mar-01                                           | 14,000                                              | 100                                                   | 2,087                        | 31 + 2 = 33                                                              | Excluding<br>Normal Battery<br>Depletion   | 100.0<br>+.0/0  | 100.0<br>+.0/0                  | 100.0<br>+.0/0  | 100.0<br>+.0/1   | 100.0<br>+.0/1    | 9.99<br>+.0/-,1   | 99.7<br>+.1/2            | 99.5<br>+.2/2                 | 99.4<br>+.2/3<br>at 101 mo    |       |       |       |
|                 | Advisories: <u>See page</u> 146 – 2002 Potential Fractured<br>Power Supply Wires; <u>See also page</u> 140 – 2009<br>Potential Separation of Interconnect Wires               | See page 1<br>ly Wires; <u>Se</u><br>paration of | <u>46 – 2002</u><br><u>se also pag</u><br>Interconr | Potential Fr<br><del>je 140</del> – 200<br>rect Wires | actured<br>19                | <ul> <li>(22) + (0) = (22)</li> <li>(advisory-related subset)</li> </ul> | ) Normal Battery<br>Depletion              | 99.9<br>+.0/-+  | 99.9<br>+.0/-,1                 | 99.8<br>+.1/1   | 99.4<br>+.1/2    | 98.1<br>+.3/3     | 94.7<br>+.5/5     | 80.3<br>+.9/-1.0         | 40.7<br>+1.5/-1.5             | 6.0<br>+1.3/-1.1<br>at 101 mo |       |       |       |
|                 | See page 148 – Performance note on Dual Chamber<br>Pacemakers with Measurement Lock-up ERI                                                                                    | 8 – Perfori<br>with Measu                        | mance no:<br>urement L                              | te on Dual C<br>ock-up ERl                            | hamber                       |                                                                          |                                            |                 |                                 |                 |                  |                   |                   |                          |                               |                               |       |       |       |
| Kappa 700 D     | KD701,<br>KD703,<br>KD706                                                                                                                                                     | Jan-99                                           | 300                                                 | 40                                                    | 17                           | 0    0 + 0                                                               | Excluding<br>Normal Battery<br>Depletion   | 100.0<br>+.0/0  | 100.0<br>+.0/0                  | 100.0<br>+.0/0  | 100.0<br>+.0/0   | 100.0<br>+.0/0    | 100.0<br>+.0/0    | 100.0<br>+.0/0           | 100.0<br>+.0/0<br>at 93 mo    |                               |       |       |       |
|                 | Advisories: <u>See page</u> 146–2002 Potential Fractured<br>Power Supply Wires; <u>See also page</u> 140 – 2009<br>Potential Separation of Interconnect Wires                 | See page 1.<br>ly Wires; Se<br>paration of       | 46– 2002<br>se also pac<br>Interconr                | Potential Fra<br><u>je 140</u> – 200<br>rect Wires    | actured<br>)9                | (0) + (0) = (0)<br>(advisory-related subset)                             | Normal Battery<br>Depletion                | 100.0<br>+.0/0  | 100.0<br>+.0/0                  | 100.0<br>+.0/0  | 99.0<br>+.8/-3.1 | 97.8<br>+1.4/-3.5 | 95.3<br>+2.3/-4.5 | 93.9<br>+2.8/-4.9        | 88.9<br>+4.2/-6.5<br>at 93 mo |                               |       |       |       |
|                 | See page 148 - Performance note on Dual Chamber<br>Pacemakers with Measurement Lock-up ERI                                                                                    | 8 – Perfori<br>with Measu                        | mance no:<br>urement L                              | te on Dual C<br>ock-up ERl                            | hamber                       |                                                                          |                                            |                 |                                 |                 |                  |                   |                   |                          |                               |                               |       |       |       |
| Kappa 700<br>DR | KDR701, F<br>KDR703,<br>KDR706                                                                                                                                                | Feb-99                                           | 192,000                                             | 21,000                                                | 25,384                       | 447 + 31 = 478                                                           | Excluding<br>Normal Battery<br>Depletion   | 100.0<br>+.0/0  | 100.0<br>+.0/0                  | 6.66<br>0/0.+   | 9.99<br>+.0/0    | 0:-/0:+           | 9.68<br>0/0.+     | 99.7<br>0/0.+            | 99.5<br>+.1/1                 | 99.3<br>+.1/1<br>at 104 mo    |       |       |       |
|                 | Advisories: <u>See page</u> <u>146</u> – 2002 Potential Fractured<br>Power Supply <u>Wires; See also page</u> <u>140</u> – 2009<br>Potential Separation of Interconnect Wires | See page 1<br>ly Wires; Se<br>paration of        | 46 – 2002<br>se also paci<br>Interconr              | Potential Fr<br>ge 140 – 200<br>rect Wires            | actured<br>19                | (348) + (0) = (348)<br>(advisory-related subset)                         | ) Including<br>Normal Battery<br>Depletion | 9.99<br>+.0/-,0 | 99.8<br>+.0/0                   | 9.66<br>+.0/-,0 | 99.1<br>+.0/1    | 98.0<br>+.1/1     | 95.1<br>+.1/1     | 83.9<br>+.3/3            | 50.7<br>+.4/4                 | 5.0<br>+.4/4<br>at 104 mo     |       |       |       |
|                 | See page 148 - Performance note on Dual Chamber<br>Pacemakers with Measurement Lock-up ERI                                                                                    | 8 – Perfori<br>with Measu                        | mance no:<br>urement L                              | te on Dual C<br>ock-up ERl                            | hamber                       |                                                                          |                                            |                 |                                 |                 |                  |                   |                   |                          |                               |                               |       |       |       |
| Kappa 700<br>DR | KDR721                                                                                                                                                                        | Feb-99                                           | 10,000                                              | 0                                                     | 1,314                        | 4 + 1 = 5                                                                | Excluding<br>Normal Battery<br>Depletion   | 100.0<br>+.0/1  | 100.0<br>+.0/1                  | 100.0<br>+.0/1  | 100.0<br>+.0/1   | 99.9<br>+.0/1     | 9.99<br>1/0.+     | 9.99<br>1/0.+            | 99.9<br>+.0/1<br>at 85 mo     |                               |       |       |       |
|                 | Advisories: <u>See page</u> 146–2002 Potential Fractured<br>Power Supply Wires; <u>See also page</u> 140 – 2009<br>Potential Separation of Interconnect Wires                 | See page 1<br>ly Wires; Se<br>paration of        | 46- 2002<br>se also pac<br>Interconr                | Potential Fra<br>ge 140 – 200<br>rect Wires           | actured<br>)9                | (4) + (0) = (4)<br>(advisory-related subset)                             | Including<br>Normal Battery<br>Depletion   | 99.9<br>+.0/-,1 | 99.6<br>+.1/2                   | 98.8<br>+.2/3   | 96.6<br>+.4/5    | 90.8<br>+.7/8     | 68.2<br>+1.4/-1.5 | <b>19.7</b><br>+2.0/-1.9 | 13.7<br>+2.0/-1.9<br>at 85 mo |                               |       |       |       |
|                 | See page 148 - Performance note on Dual Chamber<br>Pacemakers with Measurement Lock-up ERI                                                                                    | 8 – Perfor<br>with Measu                         | mance no                                            | te on Dual C<br>ock-up ERI                            | hamber                       |                                                                          |                                            |                 |                                 |                 |                  |                   |                   |                          |                               |                               |       |       |       |

Device Survival Summary continued

## IPG Imp

Device Survival Probability (%)

Malfunctions

| 1                         | 16 yr      |                                          |                                                                                        | .,                                       |                                                                                                                                                                 |                                                                                                   |                                          |                                                                                                   |                                          |                                                                                                   |                                          |                                                                   |                                                                                                   |                                          |                                                                   |
|---------------------------|------------|------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------------|
|                           |            |                                          |                                                                                        |                                          |                                                                                                                                                                 |                                                                                                   |                                          |                                                                                                   |                                          |                                                                                                   |                                          |                                                                   |                                                                                                   |                                          |                                                                   |
|                           | 14 yr      |                                          |                                                                                        |                                          |                                                                                                                                                                 |                                                                                                   |                                          |                                                                                                   |                                          |                                                                                                   |                                          |                                                                   |                                                                                                   |                                          |                                                                   |
|                           | 12 yr      |                                          |                                                                                        |                                          |                                                                                                                                                                 |                                                                                                   |                                          |                                                                                                   |                                          |                                                                                                   |                                          |                                                                   |                                                                                                   |                                          |                                                                   |
|                           | 10 yr      | 99.8<br>+.1/1<br>at 110 mo               | 8.4<br>+1.1/-1.0<br>at 110 mo                                                          |                                          |                                                                                                                                                                 |                                                                                                   |                                          |                                                                                                   | 99.8<br>+.1/1<br>at 101 mo               | 9.5<br>+1.2/-1.1<br>at 101 mo                                                                     | 99.8<br>+.1/2<br>at 101 mo               | 26.7<br>+3.1/-3.1<br>at 101 mo                                    |                                                                                                   |                                          |                                                                   |
|                           | 8 yr       | 99.8<br>+.1/1                            | 56.7<br>+.9/9                                                                          | 99.6<br>+.2/7<br>at 94 mo                | 39.7<br>+4.9/-4.9<br>at 94 mo                                                                                                                                   |                                                                                                   | 99.9<br>+.1/3                            | 40.7<br>+4.1/-4.2                                                                                 | 99.8<br>+.0/1                            | 46.8<br>+.8/8                                                                                     | 99.8<br>+.1/2                            | <b>49.2</b><br>+1.9/-1.9                                          |                                                                                                   |                                          |                                                                   |
|                           | 7 yr       | 99.9<br>+.0/1                            | 83.2<br>+.6/6                                                                          | 99.6<br>+.2/7                            | 69.9<br>+3.4/-3.7                                                                                                                                               |                                                                                                   | 99.9<br>+.1/3                            | 83.5<br>+1.6/-1.7                                                                                 | 9.99<br>9/0.+                            | 85.4<br>+.3/3                                                                                     | 99.9<br>+.0/1                            | 83.4<br>+.8/8                                                     |                                                                                                   | 100.0<br>+.0/0<br>at 81 mo               | 60.4<br>+6.5/-7.2<br>at 81 mo                                     |
|                           | 6 yr       | 100.0<br>+.0/0                           | 93.4<br>+.3/3                                                                          | 99.6<br>+.2/7                            | 94.1<br>+1.4/-1.7                                                                                                                                               |                                                                                                   | 100.0<br>+.0/3                           | 95.8<br>+.7/9                                                                                     | 100.0<br>+.0/0                           | 95.9<br>+.2/2                                                                                     | 99.9<br>+.0/1                            | 94.3<br>+.4/4                                                     |                                                                                                   | 100.0<br>+.0/0                           | 90.4<br>+2.8/-3.9                                                 |
|                           | 5 yr       | 100.0<br>+.0/0                           | 97.0<br>+.2/2                                                                          | 99.8<br>+.1/5                            | 98.5<br>+.6/9                                                                                                                                                   |                                                                                                   | 100.0<br>+.0/0                           | 98.4<br>+.4/5                                                                                     | 100.0<br>+.0/0                           | 98.4<br>+.1/1                                                                                     | 100.0<br>+.0/0                           | 97.3<br>+.2/2                                                     |                                                                                                   | 100.0<br>+.0/0                           | 97.8<br>+1.1/-2.1                                                 |
|                           | 4 yr       | 100.0<br>+.0/0                           | 98.6<br>+.1/1                                                                          | 99.8<br>+.1/5                            | 98.9<br>+.5/8                                                                                                                                                   |                                                                                                   | 100.0<br>+.0/0                           | 99.4<br>+.2/3                                                                                     | 100.0<br>+.0/0                           | 99.4<br>+.0/1                                                                                     | 100.0<br>+.0/0                           | 98.8<br>+.1/2                                                     |                                                                                                   | 100.0<br>+.0/0                           | 99.0<br>+.6/-1.7                                                  |
| plant                     | 3 yr       | 100.0<br>+.0/0                           | 99.4<br>+.1/1                                                                          | 99.9<br>+.1/4                            | 99.4<br>+.3/6                                                                                                                                                   |                                                                                                   | 100.0<br>+.0/0                           | 99.7<br>+.2/3                                                                                     | 100.0<br>+.0/0                           | 99.8<br>+.0/0                                                                                     | 100.0<br>+.0/0                           | 99.5<br>+.1/1                                                     |                                                                                                   | 100.0<br>+.0/0                           | 100.0<br>+.0/0                                                    |
| Years After Implant       | 2 yr       | 100.0<br>+.0/0                           | 99.7<br>+.0/-                                                                          | 99.9<br>+.1/4                            | 99.7<br>+.2/4                                                                                                                                                   |                                                                                                   | 100.0<br>+.0/0                           | 99.8<br>+.1/2                                                                                     | 100.0<br>+.0/0                           | 0/0.+                                                                                             | 100.0<br>+.0/0                           | 99.7<br>+.1/1                                                     |                                                                                                   | 100.0<br>+.0/0                           | 100.0<br>+.0/0                                                    |
| Years                     | 1 yr       | 100.0<br>+.0/0                           | 0:-/0:+                                                                                | 99.9<br>+.1/4                            | 99.7<br>+.2/4                                                                                                                                                   |                                                                                                   | 100.0<br>+.0/0                           | 100.0<br>+.0/1                                                                                    | 100.0<br>+.0/0                           | 100.0<br>+.0/0                                                                                    | 100.0<br>+.0/0                           | 0:-/0:+                                                           |                                                                                                   | 100.0<br>+.0/0                           | 100.0<br>+.0/0                                                    |
|                           |            | Excluding<br>Normal Battery<br>Depletion | Including<br>Normal Battery<br>Depletion                                               | Excluding<br>Normal Battery<br>Depletion | Including<br>Normal Battery<br>Depletion                                                                                                                        |                                                                                                   | Excluding<br>Normal Battery<br>Depletion | Including<br>Normal Battery<br>Depletion                                                          | Excluding<br>Normal Battery<br>Depletion | Including<br>Normal Battery<br>Depletion                                                          | Excluding<br>Normal Battery<br>Depletion | Including<br>Normal Battery<br>Depletion                          |                                                                                                   | Excluding<br>Normal Battery<br>Depletion | Including<br>Normal Battery<br>Depletion                          |
| le                        | toT        | 28                                       | (0)                                                                                    | 4                                        | (4)                                                                                                                                                             |                                                                                                   | m                                        |                                                                                                   | 99                                       |                                                                                                   | 16                                       |                                                                   |                                                                                                   | 0                                        |                                                                   |
| ction Not<br>npromised    |            | "                                        | =                                                                                      | "                                        | =                                                                                                                                                               |                                                                                                   | "                                        |                                                                                                   | ی<br>۱۱                                  |                                                                                                   | "                                        |                                                                   |                                                                                                   | "                                        |                                                                   |
| rapy                      | әчт        | κ<br>+                                   | (0)<br>+                                                                               | 0<br>+                                   | (0)<br>+                                                                                                                                                        |                                                                                                   | 0<br>+                                   |                                                                                                   | +                                        |                                                                                                   | ∞<br>+                                   |                                                                   |                                                                                                   | 0<br>+                                   |                                                                   |
| rapy Function<br>promised |            | 25                                       | (0)                                                                                    | 4                                        | (4)                                                                                                                                                             |                                                                                                   | m                                        |                                                                                                   | 51                                       |                                                                                                   | œ                                        |                                                                   |                                                                                                   | 0                                        |                                                                   |
| mal Battery<br>Jetions    |            | 4,193                                    | aration                                                                                | 167                                      | ed<br>ential                                                                                                                                                    | Ŀ                                                                                                 | 349                                      | Ŀ                                                                                                 | 7,689                                    | ū                                                                                                 | 1,391                                    | connect                                                           | Ŀ                                                                                                 | 73                                       | connect                                                           |
| bətem<br>ZU əvi<br>stnslı | İJDA       | 5,000                                    | ntial Sep                                                                              | 20                                       | l Fracture<br>2009 Pote                                                                                                                                         | al Chamb<br>RI                                                                                    | 1,000                                    | al Chamb<br>RI                                                                                    | 40,000                                   | al Chamb<br>RI                                                                                    | 10,000                                   | n of Inter                                                        | al Chamb<br>RI                                                                                    | 50                                       | n of Inter                                                        |
| stnslqm                   | 150        | 55,000                                   | 009 Pote                                                                               |                                          | otentia<br>e 140 – J                                                                                                                                            | e on Dua<br>ock-up El                                                                             |                                          | e on Dua<br>ock-up El                                                                             | 125,000                                  | e on Dua<br>ock-up El                                                                             | 37,000                                   | eparatio                                                          | e on Dua<br>ock-up El                                                                             |                                          | eparatio                                                          |
| istered                   |            |                                          | <u>140</u> – 20                                                                        | 9 2,000                                  | – 2002 F<br>Ilso pag<br>:t Wires                                                                                                                                | nce not<br>ment Lc                                                                                | 2 4,000                                  | nce not<br>ment Lc                                                                                |                                          | nce not<br>ment Lc                                                                                |                                          | ential Se                                                         | nce not<br>ment Lc                                                                                | 1,000                                    | ential Se                                                         |
| Narket<br>Sase            |            | Feb-99                                   | Advisories: <u>See also page 140</u> – 2009 Potential Separation of Interconnect Wires | Jan-99                                   | Advisories: <u>See page 146</u> – 2002 Potential Fractured<br>Power Supply Wires; <u>See also page 140</u> – 2009 Potential<br>Separation of Interconnect Wires | <u>See page 148</u> – Performance note on Dual Chamber<br>Pacemakers with Measurement Lock-up ERI | Jan-02                                   | <u>See page 148</u> – Performance note on Dual Chamber<br>Pacemakers with Measurement Lock-up ERI | Jan-02                                   | <u>See page 148</u> – Performance note on Dual Chamber<br>Pacemakers with Measurement Lock-up ERI | , Jan-02                                 | See page 140 – 2009 Potential Separation of Interconnect<br>Wires | <u>See page 148</u> – Performance note on Dual Chamber<br>Pacemakers with Measurement Lock-up ERI | Jan-02                                   | See page 140 – 2009 Potential Separation of Interconnect<br>Wires |
|                           |            | KSR701,<br>KSR703, KSR706                | Advisories: <u>See also pa</u><br>of Interconnect Wires                                | 10                                       | ies: <u>See</u><br>upply <u>M</u><br>ion of In                                                                                                                  | <del>le 148</del> –<br>kers witł                                                                  |                                          | <del>le 148</del> –<br>kers with                                                                  |                                          | le 148 –<br>kers witł                                                                             | KSR901, KSR903,<br>KSR906                | ge 140 .                                                          | <del>le 148</del> –<br>kers witł                                                                  | 10                                       | ge 140 -                                                          |
| nber<br>del               | ooM<br>nuN | KSR701,<br>KSR703,                       | Advisor<br>of Interc                                                                   | KVDD701                                  | Advisor<br>Power S<br>Separati                                                                                                                                  | See pag<br>Pacemal                                                                                | KDR801,<br>KDR803                        | See pag<br>Pacemal                                                                                | KDR901,<br>KDR903,<br>KDR906             | <u>See pag</u><br>Pacema                                                                          | KSR901<br>KSR906                         | See pa<br>Wires                                                   | See pag<br>Pacemal                                                                                | KVDD901                                  | See pa<br>Wires                                                   |
|                           |            | Kappa 700<br>SR                          |                                                                                        | Kappa 700<br>VDD                         |                                                                                                                                                                 |                                                                                                   | Kappa 800<br>DR                          |                                                                                                   | Kappa 900<br>DR                          |                                                                                                   | Kappa 900<br>SR                          |                                                                   |                                                                                                   | Kappa 900<br>VDD                         |                                                                   |

Source: Medtronic Device Registration and Returned Product Analysis Data as of January 31, 2011

Medtronic CRDM Product Performance Report 69 www.medtronic.com/CRDMProductPerformance

**IPG** Implantable Pulse Generators, continued

| J.                              | Implantab                      | ie P        | uise G                                   | enerat                                                                   | lors, co                                                                                   |                                          |                                          |                                                        |                                                                               |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                          |
|---------------------------------|--------------------------------|-------------|------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|
|                                 |                                | 16 yr       |                                          |                                                                          |                                                                                            | 99.9<br>+.0/0<br>at 223 mo               | 47.0<br>+1.8/-1.8<br>at 223 mo           | 99.9<br>+.0/1<br>at 253 mo                             | 66.3<br>+2.3/-2.5<br>at 253 mo                                                | 100.0<br>+.0/1<br>at 216 mo              | 39.6<br>+2.8/-2.8<br>at 216 mo           |                                          |                                          |                                          |                                          |                                          |                                          |
|                                 |                                | 14 yr       |                                          |                                                                          |                                                                                            | 9.99<br>/0.+                             | 71.2<br>+.9/9                            | 9.99<br>0/0.+                                          | 80.6<br>+.7/7                                                                 | 100.0<br>+.0/1                           | 67.9<br>+1.5/-1.6                        | 100.0<br>+.0/1<br>at 147 mo              | 6.1<br>+1.2/-1.1<br>at 147 mo            | 100.0<br>+.0/1<br>at 159 mo              | 28.7<br>+2.6/-2.5<br>at 159 mo           | 99.9<br>+.1/4<br>at 164 mo               | 86.5<br>+2.6/-3.2<br>at 164 mo           |
|                                 |                                | 12 yr       |                                          |                                                                          |                                                                                            | 0/0.+                                    | 82.4<br>+.6/6                            | 9.9<br>0/0.+                                           | 84.0<br>+.6/6                                                                 | 100.0<br>+.0/1                           | 81.9<br>+1.0/-1.1                        | 100.0<br>+.0/1                           | 12.8<br>+1.3/-1.2                        | 100.0<br>+.0/1                           | 42.2<br>+2.0/-2.0                        | 99.9<br>+.1/4                            | 89.0<br>+2.1/-2.6                        |
|                                 |                                | 10 yr       |                                          |                                                                          |                                                                                            | 0/0.+                                    | 88.8<br>+.4/4                            | 6:66<br>0/0.+                                          | 87.5<br>+.5/5                                                                 | 100.0<br>+.0/1                           | 89.2<br>+.7/8                            | 100.0<br>+.0/1                           | 66.1<br>+1.0/-1.1                        | 100.0<br>+.0/1                           | 74.7<br>+1.3/-1.4                        | 99.9<br>+.1/4                            | 93.2<br>+1.5/-1.9                        |
|                                 |                                | 8 yr        |                                          |                                                                          |                                                                                            | 0/0.+                                    | 94.7<br>+.3/3                            | 9.99<br>-/0.+                                          | 92.1<br>+.4/4                                                                 | 100.0<br>+.0/1                           | 94.7<br>+.5/5                            | 100.0<br>+.0/0                           | 92.3<br>+.5/5                            | 100.0<br>+.0/1                           | 91.9<br>+.7/7                            | 99.9<br>+.1/4                            | 97.1<br>+.8/-1.2                         |
|                                 |                                | 7 yr        | 99.9<br>+.0/1<br>at 82 mo                | 7.4<br>+1.5/-1.3<br>at 82 mo                                             |                                                                                            | 9.99<br>0/0.+                            | 97.1<br>+.2/2                            | 9.99<br>0/0.+                                          | 95.2<br>+.3/3                                                                 | 100.0<br>+.0/1                           | 96.9<br>+.3/4                            | 100.0<br>+.0/0                           | 96.1<br>+.3/3                            | 100.0<br>+.0/1                           | 94.8<br>+.5/5                            | 99.9<br>+.1/4                            | 98.0<br>+.6/9                            |
|                                 |                                | 6 yr        | 99.9<br>+.0/1                            | 58.7<br>+1.2/-1.3                                                        |                                                                                            | 9.99<br>0/0.+                            | 98.0<br>+.1/2                            | 9:99<br>0/0.+                                          | 97.6<br>+.2/2                                                                 | 100.0<br>+.0/1                           | 98.1<br>+.2/3                            | 100.0<br>+.0/0                           | 97.7<br>+.2/3                            | 100.0<br>+.0/1                           | 97.2<br>+.3/4                            | 99.9<br>+.1/4                            | 98.8<br>+.4/7                            |
| (%                              |                                | 5 yr        | 100.0<br>+.0/1                           | 89.8<br>+.6/6                                                            |                                                                                            | 9.99<br>0/0.+                            | 98.7<br>1/1.+                            | 9.99<br>0/0.+                                          | 98.6<br>+.1/1                                                                 | 100.0<br>+.0/1                           | 98.9<br>+.2/2                            | 100.0<br>+.0/0                           | 98.7<br>+.2/2                            | 100.0<br>+.0/1                           | 98.2<br>+.2/3                            | 99.9<br>+.1/4                            | 99.0<br>+.4/6                            |
| Device Survival Probability (%) |                                | 4 yr        | 100.0<br>+.0/1                           | 97.1<br>+.3/3                                                            |                                                                                            | 0:-/0:+                                  | 99.1<br>+.1/.+                           | 9.9<br>0/0.+                                           | 99.2<br>+.1/1                                                                 | 100.0<br>+.0/1                           | 99.5<br>+.1/1                            | 100.0<br>+.0/0                           | 99.3<br>+.1/1                            | 100.0<br>+.0/1                           | 99.0<br>+.2/2                            | 100.0<br>+.0/0                           | 99.7<br>+.1/3                            |
| /al Prob                        | nplant                         | 3 yr        | 100.0<br>+.0/1                           | 99.2<br>+.1/2                                                            |                                                                                            | 100.0<br>+.0/0                           | 99.5<br>+.1/1                            | 9.99<br>0/0.+                                          | 99.5<br>+.1/1                                                                 | 100.0<br>+.0/0                           | 99.8<br>+.1/1                            | 100.0<br>+.0/0                           | 99.6<br>+.1/1                            | 100.0<br>+.0/0                           | 99.4<br>+.1/2                            | 100.0<br>+.0/0                           | 99.7<br>+.1/3                            |
| ce Surviv                       | Years After Implant            | 2 yr        | 100.0<br>+.0/0                           | 99.7<br>1/1.+                                                            |                                                                                            | 100.0<br>+.0/0                           | 99.7<br>+.0/-+                           | 9.9<br>0/0.+                                           | 99.7<br>+.0/-1                                                                | 100.0<br>+.0/0                           | <b>100.0</b><br>+.0/0                    | 100.0<br>+.0/0                           | 99.8<br>+.0/1                            | 100.0<br>+.0/0                           | 99.8<br>+.1/1                            | 100.0<br>+.0/0                           | 99.8<br>+.1/2                            |
| Devid                           | Years                          | 1 yr        | 100.0<br>+.0/0                           | 9.99<br>1/0.+                                                            |                                                                                            | 100.0<br>+.0/0                           | <b>9.99</b><br>0/0.+                     | 100.0<br>+.0/0                                         | 0/0.+                                                                         | 100.0<br>+.0/0                           | 100.0<br>+.0/0                           | 100.0<br>+.0/0                           | <b>9.99</b><br>0/0.+                     | 100.0<br>+.0/0                           | 99.9<br>+.0/1                            | 100.0<br>+.0/0                           | 99.8<br>+.1/2                            |
|                                 |                                |             | Excluding<br>Normal Battery<br>Depletion | Including<br>Normal Battery<br>Depletion                                 |                                                                                            | Excluding<br>Normal Battery<br>Depletion | Including<br>Normal Battery<br>Depletion | Excluding<br>Normal Battery<br>Depletion               | Including<br>Normal Battery<br>Depletion                                      | Excluding<br>Normal Battery<br>Depletion | Including<br>Normal Battery<br>Depletion | Excluding<br>Normal Battery<br>Depletion | Including<br>Normal Battery<br>Depletion | Excluding<br>Normal Battery<br>Depletion | Including<br>Normal Battery<br>Depletion | Excluding<br>Normal Battery<br>Depletion | Including<br>Normal Battery<br>Depletion |
|                                 | le                             | toT         | 4                                        |                                                                          |                                                                                            | 34                                       |                                          | 50                                                     | I                                                                             | 4                                        |                                          | 4                                        |                                          | -                                        |                                          | -                                        |                                          |
| Malfunctions                    | rapy<br>ction Not<br>psimorqn  | unj         | "<br>                                    |                                                                          |                                                                                            | I                                        |                                          | I                                                      | I                                                                             | I                                        |                                          | I                                        |                                          | I                                        |                                          | I                                        |                                          |
| Malfu                           | rapy Function<br>rapy Function |             | m                                        |                                                                          |                                                                                            | 1                                        |                                          | 1                                                      | I                                                                             |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                          |
|                                 | mal Battery<br>rnoise          |             | 2,312                                    |                                                                          | amber                                                                                      | 2,513                                    |                                          | 1,702                                                  | layed                                                                         | 922                                      |                                          | 2,684                                    |                                          | 1,006                                    |                                          | 48                                       |                                          |
|                                 | bətem<br>VU əvi<br>stnslı      | ł5A         | 1,000                                    | baration of                                                              | on Dual Chi<br>k-up ERI                                                                    | 2,000                                    |                                          | 3,000                                                  | – 1991 Potential Delayed<br>ettings                                           | 1,000                                    |                                          | 300                                      |                                          | 1,000                                    |                                          | 400                                      |                                          |
|                                 | istered<br>anglasts            |             | 16,000                                   | otential Sep                                                             | ance note<br>ement Loc                                                                     | 58,000                                   |                                          | 58,000                                                 |                                                                               | 17,000                                   |                                          | 26,000                                   |                                          | 18,000                                   |                                          | 4,000                                    |                                          |
|                                 | texket<br>Base                 | eles<br>NSU | Jan-02                                   | <mark>0 – 2009 P(</mark><br><u>M</u> ires                                | <ul> <li>Perform</li> <li>ith Measur</li> </ul>                                            | Nov-91                                   |                                          | Dec-89                                                 | ee page 1.<br>Permanen                                                        | Mar-92                                   |                                          | Jul-96                                   |                                          | Jul-96                                   |                                          | Oct-95                                   |                                          |
|                                 | nber<br>del                    | nuN<br>nuN  | KDR921                                   | <u>See page 140</u> – 2009 Potential Separation of<br>Interconnect Wires | See page 148 - Performance note on Dual Chamber<br>Pacemakers with Measurement Lock-up ERI | 8424, 8426,<br>8427                      |                                          | 8330, 8331,<br>8331M,<br>8340, 8341,<br>8341M,<br>8342 | Advisories: <u>See page 147</u> – 1991 F<br>Restoration of Permanent Settings | 7107, 7108                               |                                          | 7088, 7089                               |                                          | 8088, 8089                               |                                          | 8085, 8086                               |                                          |
|                                 | Δın                            | ne7         | Kappa 920<br>DR                          |                                                                          |                                                                                            | Legend II                                |                                          | Minix/<br>Minix ST                                     |                                                                               | Minuet                                   |                                          | Preva DR                                 |                                          | Preva SR                                 |                                          | Prevail S                                |                                          |

Device Survival Summary continued

70 Medtronic CRDM Product Performance Report www.medtronic.com/CRDMProductPerformance

| aDevice Survival Probability (%) | Years After Implant                                                                                                                                        | 1 yr         2 yr         3 yr         4 yr         5 yr         6 yr         7 yr         8 yr         10 yr         12 yr         14 yr         16 yr | Excluding         100:0         100:0         100:0         100:0         100:0         100:0         100:0         100:0         100:0         100:0         100:0         100:0         100:0         100:0         100:0         100:0         100:0         100:0         100:0         100:0         100:0         100:0         100:0         100:0         100:0         100:0         100:0         100:0         100:0         100:0         100:0         100:0         100:0         100:0         100:0         100:0         100:0         100:0         100:0         100:0         100:0         100:0         100:0         100:0         100:0         100:0         100:0         100:0         100:0         100:0         100:0         100:0         100:0         100:0         100:0         100:0         100:0         100:0         100:0         100:0         100:0         100:0         100:0         100:0         100:0         100:0         100:0         100:0         100:0         100:0         100:0         100:0         100:0         100:0         100:0         100:0         100:0         100:0         100:0         100:0         100:0         100:0         100:0         100:0         100:0         100:0         100:0 | Including         99.9         99.8         99.7         99.3         98.7         97.9         96.3         92.3         67.9         4.3           Normal Battery         +.0/0         +.0/1         +.1/1         +.1/1         +.1/1         +.1/1         +.1/1         +.1/1         +.1/1         +.1/1         +.1/1         +.1/1         +.1/1         +.1/1         +.1/1         +.1/1         +.1/1         +.1/1         +.1/1         +.1/1         +.1/1         +.1/1         +.1/1         +.1/1         +.1/1         +.1/1         +.1/1         +.1/1         +.1/1         +.1/1         +.1/1         +.1/1         +.1/1         +.1/1         +.1/1         +.1/1         +.1/1         +.1/1         +.1/1         +.1/1         +.1/1         +.1/1         +.1/1         +.1/1         +.1/1         +.1/1         +.1/1         +.1/1         +.1/1         +.1/1         +.1/1         +.1/1         +.1/1         +.1/1         +.1/1         +.1/1         +.1/1         +.1/1         +.1/1         +.1/1         +.1/1         +.1/1         +.1/1         +.1/1         +.1/1         +.1/1         +.1/1         +.1/1         +.1/1         + | Excluding<br>Normal Battery         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100 | Including         99.6         99.2         98.6         97.7         96.5         94.7         91.5         73.9         44.7         27.9           Normal Battery         +1/-1         +1/-1         +2/-2         +2/-3         +3/-4         +4/-5         +6/-6         +1.2/-1.9         +2/5/2.6           Depletion         Depletion         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 | Excluding         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0 | Including         100.0         100.0         99.8         99.7         99.4           Normal Battery         +.0/0         +.0/0         +.0/1         +.1/1         +.3/6           Depletion         at50 mo         at50 mo         at50 mo         at50 mo | Excluding         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0 | Including         100.0         99.9         99.4         99.4           Normal Battery         +.0/0         +.1/1         +.3/4         +.3/4           Depletion         at 49 mo         at 49 mo         at 49 mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Excluding<br>Normal Battery<br>Depletion         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0 | Including<br>Normal Battery         100.0         90.6         98.7         98.7         96.7         92.3         92.3           Normal Battery         +.0/0         +.3/-1.3         +.3/-1.3         +.3/-1.3         +.3/-1.3.4         +.3.2/-5.4         +.3.2/-5.4           Depletion         Pepletion         Pepletion         Perlocities         Perlocities         Perlocities         Perlocities         Perlocities | Excluding<br>all Battery         100.0         100.0         100.0         100.0         100.0         100.0         99.8         99.6         99.5         99.5           Pepletion         +.0/0         +.0/0         +.0/0         +.0/1         +.0/1         +.1/2         +.2/2         +.2/2           Depletion        0/0         +.0/0         +.0/1         +.0/1         +.1/1         +.1/2         +.2/2         +.2/2 | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ | Excluding<br>all Battery<br>Depletion         100.0<br>+0/-0         100.0<br>+.0/-0         100.0<br>+.0/-1         100.0<br>+.0/-1         100.0<br>+.0/-1         99.7<br>+.1/2         99.7<br>+.1/3         99.7<br>+.1/3         99.7<br>+.1/3           Depletion         100.0         100.0         99.9         99.9         99.7         99.7         99.7         99.7 | Including         99.9         99.9         99.8         99.7         99.2         98.5         96.8         94.4         84.7         72.9           Normal Battery         +.0/-1         +.1/1         +.1/2         +.2/3         +.3/4         +.5/6         +.1/19         +.3/6/-4.0           Depletion         Depletion         1         1.1/1         +.1/2         +.2/3         +.3/4         +.5/6         +.1/19         +.3/6/-4.0 | Excluding<br>all Battery         100.0         100.0         99.9         99.9         99.9         99.7         99.5         99.5         99.5           Pall Battery         +.0/0         +.0/0         +.0/0         +.0/0         +.0/0         +.0/1         +.1/1         +.1/1         +.1/1           Depletion        0/0         +.0/0         +.0/0         +.0/0         +.0/1         +.1/1         +.1/1         1.1/2.1 | Including         99.9         99.9         99.9         99.8         97.7         94.8         81.4         62.4           Normal Battery         +.0/0         +.0/0         +.0/0         +.1/1         +.1/1         +.3/3         +.3/3         +.3/3.2           Denolation         Denolation |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (%)                              |                                                                                                                                                            | 5 yr                                                                                                                                                    | 100.0<br>+.0/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 98.7<br>+.1/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100.0<br>+.0/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 97.7<br>+.2/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100.0<br>+.0/0<br>at 50 mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 99.4<br>+.3/6<br>at 50 mo                                                                                                                                                                                                                                       | 100.0<br>+.0/0<br>at 49 mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 99.4<br>+.3/4<br>at 49 mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100.0<br>+.0/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100.0<br>+.0/1                                                                                                                                                                                                                                                                                                                                                                                                                        | 99.5<br>+.1/2                                           | 99.9<br>1/0.+                                                                                                                                                                                                                                                                                                                                                                      | 99.2<br>+.2/3                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.99<br>0:-/0:+                                                                                                                                                                                                                                                                                                                                                                                                                         | 99.3<br>+.1/1                                                                                                                                                                                                                                                                                        |
| bability                         |                                                                                                                                                            | 4 yr                                                                                                                                                    | 100.0<br>+.0/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 99.3<br>+.1/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100.0<br>+.0/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 98.6<br>+.2/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100.0<br>+.0/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 99.7<br>+.1/1                                                                                                                                                                                                                                                   | 100.0<br>+.0/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 99.4<br>+.3/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100.0<br>+.0/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100.0<br>+.0/0                                                                                                                                                                                                                                                                                                                                                                                                                        | 99.8<br>+.1/.1                                          | 100.0<br>+.0/1                                                                                                                                                                                                                                                                                                                                                                     | 99.7<br>+.1/2                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0/0.+                                                                                                                                                                                                                                                                                                                                                                                                                                   | 99.6<br>+.0/0                                                                                                                                                                                                                                                                                        |
| ival Pro                         | nplant                                                                                                                                                     | 3 yr                                                                                                                                                    | 100.0<br>+.0/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 99.7<br>1/1.+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100.0<br>+.0/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 99.2<br>+.1/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100.0<br>+.0/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 99.8<br>+.0/1                                                                                                                                                                                                                                                   | 100.0<br>+.0/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 99.8<br>+.1/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100.0<br>+.0/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 99.6<br>+.3/-1.3                                                                                                                                                                                                                                                                                                                                                                                                                       | 100.0<br>+.0/0                                                                                                                                                                                                                                                                                                                                                                                                                        | 999<br>+.0/-1                                           | 100.0<br>+.0/0                                                                                                                                                                                                                                                                                                                                                                     | 99.8<br>+.1/.+                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100.0<br>+.0/0                                                                                                                                                                                                                                                                                                                                                                                                                          | 99.8<br>+.0/0                                                                                                                                                                                                                                                                                        |
| ice Surv                         | After In                                                                                                                                                   | 2 yr                                                                                                                                                    | 100.0<br>+.0/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 99.8<br>+.0/-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100.0<br>+.0/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 99.6<br>+.1/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100.0<br>+.0/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>100.0</b><br>+.0/0                                                                                                                                                                                                                                           | 100.0<br>+.0/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.99<br>-/0.+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100.0<br>+.0/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 100.0<br>+.0/0                                                                                                                                                                                                                                                                                                                                                                                                                         | 100.0<br>+.0/0                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.99<br>1/0.+                                           | 100.0<br>+.0/0                                                                                                                                                                                                                                                                                                                                                                     | 99.9<br>+.1/1                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100.0<br>+.0/0                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.99<br>+.0/0                                                                                                                                                                                                                                                                                        |
| aDev                             | Years                                                                                                                                                      | 1 yr                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100.0<br>+.0/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                         |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                      |
|                                  |                                                                                                                                                            |                                                                                                                                                         | xcluding<br>I Battery<br>epletion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ncluding<br>al Battery<br>Depletion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | xcluding<br>Il Battery<br>epletion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | າcluding<br>l Battery<br>epletion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | kcluding<br>I Battery<br>epletion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | icluding<br>Battery<br>epletion                                                                                                                                                                                                                                 | ccluding<br>Battery<br>epletion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ncluding<br>Il Battery<br>epletion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | kcluding<br>Battery<br>epletion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | icluding<br>Battery<br>epletion                                                                                                                                                                                                                                                                                                                                                                                                        | cluding<br>Battery<br>pletion                                                                                                                                                                                                                                                                                                                                                                                                         | cluding<br>Battery<br>Pletion                           | luding<br>3attery<br>oletion                                                                                                                                                                                                                                                                                                                                                       | cluding<br>Battery<br>epletion                                                                                                                                                                                                                                                                                                                                                                                                                      | cluding<br>Battery<br>pletion                                                                                                                                                                                                                                                                                                                                                                                                           | cluding<br>Battery                                                                                                                                                                                                                                                                                   |
|                                  |                                                                                                                                                            |                                                                                                                                                         | Norma<br>D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Norma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Norma<br>D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Norma<br>D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Normal<br>D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Normal<br>D                                                                                                                                                                                                                                                     | Normal<br>D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Norma<br>D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Normal<br>D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ir<br>Normal<br>D                                                                                                                                                                                                                                                                                                                                                                                                                      | Excluding<br>Normal Battery<br>Depletion                                                                                                                                                                                                                                                                                                                                                                                              | Including<br>Normal Battery<br>Depletion                | Excluding<br>Normal Battery<br>Depletion                                                                                                                                                                                                                                                                                                                                           | In<br>Normal<br>De                                                                                                                                                                                                                                                                                                                                                                                                                                  | Excluding<br>Normal Battery<br>Depletion                                                                                                                                                                                                                                                                                                                                                                                                | In<br>Normal                                                                                                                                                                                                                                                                                         |
|                                  | le                                                                                                                                                         | itoT                                                                                                                                                    | 11 Norma<br>D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Norma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4 Norma<br>D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Norma<br>D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7<br>Norm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Normal                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Norma<br>D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (0)<br>ubset)                                                                                                                                                                                                                                                                                                                                                                                                                          | 29                                                                                                                                                                                                                                                                                                                                                                                                                                    | (19)<br>ubset)                                          | 13                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 190                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5                                                                                                                                                                                                                                                                                                    |
| nctions                          | yqsy<br>toti outo<br>besimorqn<br>Ia                                                                                                                       | uoj                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Norma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Norma<br>D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5 = 7 Norm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Normal D                                                                                                                                                                                                                                                        | 1 = 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Norma<br>D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | = (0)<br>subset)                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 = 29                                                                                                                                                                                                                                                                                                                                                                                                                                | = (19)<br>d subset)                                     | 0 = 13                                                                                                                                                                                                                                                                                                                                                                             | = (12)<br>d subset)                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6 = 190                                                                                                                                                                                                                                                                                                                                                                                                                                 | = (107)                                                                                                                                                                                                                                                                                              |
| alfunction                       | upromised                                                                                                                                                  | no)<br>nui<br>adT<br>no)                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Norma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | = 7 Norm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Normal<br>D                                                                                                                                                                                                                                                     | = 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Norma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | = (0)<br>ed subset)                                                                                                                                                                                                                                                                                                                                                                                                                    | = 29                                                                                                                                                                                                                                                                                                                                                                                                                                  | = (19)<br>:ed subset)                                   | = 13                                                                                                                                                                                                                                                                                                                                                                               | = (12)<br>:ed subset)                                                                                                                                                                                                                                                                                                                                                                                                                               | = 190                                                                                                                                                                                                                                                                                                                                                                                                                                   | = (107)                                                                                                                                                                                                                                                                                              |
| alfunction                       | npromised<br>rapy<br>notion Not<br>basimorqu                                                                                                               | no)<br>adT<br>adT<br>adT<br>adT<br>adT<br>add<br>add<br>add<br>add<br>add                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Norma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Norma<br>D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | + 5 = 7 Norm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                 | + 1 = 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D<br>Vorma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0<br>  <br>0<br>+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (0) + (0) = (0)<br>(advisory-related subset)                                                                                                                                                                                                                                                                                                                                                                                           | + 1 = 29                                                                                                                                                                                                                                                                                                                                                                                                                              | ation (19) + (0) = (19)<br>(advisory-related subset)    | + 0 = 13                                                                                                                                                                                                                                                                                                                                                                           | (12) + (0) = (12)<br>(advisory-related subset)                                                                                                                                                                                                                                                                                                                                                                                                      | + 6 = 190                                                                                                                                                                                                                                                                                                                                                                                                                               | (107) + (0) = (107)                                                                                                                                                                                                                                                                                  |
| alfunction                       | sletions<br>rrapy Function<br>npromised<br>rotion Not<br>npromised                                                                                         | Acti<br>qml<br>Jod<br>Dep<br>The<br>Con<br>The<br>tu<br>The                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Norm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Norma<br>D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 + 5 = 7 Norm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Chamber                                                                                                                                                                                                                                                         | 1 + 1 = 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | L Contraction of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se | 0<br>  <br>0<br>+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (0) + (0) = (0)<br>(advisory-related subset)                                                                                                                                                                                                                                                                                                                                                                                           | 28 + 1 = 29                                                                                                                                                                                                                                                                                                                                                                                                                           | ation (19) + (0) = (19)<br>(advisory-related subset)    | 13 + 0 = 13                                                                                                                                                                                                                                                                                                                                                                        | (12) + (0) = (12)<br>(advisory-related subset)                                                                                                                                                                                                                                                                                                                                                                                                      | 184 + 6 = 190                                                                                                                                                                                                                                                                                                                                                                                                                           | (107) + (0) = (107)                                                                                                                                                                                                                                                                                  |
| alfunction                       | ive US<br>shants<br>mal Battery<br>shetions<br>mpromised<br>retion Not<br>npromised                                                                        | USI<br>Esti<br>Imp<br>Imp<br>Dep<br>Dep<br>Con<br>The<br>Con                                                                                            | 3,695 — — 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Norm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,215 — 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 27 2 + 5 = 7 Norm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Chamber                                                                                                                                                                                                                                                         | 23 1 + 1 = 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16 0 + 0 = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (0) + (0) = (0)<br>(advisory-related subset)                                                                                                                                                                                                                                                                                                                                                                                           | 396 28 + 1 = 29                                                                                                                                                                                                                                                                                                                                                                                                                       | ation (19) + (0) = (19)<br>(advisory-related subset)    | 177 13 + 0 = 13                                                                                                                                                                                                                                                                                                                                                                    | (12) + (0) = (12)<br>(advisory-related subset)                                                                                                                                                                                                                                                                                                                                                                                                      | 38,000 1,517 184 + 6 = 190                                                                                                                                                                                                                                                                                                                                                                                                              | (107) + (0) = (107)                                                                                                                                                                                                                                                                                  |
| alfunction                       | Implants<br>mated<br>ive US<br>mal Battery<br>pletions<br>npromised<br>npromised<br>npromised                                                              | Reld<br>Reg<br>LS1<br>Nor<br>Dep<br>Dep<br>The<br>Con<br>The<br>Con                                                                                     | 400 3,695 — — 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Norm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,000 1,215 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 67,000 27 2 + 5 = 7 Norm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Chamber                                                                                                                                                                                                                                                         | 40,000 23 1 + 1 = 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100 16 0 + 0 = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (0) + (0) = (0)<br>(advisory-related subset)                                                                                                                                                                                                                                                                                                                                                                                           | 4,000 396 28 + 1 = 29                                                                                                                                                                                                                                                                                                                                                                                                                 | ation (19) + (0) = (19)<br>(advisory-related subset)    | 2,000 177 13 + 0 = 13                                                                                                                                                                                                                                                                                                                                                              | (12) + (0) = (12)<br>(advisory-related subset)                                                                                                                                                                                                                                                                                                                                                                                                      | 1,517 184 + 6 = 190                                                                                                                                                                                                                                                                                                                                                                                                                     | (107) + (0) = (107)                                                                                                                                                                                                                                                                                  |
|                                  | mber<br>Market<br>jistered<br>inplants<br>mal Battery<br>market<br>mpromised<br>mpromised<br>mpromised<br>mpromised<br>mpromised<br>mpromised<br>mpromised | USI<br>Reld<br>Reg<br>Dep<br>Inp<br>Dep<br>Inp<br>Dep<br>Inp<br>Dep<br>Inp<br>Con<br>The<br>Con                                                         | 38,000 400 3,695 — — 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Norm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22,000 1,000 1,215 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 84,000 67,000 <b>27</b> 2 + 5 = 7 Norm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | See page 148         - Performance note on Dual Chamber           Pacemakers with Measurement Lock-up ERI         D                                                                                                                                             | 55,000 40,000 23 1 + 1 = 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,000 100 $16$ 0 + 0 = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | = (0)<br>subset)                                                                                                                                                                                                                                                                                                                                                                                                                       | 16,000 4,000 <u>396</u> 28 + 1 = 29                                                                                                                                                                                                                                                                                                                                                                                                   | = (19)<br>d subset)                                     | 12,000 2,000 177 13 + 0 = 13                                                                                                                                                                                                                                                                                                                                                       | = (12)<br>d subset)                                                                                                                                                                                                                                                                                                                                                                                                                                 | 38,000 1,517 184 + 6 = 190                                                                                                                                                                                                                                                                                                                                                                                                              | = (107)                                                                                                                                                                                                                                                                                              |

Source: Medtronic Device Registration and Returned Product Analysis Data as of January 31, 2011

## **IPG** Implantable Pulse Generators, continued

| Πηριαπιασ                      | 16 yr             |                                          | enerato                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          |                                                                                      |                                          |                                          | 100.0<br>+.0/0<br>at 174 mo              | 28.6<br>+1.9/-1.9<br>at 174 mo           |                                          |                                          |                                          |                                                                                                   |
|--------------------------------|-------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------------|
|                                | 14 yr   10        |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                      |                                          |                                          | 100.0 10<br>+.0/0 +.C                    | 30.6 28<br>+1.6/-1.6 +1<br>at            | 100.0<br>+.0/0<br>at 156 mo              | 38.8<br>+4.2/-4.2<br>at 156 mo           |                                          |                                                                                                   |
|                                | 12 yr             | 99.7<br>+.1/1<br>at 130 mo               | <b>66.3</b><br>+3.3/-3.6<br>at 130 mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                          |                                                                                      | 99.9<br>+.0/0<br>at 140 mo               | 6.9<br>+.6/6<br>at 140 mo                | 100.0 1+.0/0                             | 50.7 3<br>+1.1/-1.1 +                    | 100.0 1<br>+.0/0 +                       | 56.4 3<br>+3.1/-3.2 4<br>a               |                                          |                                                                                                   |
|                                | 10 yr             | 99.7<br>+.1/1                            | 82.2<br>+1.3/-1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 99.5<br>+.4/-3.0<br>at 102 mo            | 81.9<br>+5.0/-6.5<br>at 102 mo                                                       | 6.99<br>0/0.+                            | 68.0<br>+.5/5                            | 100.0<br>+.0/0                           | 79.7<br>+.7/7                            | 100.0<br>+.0/0                           | 88.7<br>+1.4/-1.6                        |                                          |                                                                                                   |
|                                | 8 yr              | 99.7<br>+.1/-1                           | 94.4<br>+.4/5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 99.5<br>+.4/-3.0                         | 89.1<br>+3.4/-4.8                                                                    | 0/0.+                                    | 92.7<br>+.2/2                            | 100.0<br>+.0/0                           | 94.4<br>+.3/3                            | 100.0<br>+.0/0                           | 98.0<br>+.5/6                            |                                          |                                                                                                   |
|                                | 7 yr              | 99.8<br>+.1/1                            | 97.1<br>+.3/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100.0<br>+.0/0                           | 94.1<br>+2.3/-3.6                                                                    | 9.99<br>+.0/0                            | 96.5<br>+.1/1                            | 100.0<br>+.0/0                           | 96.9<br>+.2/2                            | 100.0<br>+.0/0                           | 98.8<br>+.3/5                            |                                          |                                                                                                   |
|                                | 6 yr              | 99.9<br>+.0/1                            | 98.5<br>+.2/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100.0<br>+.0/0                           | 98.2<br>+1.0/-2.2                                                                    | 0/0.+                                    | 98.1<br>+.1/1                            | 100.0<br>+.0/0                           | 98.1<br>+.2/2                            | 100.0<br>+.0/0                           | 99.0<br>+.3/4                            |                                          |                                                                                                   |
|                                | 5 yr              | 100.0<br>+.0/0                           | 99.2<br>+.1/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100.0<br>+.0/0                           | 99.4<br>+.4/-1.6                                                                     | 100.0<br>+.0/0                           | 99.0<br>+.1/-,1                          | 100.0<br>+.0/0                           | 98.9<br>1/1.+                            | 100.0<br>+.0/0                           | 99.1<br>+.3/4                            | 100.0<br>+.0/0<br>at 50 mo               | 99.7<br>+.1/1<br>at 50 mo                                                                         |
|                                | 4 yr              | 100.0<br>+.0/0                           | 99.5<br>+.1/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100.0<br>+.0/0                           | 100.0<br>+.0/0                                                                       | 100.0<br>+.0/0                           | 99.4<br>+.0/-1                           | 100.0<br>+.0/0                           | 99.3<br>+.1/1                            | 100.0<br>+.0/0                           | 99.5<br>+.2/3                            | 100.0<br>+.0/0                           | 99.7<br>+.1/1                                                                                     |
| nplant                         | 3 yr              | 100.0<br>+.0/0                           | 99.7<br>+.0/-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100.0<br>+.0/0                           | 100.0<br>+.0/0                                                                       | 100.0<br>+.0/0                           | 99.7<br>+.0/-/                           | 100.0<br>+.0/0                           | 99.6<br>+.1/1                            | 100.0<br>+.0/0                           | 99.6<br>+.2/3                            | 100.0<br>+.0/0                           | 99.8<br>+.0/1                                                                                     |
| Years After Implant            | 2 yr              | 100.0<br>+.0/0                           | 9.99<br>+.0/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100.0<br>+.0/0                           | 100.0<br>+.0/0                                                                       | 100.0<br>+.0/0                           | 9.99<br>+.0/0                            | 100.0<br>+.0/0                           | 99.8<br>+.0/0                            | 100.0<br>+.0/0                           | 99.8<br>+.1/2                            | 100.0<br>+.0/0                           | 9.99<br>+.0/0                                                                                     |
| Years                          | 1 yr              | 100.0<br>+.0/0                           | 9.99<br>0/0.+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100.0<br>+.0/0                           | 100.0<br>+.0/0                                                                       | 100.0<br>+.0/0                           | 9.99<br>+.0/0                            | 100.0<br>+.0/0                           | 100.0<br>+.0/0                           | 100.0<br>+.0/0                           | 99.9<br>+.1/1                            | 100.0<br>+.0/0                           | 100.0<br>+.0/0                                                                                    |
|                                |                   | Excluding<br>Normal Battery<br>Depletion | Including<br>Normal Battery<br>Depletion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Excluding<br>Normal Battery<br>Depletion | Including<br>Normal Battery<br>Depletion                                             | Excluding<br>Normal Battery<br>Depletion | Including<br>Normal Battery<br>Depletion | Excluding<br>Normal Battery<br>Depletion | Including<br>Normal Battery<br>Depletion | Excluding<br>Normal Battery<br>Depletion | Including<br>Normal Battery<br>Depletion | Excluding<br>Normal Battery<br>Depletion | Including<br>Normal Battery<br>Depletion                                                          |
| IJ                             | stoT              | 39                                       | (24)<br>subset)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                        |                                                                                      | 50                                       |                                          | ~                                        |                                          | 0                                        |                                          | 9                                        |                                                                                                   |
| rapy<br>ction Vot<br>besimorqr | noJ<br>nuJ<br>9dT | "<br>                                    | (24) + (0) = (24)<br>(advisory-related subset)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | "<br>0                                   |                                                                                      | I                                        |                                          | I                                        |                                          | I                                        |                                          | 4                                        |                                                                                                   |
| rapy Function<br>besimorq      |                   | +<br>38                                  | (24) +<br>(advisor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +                                        |                                                                                      | I                                        |                                          | 1                                        |                                          | 1                                        |                                          | +                                        |                                                                                                   |
| nal Battery<br>letions         |                   | 559                                      | aration<br>19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 35                                       | aration                                                                              | 13,319                                   |                                          | 2,730                                    |                                          | 299                                      |                                          | 21                                       | amber                                                                                             |
| bətem<br>SU əv<br>stnsi        | itoA              | 14,000                                   | otential Sepa<br><u>ge 140</u> – 200<br>ect Wires                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100                                      | otential Sepa                                                                        | 500                                      |                                          | 2,000                                    |                                          | 300                                      |                                          | 55,000                                   | e on Dual Cha<br>ck-up ERI                                                                        |
| istered<br>stnslqm             | I SN<br>ნəუ       | 54,000                                   | 14- 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2005 Provine 2 | 1,000                                    | 14- 2005 P                                                                           | 122,000                                  |                                          | 50,000                                   |                                          | 5,000                                    |                                          | 69,000                                   | mance not<br>irement Lo                                                                           |
| Aarket<br>sase                 | ələЯ<br>V SU      | Sep-99                                   | Advisories: See page 144– 2005 Potential Separation<br>of Interconnect Wires; See also page 140 – 2009<br>Potential Separation of Interconnect Wires                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sep-99                                   | Advisories: <u>See page 144</u> – 2005 Potential Separation<br>of Interconnect Wires | Oct-95                                   |                                          | Oct-95                                   |                                          | Mar-96                                   |                                          | Jul-06                                   | <u>See page 148</u> – Performance note on Dual Chamber<br>Pacemakers with Measurement Lock-up ERI |
| lel<br>tel                     | unN<br>ooW        | SSR303,<br>SSR306                        | Advisories<br>of Intercon<br>Potential S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SVDD303                                  | Advisories<br>of Intercon                                                            | 7960i,<br>7961i,<br>7962i                |                                          | 8960i,<br>8961i,<br>8962i                |                                          | 8968i                                    |                                          | VEDR01                                   | <u>See page 1</u><br>Pacemaker                                                                    |
| <b>ג</b> ון<br>nic CRDM Pro    | mea               | Sigma 300<br>SR                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sigma 300<br>VDD                         |                                                                                      | Thera-i DR                               |                                          | Thera-i SR                               |                                          | e: Medt                                  |                                          | Versa DR                                 |                                                                                                   |

72 Medtronic CRDM Product Performance Report www.medtronic.com/CRDMProductPerformance

Device Survival Summary continued

Device Survival Probability (%)

Malfunctions

### **Reference Chart**

The longevity estimates provided are mean values calculated for the parameters given. The longevity estimates shown here assume a lower rate of 60 ppm, 100% pacing, and pulse width of 0.4 ms unless noted otherwise. The actual longevity achieved for any device while implanted will depend on the actual programmed parameters and patient factors, and may differ significantly from these estimates. The elective replacement time is indicated via telemetry indication, and rate and mode change to 65 ppm and VVI respectively (VOO/65 with magnet), unless noted otherwise.

|               |                                        | Estimated I                                                      | ongevity           |                     |                                                                                   |
|---------------|----------------------------------------|------------------------------------------------------------------|--------------------|---------------------|-----------------------------------------------------------------------------------|
| Family        | Model<br>Number                        | Amplitude Setting                                                | 500<br>Lead Ω      | 1000<br>Lead Ω      | Elective Replacement Indicators                                                   |
| Adapta DR     | ADDR01,<br>ADDR03,<br>ADDR06,<br>ADD01 | Low 2.5 V (A, RV)<br>Nominal 3.5 V (A, RV)<br>High 5.0 V (A, RV) | 7.4<br>6.0<br>4.5  | 8.2<br>7.3<br>6.0   | **                                                                                |
| Adapta DR     | ADDRS1                                 | Low 2.5 V (A, RV)<br>Nominal 3.5 V (A, RV)<br>High 5.0 V (A, RV) | 5.5<br>4.3<br>3.2  | 6.1<br>5.4<br>4.4   | **                                                                                |
| Adapta DR     | ADDRL1                                 | Low 2.5 V (A, RV)<br>Nominal 3.5 V (A, RV)<br>High 5.0 V (A, RV) | 9.1<br>7.4<br>5.4  | 10.1<br>9.0<br>7.3  | **                                                                                |
| Adapta SR     | ADSR01,<br>ADSR03,<br>ADSR06           | Low 2.5 V (RV)<br>Nominal 3.5 V (RV)<br>High 5.0 V (RV)          | 7.3<br>6.4<br>5.0  | 7.8<br>7.4<br>6.2   | **                                                                                |
| Adapta VDD    | ADVDD01                                | Low 2.5 V (RV)<br>Nominal 3.5 V (RV)<br>High 5.0 V (RV)          | 6.2<br>5.5<br>4.4  | 6.5<br>6.2<br>5.4   | **                                                                                |
| AT500         | AT501,<br>7253                         | Low 2.0 V (A, RV)<br>Nominal 3.0 V (A, RV)<br>High 5.0 V (A, RV) | 7.7<br>5.8<br>3.7  | 8.3<br>7.0<br>5.2   | Telemetry indication. Pacing mode and rate (magnet and non-magnet) as programmed. |
| EnPulse DR    | E1DR01,<br>E1DR03,<br>E1DR06           | Low 2.5 V (A, RV)<br>Nominal 3.5 V (A, RV)<br>High 5.0 V (A, RV) | 7.5<br>6.2<br>4.4  | 8.5<br>7.6<br>5.9   | **                                                                                |
| EnPulse DR    | E1DR21                                 | Low 2.5 V (A, RV)<br>Nominal 3.5 V (A, RV)<br>High 5.0 V (A, RV) | 5.4<br>4.3<br>3.0  | 6.0<br>5.4<br>4.2   | **                                                                                |
| EnPulse 2 DR  | E2DR01,<br>E2DR03,<br>E2DR06           | Low 2.5 V (A, RV)<br>Nominal 3.5 V (A, RV)<br>High 5.0 V (A, RV) | 7.5<br>6.2<br>4.4  | 8.5<br>7.6<br>5.9   | **                                                                                |
| EnPulse 2 DR  | E2DR21                                 | Low 2.5 V (A, RV)<br>Nominal 3.5 V (A, RV)<br>High 5.0 V (A, RV) | 5.4<br>4.3<br>3.0  | 6.0<br>5.4<br>4.2   | **                                                                                |
| EnPulse 2 DR  | E2DR31,<br>E2DR33                      | Low 2.5 V (A, RV)<br>Nominal 3.5 V (A, RV)<br>High 5.0 V (A, RV) | 9.0<br>7.4<br>5.2  | 10.1<br>9.1<br>7.1  | **                                                                                |
| EnPulse 2 SR  | E2SR01,<br>E2SR03,<br>E2SR06           | Low 2.5 V (A, RV)<br>Nominal 3.5 V (A, RV)<br>High 5.0 V (A, RV) | 7.2<br>6.3<br>4.8  | 7.7<br>7.3<br>6.1   | **                                                                                |
| EnPulse 2 VDD | E2VDD01                                | Low 2.5 V (RV)<br>Nominal 3.5 V (RV)<br>High 5.0 V (RV)          | 6.1<br>5.5<br>4.3  | 6.5<br>6.2<br>5.4   | **                                                                                |
| EnRhythm DR   | P1501DR                                | Low 2.5 V (A, RV)<br>Nominal 3.5 V (A, RV)<br>High 5.0 V (A, RV) | 10.6<br>8.0<br>5.4 | 12.3<br>10.3<br>7.8 | **                                                                                |
| Kappa 400 DR  | KDR401,<br>KDR403                      | Low 2.5 V (A, RV)<br>Nominal 3.5 V (A, RV)<br>High 5.0 V (A, RV) | 7.8<br>6.4<br>5.1  | 8.5<br>7.5<br>6.5   | **                                                                                |
| Kappa 400 SR  | KSR401,<br>KSR403                      | Low 2.5 V (RV)<br>Nominal 3.5 V (RV)<br>High 5.0 V (RV)          | 7.9<br>6.9<br>5.8  | 8.4<br>7.7<br>7.0   | **                                                                                |
| Kappa 600 DR  | KDR601,<br>KDR603,<br>KDR606           | Low 2.5 V (A, RV)<br>Nominal 3.5 V (A, RV)<br>High 5.0 V (A, RV) | 7.7<br>6.3<br>4.4  | 8.6<br>7.7<br>6.0   | **                                                                                |
| Kappa 600 DR  | KDR651,<br>KDR653                      | Low 2.5 V (A, RV)<br>Nominal 3.5 V (A, RV)<br>High 5.0 V (A, RV) | 7.7<br>6.3<br>4.4  | 8.6<br>7.7<br>6.0   | **                                                                                |

\*\*Telemetry indication. Rate and mode change to 65 ppm and VVI respectively (VOO/65 with magnet).

### Reference Chart continued

|               |                                  | Estimated Long                                                                              | gevity              |                      |                                                                                                                                                                                                                                                          |
|---------------|----------------------------------|---------------------------------------------------------------------------------------------|---------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Family        | Model<br>Number                  | Amplitude Setting                                                                           | 500<br>Lead Ω       | 1000<br>Lead Ω       | Elective Replacement Indicators                                                                                                                                                                                                                          |
| Kappa 700 D   | KD701,<br>KD703,<br>KD706        | Low 2.5 V (A, RV)<br>Nominal 3.5 V (A, RV)<br>High 5.0 V (A, RV)                            | 7.7<br>6.3<br>4.4   | 8.6<br>7.7<br>6.0    | **                                                                                                                                                                                                                                                       |
| Kappa 700 DR  | KDR701,<br>KDR703,<br>KDR706     | Low 2.5 V (A, RV)<br>Nominal 3.5 V (A, RV)<br>High 5.0 V (A, RV)                            | 7.7<br>6.3<br>4.4   | 8.6<br>7.7<br>6.0    | **                                                                                                                                                                                                                                                       |
| Kappa 700 DR  | KDR721                           | Low 2.5 V (A, RV)<br>Nominal 3.5 V (A, RV)<br>High 5.0 V (A, RV)                            | 5.5<br>4.4<br>3.0   | 6.1<br>5.5<br>4.2    | **                                                                                                                                                                                                                                                       |
| Kappa 700 SR  | KSR701,<br>KSR703,<br>KSR706     | Low 2.5 V (RV)<br>Nominal 3.5 V (RV)<br>High 5.0 V (RV)                                     | 7.4<br>6.5<br>4.9   | 7.9<br>7.5<br>6.2    | **                                                                                                                                                                                                                                                       |
| Kappa 700 VDD | KVDD701                          | Low 2.5 V (RV)<br>Nominal 3.5 V (RV)<br>High 5.0 V (RV)                                     | 6.2<br>5.6<br>4.4   | 6.6<br>6.3<br>5.3    | **                                                                                                                                                                                                                                                       |
| Kappa 800 DR  | KDR801,<br>KDR803                | Low 2.5 V (A, RV)<br>Nominal 3.5 V (A, RV)<br>High 5.0 V (A, RV)                            | 7.7<br>6.3<br>4.4   | 8.6<br>7.7<br>6.0    | **                                                                                                                                                                                                                                                       |
| Kappa 900 DR  | KDR901,<br>KDR903,<br>KDR906     | Low 2.5 V (A, RV)<br>Nominal 3.5 V (A, RV)<br>High 5.0 V (A, RV)                            | 7.7<br>6.3<br>4.4   | 8.6<br>7.7<br>6.0    | **                                                                                                                                                                                                                                                       |
| Kappa 920 DR  | KDR921                           | Low 2.5 V (A, RV)<br>Nominal 3.5 V (A, RV)<br>High 5.0 V (A, RV)                            | 5.5<br>4.4<br>3.0   | 6.1<br>5.5<br>4.3    | **                                                                                                                                                                                                                                                       |
| Kappa 900 SR  | KSR901,<br>KSR903,<br>KSR906     | Low 2.5 V (RV)<br>Nominal 3.5 V (RV)<br>High 5.0 V (RV)                                     | 7.3<br>6.4<br>4.9   | 7.9<br>7.4<br>6.1    | **                                                                                                                                                                                                                                                       |
| Kappa 900 VDD | KVDD901                          | Low 2.5 V (RV)<br>Nominal 3.5 V (RV)<br>High 5.0 V (RV)                                     | 6.2<br>5.6<br>4.4   | 6.6<br>6.3<br>5.4    | **                                                                                                                                                                                                                                                       |
| Legend II     | 8424,<br>8426,<br>8427           | Low 2.5 V, 0.36 ms (RV)<br>Nominal 3.3 V, 0.36 ms (RV)<br>High 5.0 V, 0.36 ms (RV)          | 12.9<br>9.4<br>7.8  | 14.5<br>11.8<br>10.5 | If programmed to non-rate responsive mode (e.g., VVI), rate<br>decrease of 10% from programmed rate. Telemetry indication.<br>If programmed to rate responsive mode (e.g., VVIR), rate change<br>to 65 ppm and mode change to VVI. Telemetry indication. |
| Minix         | 8340,<br>8341,<br>8341M,<br>8342 | Low 2.5 V (RV)<br>Nominal 3.3 V (RV)<br>High 5.0 V (RV)                                     | 14.9<br>10.2<br>7.9 | 17.3<br>13.6<br>11.3 | Telemetry indication. Rate decrease of 10% from programmed rate.                                                                                                                                                                                         |
| Minix ST      | 8330,<br>8331,<br>8331M          | Low 2.5 V (RV)<br>Nominal 5.0 V (RV)<br>High 8.0 V (RV)                                     | 14.9<br>7.9<br>4.0  | 17.3<br>11.4<br>7.0  | Telemetry indication. Rate decrease of 10% from programmed rate.                                                                                                                                                                                         |
| Minuet        | 7107,<br>7108                    | Low 2.5 V, 0.36 ms (A, RV)<br>Nominal 4.0 V, 0.36 ms (A, RV)<br>High 5.0 V, 0.36 ms (A, RV) | 12.5<br>7.7<br>4.7  | 15.6<br>10.9<br>7.6  | **                                                                                                                                                                                                                                                       |
| Preva DR      | 7088,<br>7089                    | Low 2.5 V (A, RV)<br>Nominal 3.5 V (A, RV)<br>High 5.0 V (A, RV)                            | 9.9<br>7.4<br>5.4   | 11.3<br>9.4<br>7.5   | **                                                                                                                                                                                                                                                       |
| Preva SR      | 8088,<br>8089                    | Low 2.5 V (RV)<br>Nominal 3.5 V (RV)<br>High 5.0 V (RV)                                     | 9.8<br>8.0<br>6.4   | 10.7<br>9.5<br>8.1   | **                                                                                                                                                                                                                                                       |
| Prevail S     | 8085,<br>8086                    | Low 2.5 V, 0.42 ms (RV)<br>Nominal 3.3 V, 0.42 ms (RV)<br>High 5.0 V, 0.42 ms (RV)          | 16.4<br>10.8<br>8.6 | 19.4<br>14.4<br>12.4 | Telemetry indication. Rate decrease of 10% from programmed rate.                                                                                                                                                                                         |
|               |                                  |                                                                                             |                     |                      |                                                                                                                                                                                                                                                          |

\*\*Telemetry indication. Rate and mode change to 65 ppm and VVI respectively (VOO/65 with magnet).

### Reference Chart continued

|               |                                 | Estimated I                                                      | ongevity           |                     |                                 |
|---------------|---------------------------------|------------------------------------------------------------------|--------------------|---------------------|---------------------------------|
| Family        | Model<br>Number                 | Amplitude Setting                                                | 500<br>Lead Ω      | 1000<br>Lead Ω      | Elective Replacement Indicators |
| Prodigy DR    | 7860,<br>7861,<br>7862          | Low 2.5 V (A, RV)<br>Nominal 3.5 V (A, RV)<br>High 5.0 V (A, RV) | 9.9<br>7.4<br>5.4  | 11.3<br>9.4<br>7.5  | **                              |
| Prodigy SR    | 8158,<br>8160,<br>8161,<br>8162 | Low 2.5 V (RV)<br>Nominal 3.5 V (RV)<br>High 5.0 V (RV)          | 9.8<br>8.0<br>6.4  | 10.7<br>9.5<br>8.1  | **                              |
| Sensia DR     | SEDR01,<br>SED01                | Low 2.5 V (A, RV)<br>Nominal 3.5 V (A, RV)<br>High 5.0 V (A, RV) | 7.5<br>6.1<br>4.5  | 8.3<br>7.4<br>6.0   | **                              |
| Sensia SR     | SESR01,<br>SES01                | Low 2.5 V (RV)<br>Nominal 3.5 V (RV)<br>High 5.0 V (RV)          | 7.3<br>6.4<br>5.0  | 7.8<br>7.4<br>6.2   | **                              |
| Sigma 100 S   | SS103,<br>SS106                 | Low 2.5 V (RV)<br>Nominal 3.5 V (RV)<br>High 5.0 V (RV)          | 10.1<br>8.2<br>6.4 | 11.1<br>9.8<br>8.4  | **                              |
| Sigma 200 DR  | SDR203                          | Low 2.5 V (A, RV)<br>Nominal 3.5 V (A, RV)<br>High 5.0 V (A, RV) | 10.1<br>7.5<br>5.5 | 11.7<br>9.6<br>7.8  | **                              |
| Sigma 200 SR  | SSR203                          | Low 2.5 V (RV)<br>Nominal 3.5 V (RV)<br>High 5.0 V (RV)          | 10.1<br>8.2<br>6.4 | 11.1<br>9.8<br>8.4  | **                              |
| Sigma 300 DR  | SDR303,<br>SDR306               | Low 2.5 V (A, RV)<br>Nominal 3.5 V (A, RV)<br>High 5.0 V (A, RV) | 10.1<br>7.5<br>5.5 | 11.7<br>9.6<br>7.8  | **                              |
| Sigma 300 SR  | SSR303,<br>SSR306               | Low 2.5 V (RV)<br>Nominal 3.5 V (RV)<br>High 5.0 V (RV)          | 10.1<br>8.2<br>6.4 | 11.1<br>9.8<br>8.4  | **                              |
| Sigma 300 VDD | SVDD303                         | Low 2.5 V (RV)<br>Nominal 3.5 V (RV)<br>High 5.0 V (RV)          | 8.9<br>7.3<br>5.8  | 9.7<br>8.6<br>7.4   | **                              |
| Thera-i DR    | 7960i,<br>7961i,<br>7962i       | Low 2.5 V (A, RV)<br>Nominal 3.5 V (A, RV)<br>High 5.0 V (A, RV) | 9.9<br>7.4<br>5.4  | 11.3<br>9.4<br>7.5  | **                              |
| Thera-i SR    | 8960i,<br>8961i,<br>8962i       | Low 2.5 V (RV)<br>Nominal 3.5 V (RV)<br>High 5.0 V (RV)          | 9.8<br>8.0<br>6.4  | 10.7<br>9.5<br>8.1  | **                              |
| Thera-i VDD   | 8968i                           | Low 2.5 V (RV)<br>Nominal 3.5 V (RV)<br>High 5.0 V (RV)          | 11.5<br>9.6<br>7.7 | 12.4<br>11.1<br>9.7 | **                              |
| Versa DR      | VEDR01                          | Low 2.5 V (A, RV)<br>Nominal 3.5 V (A, RV)<br>High 5.0 V (A, RV) | 7.5<br>6.1<br>4.5  | 8.3<br>7.4<br>6.0   | **                              |

Ddl

 $^{**}$  Telemetry indication. Rate and mode change to 65 ppm and VVI respectively (VOO/65 with magnet).

## **Method for Estimating Lead Performance**

Medtronic CRDM has tracked lead survival for over 27 years with its multicenter, global chronic lead studies.

### Leads Performance Analysis

Implanted leads operate in the challenging biochemical environment of the human body and the body's response to foreign objects. Implanted leads are also subject to mechanical stresses associated with heart motion, body motion, and patient anatomy.

In this environment, pacemaker and defibrillation leads cannot be expected to last forever. While IPGs and ICDs have a battery that will deplete after a predictable length of time, a lead's longevity cannot be predicted, nor are there simple indicators that a lead is approaching the end of its service life. Therefore, regular monitoring while implanted, and evaluation of lead integrity upon IPG or ICD replacement, is necessary to determine if a lead may be approaching the end of its service life.

### **Returned Product Analysis Shortfalls**

All leads and lead segments returned to Medtronic are analyzed to determine whether or not they meet performance limits established by Medtronic. Although returned product analyses are valuable for gaining insight into lead failure mechanisms, this data cannot be used by itself for determining the survival probability of leads because only a small fraction of leads are explanted and returned for analysis. Additionally, those leads that are returned cannot be assumed to be statistically representative of the performance of the total population for a given lead model. Partial or total lead extraction can result in significant damage to a lead, making a definitive analysis of a suspected failure and its cause impossible. Thus, lead survival probabilities are more appropriately determined through a clinical surveillance study. Although returned product analysis results are presented in this report, Medtronic tracks lead survival through its System Longevity Study.

### System Longevity Study (SLS)

The SLS is a prospective, non-randomized multicenter, global study designed to monitor the performance of market-released cardiac therapy products. Medtronic has been monitoring the performance of its cardiac therapy products with a multicenter study for 27 years and has evaluated the performance of more than 75,000 leads, with data reported from 14 countries on four continents.

The primary purpose of the SLS is to evaluate and publish the long-term reliability and performance of Medtronic market-released cardiac therapy products by analyzing product survival probabilities. Productrelated adverse events, indicating the status of the product, are collected to measure survival probabilities. The data gathered in this study may also be used to support the design and development of investigational plans for new cardiac therapy products. The SLS is designed to continue indefinitely, encompassing new products as they become commercially available.

Eligible products for study enrollment include all Medtronic market-released cardiac therapy products. Medtronic may limit overall enrollment of any product when the number of enrollments provides an adequate number to effectively assess product survivability. Medtronic reserves the right to close enrollment of a product at a site level in order to ensure all participating sites have an equal opportunity to enroll.

To ensure a sufficiently large and representative source of data, participating clinical centers must meet specific selection criteria. In addition, centers are selected to be representative of the range of clinical environments in which Medtronic conducts business.

Investigators enroll qualified subjects with specific Medtronic market-released cardiac therapy products and follow these subjects from their implant date until they can no longer be followed (e.g., death and lost to follow-up). Using a Clinical Investigation Plan, each center monitors and reports on the performance of specific Medtronic market-released cardiac therapy products (e.g., product-related adverse events, replacements and abandonments) and subject status (e.g., subject death and subject withdrawal from the study). Subjects will be followed by their respective center in accordance with the center's established practices for routine follow-up.

Patients are eligible for enrollment in the study if:

- 1. They are within 6 months post-implant of a Medtronic market-released lead connected to a market-released CRT, ICD, or IPG device, and the lead is used for a pacing, sensing, or defibrillation application, or
- 2. They participated in a qualifying study of a marketreleased Medtronic cardiac therapy product; complete implant and follow-up data are available; and the data is appropriately and legally released for use in the study.

### The Standard Actuarial Method is used to determine estimates of lead survival.

The SLS protocol requires regular follow-up reporting on all leads actively followed in the study. The follow-up schedule for this study is based on utilizing routine, scheduled office/clinic visits and unscheduled office/ clinic visits prompted by symptoms or complaints. Data collected at each follow-up includes routine clinical electrical data, any system modifications, and any lead or generator adverse events.

Each study center must inform Medtronic whenever a lead complication has occurred or when a patient is no longer participating in the study. Under the study protocol, each lead is assumed to be normally active unless a lead-related complication is confirmed, the lead is abandoned or explanted, the patient is no longer available for follow-up, or more than 24 months have passed since last follow-up. The data analyses assume that the patient is still part of the study and no lead complications had occurred as of the report cutoff date unless specifically reported by the center.

Medtronic evaluates center compliance with study protocol through clinical monitoring at each study site. Additionally, study center personnel must be trained in the study procedures prior to participating, and they must adhere to the policies and procedures of their local ethics boards.

### Lead Complications

All adverse events are critically evaluated by a Medtronic technical review committee and the investigator is asked to assess the relationship of the adverse event to the presence or performance of the implanted system, generator and/or lead(s).

The SLS complication criteria are defined below. These criteria do not, however, enable a lead integrity or "hardware" failure to be conclusively differentiated from other clinical events such as an undetected lead dislodgement, exit block, or concurrent pulse generator failure manifested as a sensing or capture problem.

A lead-related complication is considered to have occurred if at least one of the following clinical observations is reported and at least one of the following clinical actions is made 30 days or more after the implant.

### **Clinical Observations**

- Failure to capture
- Failure to sense/undersensing
- Oversensing
- Abnormal pacing impedance (based on lead model, but normal range is typically 200-3,000 ohms)
- Abnormal defibrillation impedance (based on lead model, but normal range is typically 20-200 ohms)
- Insulation breach, observed visually, that has degraded system performance
- Conductor fracture, observed visually or radiographically
- Extracardiac stimulation
- Cardiac perforation
- Lead dislodgement

### **Clinical Actions**

- Lead surgically abandoned/capped
- Lead electrically abandoned/capped
- Lead explanted
- Lead replaced
- Polarity reprogrammed (i.e., bipolar to unipolar; unipolar to bipolar)
- Lead use continued based on medical judgment despite a known clinical performance issue
- Other lead-related surgery performed (e.g., lead mechanical alteration or unsuccessful repositioning)

Note: Successful lead repositioning is not a qualifying action.

### **Data Analysis Methods**

The performance of leads is expressed in terms of lead survival estimates, where "survival" refers to the function of the lead, not the survival of the patient. These survival estimates are intended to illustrate the probability that a lead will survive for a given number of years without a lead-related complication.

The survival estimates are determined from the analysis of the data collected through the SLS. These data are presented graphically and numerically.

Survival times are calculated from the implant date to the earlier of the complication date, out-of-service date (for example, subject leaves the study, the lead is no longer being used, or no data has been reported within a specified time interval), or the cutoff date of the report. If a lead experiences more than one complication, the first is used to calculate survival time; although all complications associated with a lead are in the tables in this report.

Of the several different statistical methods available for survival analysis, the Standard Actuarial Method, with suspensions assumed distributed across the intervals (Cutler-Ederer Method), is used to determine estimates of lead survival. This method is commonly used by medical researchers and clinicians.

On the following pages, each graph includes a survival curve where events include qualifying lead-related complications. This survival estimate is a good representation of the probability a lead will survive a period of time without a lead-related complication. For example, if a survival probability is 95% after 5 years of service, then the lead has a 5% chance of experiencing a lead-related complication in the first 5 years following implant.

Since the survival estimate can become very imprecise with small effective sample sizes, Medtronic truncates the survival curve when the number of leads entering an interval is less than 50 leads. When the number of leads entering an interval reaches 50, the next data point is added to the survival curve. Although the report provides tabular data in 1-year intervals, the curves are actually computed and plotted using 3-month intervals.

The data in the tables is rounded to the nearest tenth of one percent. Occasionally, a graph may show 100% survival, but have one or more complications. This occurs because even with the complications, the data rounds to 100%.

The survival curves are statistical estimates. As performance experience accumulates, the estimation improves. Confidence intervals are provided as a way to indicate the degree of certainty of the estimates. Greenwood's formula is used to calculate corresponding 95% confidence intervals for the standard errors, and the complementary log-log method is used to produce the confidence bounds.

# Medtronic urges all physicians to return explanted products and to notify Medtronic when a product is no longer in use, regardless of reason for explant or removal from use.

# Sample Size and How the Population and Population Samples Are Defined

The population sample from which the survival estimates are derived is comprised of the patients successfully enrolled in the SLS as of the report cutoff date. The number of enrolled implants is listed for each model.

This sample based on SLS enrollments is considered to be representative of the worldwide population, including data from 14 countries on four continents, and therefore the survival estimates shown in this report should be representative of the performance worldwide of these models.

In general, a model or model family will be included in this report when more than 100 leads have been enrolled and no fewer than 50 leads followed for at least 6 months. Models will remain in the report for at least 20 years as long as Medtronic estimates at least 500 leads remain active in the United States, based on estimated US implants.

Medtronic, at its discretion, may stop providing updated performance information on lead models that received original US market-release approval 20 or more years ago. These models may be removed from this report at that time.

### **Returned Product Analysis Results**

Every lead or lead portion returned to Medtronic receives an analysis. Although the returned product analysis data is not used to generate the survival estimates, the data provides valuable insight into the causes of lead malfunction.

For reporting returned product analysis results, Medtronic CRDM considers a lead as having malfunctioned whenever the analysis shows that any parameter was outside the performance limits established by Medtronic while implanted and in service. To be considered a malfunction for returned product analysis reporting, the lead must have been returned to Medtronic and analyzed.

The results of the analysis is presented in four categories. The lead reporting categories are:

• Conductor Fracture: Conductor malfunction with complete or intermittent loss of continuity that could interrupt current flow (e.g., fractured conductors), including those associated with clavicle flex fatigue or crush damage.

- Insulation Breach: A malfunction of the insulation allowing inappropriate entry of body fluids or inappropriate current flow between the conductors, or between the conductor and the body. Examples include cuts, tears, depressions, abrasions, and material degradation.
- Crimps/Welds/Bonds: Any malfunction in a conductor or lead body associated with a point of connection.
- Other: Malfunctions of specific lead mechanical attributes, such as sensors, connectors, seal rings, or malfunction modes not included in the three categories above.

A lead subject to a safety advisory is not considered to have malfunctioned unless it has been returned to Medtronic CRDM and found, through analysis, to actually have performed outside the performance limits established by Medtronic.

For leads designed for either ventricular or atrial use, the numbers listed in the Returned Product Analysis tables include both.

The numbers of malfunctions listed in the Returned Product Analysis tables are the actual numbers confirmed in the returned product analysis from the United States. The numbers of complications listed in the complications tables are the actual numbers observed in the SLS centers around the world.

# US Reports of Acute Lead Observations (Occurring within First Month of Service)

In the first weeks following lead implantation, physiologic responses and lead performance can vary until longterm lead stability is attained. Acute (defined as the first month after implant) lead performance may be subject to a number of factors, including patient-specific anatomy,

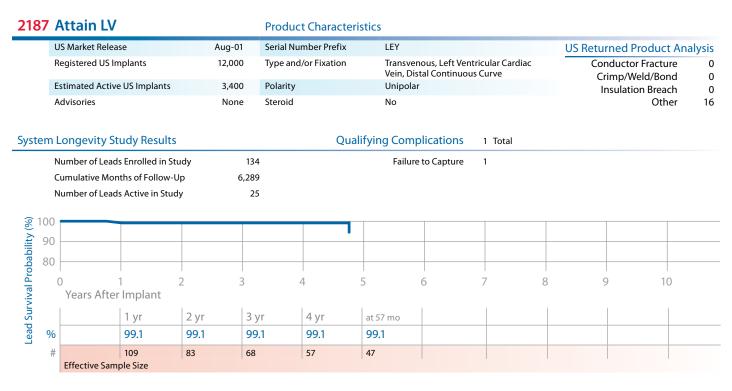
clinical conditions and/or varying implant conditions/ techniques. After a period of time, the implant and the lead performance stabilizes. It is for this reason that the System Longevity Study results, which are intended to measure long-term performance, do not include complications that occur within the first 30 days after implant.

Information about the clinical experience in the first month of service is included in this report. The source for this information is Medtronic's complaint handling system database. The information is summarized in tables titled "US Reports of Acute Lead Observations." To be included in this summary of observations, a lead must first be successfully implanted and registered in Medtronic's Device and Registrant Tracking system.

Each Event Report received by Medtronic's complaint handling system is assigned one or more Reason for Report codes based on the information received. The Reason for Report codes have been grouped into Acute Lead Observation categories. The categories used for this product performance report are drawn from the "FDA Guidance for Submission of Research and Marketing Applications for Permanent Pacemaker Leads and for Pacemaker Lead Adapter 510(k) Submissions." The categories are:

- 1. Cardiac Perforation
- 2. Conductor Fracture
- 3. Lead Dislodgement
- 4. Failure to Capture
- 5. Oversensing
- 6. Failure to Sense
- 7. Insulation Breach
- 8. Impedance Abnormal
- 9. Extracardiac Stimulation
- 10. Unspecified

Although multiple observations are possible for any given lead, only one observation is reported per lead. The observation reported is the observation highest on the list. For example, if an Event Report includes observations for both Lead Dislodgement and Failure to Sense, Lead Dislodgement is reported.


The lead event reported to Medtronic may or may not have involved clinical action or product returned to Medtronic. The lead may have remained implanted and in service.

### Estimated Number of Implanted and Active Leads in the United States

In addition to providing the number of leads enrolled in the SLS, this report also provides the number of leads registered as implanted and the number remaining active in the United States based on the status recorded in the Medtronic Device and Registrant Tracking system.

Some lead models do not have a survival curve presented in this report. These lead models do not have a survival curve because they have insufficient sample size in the System Longevity Study. Returned Product Analysis results for these models are included here for reference and comparison.

# Left-Heart Leads



### 2188 Attain CS

Data as of January 31, 2011

### **Product Characteristics**

| US Market Release            | Aug-01 | Serial Number Prefix | LEB                                                  | US Returned Product Anal              | lysis |
|------------------------------|--------|----------------------|------------------------------------------------------|---------------------------------------|-------|
| Registered US Implants       | 1,800  | Type and/or Fixation | Transvenous, Coronary Sinus/<br>Cardiac Vein, Canted | Conductor Fracture<br>Crimp/Weld/Bond | 1     |
| Estimated Active US Implants | 400    | Polarity             | Bipolar                                              | Insulation Breach                     | 0     |
| Advisories                   | None   | Steroid              | No                                                   | Other                                 | 0     |

| Syst                          | em L | ongevity Stu    | dy Results        |                    |                  | Qualifyin | g Complicatio     | ons 1 Tot | al  |     |      |  |
|-------------------------------|------|-----------------|-------------------|--------------------|------------------|-----------|-------------------|-----------|-----|-----|------|--|
|                               | N    | umber of Leads  | Enrolled in Study | , 1 <u>5</u>       | 5                | Extra     | a Cardiac Stimula | tion 1    |     |     |      |  |
|                               | C    | umulative Montl | ns of Follow-Up   | 460                | )                |           |                   |           |     |     |      |  |
|                               | N    | umber of Leads  | Active in Study   | (                  | )                |           |                   |           |     |     |      |  |
|                               | 100  |                 |                   |                    |                  |           |                   |           |     |     |      |  |
| ty (%                         | 90   | Survival estin  | nate not availab  | le due to insuffic | ient sample size | 2         |                   |           |     |     |      |  |
| bilit                         |      |                 |                   |                    |                  |           |                   |           |     |     |      |  |
| oba                           | 80   |                 |                   |                    |                  |           |                   |           |     |     |      |  |
| al Pr                         |      | 0               | 1 :               | 2 3                | 4                |           | 5 6               |           | 7 8 | 8 9 | 9 10 |  |
| Lead Survival Probability (%) |      | Years After I   | mplant            |                    |                  |           |                   |           |     |     |      |  |
| ad Si                         |      |                 |                   |                    |                  |           |                   |           |     |     |      |  |
| Lea                           | %    |                 |                   |                    |                  |           |                   |           |     |     |      |  |
|                               | #    |                 |                   |                    |                  |           |                   |           |     |     |      |  |
|                               |      | Effective Samp  | e Size            |                    |                  |           |                   |           |     |     |      |  |

Source: Medtronic Device Registration and Returned Product Analysis

| 55           | Attain O       | 1 VV             |       | FIC      | oduct Charact     | ensues       |                                    |                        |               |                           |        |
|--------------|----------------|------------------|-------|----------|-------------------|--------------|------------------------------------|------------------------|---------------|---------------------------|--------|
|              | US Market Rele | ease             | Ma    | y-02 Ser | al Number Prefix  | BAA          |                                    |                        | US Returned   | Product Ana               | alysis |
|              | Registered US  | Implants         | 100   | ,800 Тур | e and/or Fixation |              | venous, Left Ven<br>I Double Curve | tricular Cardiac Vein, |               | tor Fracture<br>Weld/Bond | 38     |
|              | Estimated Acti | ve US Implant    | s 43  | ,500 Pol | arity             | Unip         | olar                               |                        |               | tion Breach               | 2      |
|              | Advisories     |                  | Ν     | lone Ste | roid              | Yes          |                                    |                        |               | Other                     | 72     |
| stem         | Longevity S    | Study Resul      | ts    |          | Q                 | ualifying Co | mplications                        | 38 Total               |               |                           |        |
|              | Number of Lea  | ds Enrolled in   | Study | 675      |                   | Lead         | Dislodgement                       | 15                     | Unspecified C | linical Failure           | 3      |
|              | Cumulative Mo  | onths of Follow  | v-Up  | 28,309   |                   | Fai          | ure to Capture                     | 12                     | Extra Cardia  | c Stimulation             | 7      |
|              | Number of Lea  | nds Active in St | udy   | 179      |                   | Conc         | luctor Fracture                    | 1                      |               |                           |        |
| 10           | 0 -            |                  |       |          |                   |              |                                    |                        |               |                           |        |
| 10           |                |                  |       |          |                   |              |                                    |                        |               |                           |        |
| 9            | 0              |                  |       |          |                   |              |                                    |                        |               |                           |        |
| 8            | 0              |                  |       |          |                   |              |                                    |                        |               |                           |        |
|              | 0              | 1                | 2     | 3        | 4                 | 5            | 6                                  | 7 8                    | 9             | 10                        |        |
|              | Years Afte     | er Implant       | _     | 0        |                   | 5            |                                    | ,                      | -             |                           |        |
| 10<br>9<br>8 |                | 1 yr             | 2 yr  | 3 yr     | 4 yr              | 5 yr         | 6 yr                               | 7 yr                   |               |                           |        |
| 9            | 6              | 95.9             | 94.9  | 94.2     | 94.2              | 94.2         | 93.1                               | 93.1                   |               |                           |        |
|              | #              | 547              | 428   | 346      | 264               | 185          | 117                                | 52                     |               |                           |        |
|              | Effective Sa   | mole Size        |       |          |                   |              |                                    |                        | '             | 1                         |        |

| 4194                          | Attain OT        | W                |        | Produ    | ict Character  | istics       |                                 |         |    |          |                                |            |
|-------------------------------|------------------|------------------|--------|----------|----------------|--------------|---------------------------------|---------|----|----------|--------------------------------|------------|
|                               | US Market Releas | se               | Aug-04 | Serial N | lumber Prefix  | LFG          |                                 |         |    | US Retur | ned Produc                     | t Analysis |
|                               | Registered US Im | plants           | 96,300 | Type ar  | nd/or Fixation |              | ous, Left Ver<br>ein, Distal De |         | ve |          | ductor Fractu                  |            |
|                               | Estimated Active | US Implants      | 64,500 | Polarity | /              | Bipolar      |                                 |         |    |          | imp/Weld/Boi<br>Isulation Brea |            |
|                               | Advisories       |                  | None   | Steroid  |                | Yes          |                                 |         |    |          | Oth                            |            |
| Syster                        | m Longevity St   | udy Results      |        |          | Qua            | lifying Comp | lications                       | 13 Tota | I  |          |                                |            |
|                               | Number of Leads  |                  | -      | 034      |                | Lead Disl    | odgement                        | 7       |    |          | ied Clinical Fail              |            |
|                               | Cumulative Mon   | ths of Follow-U  | p 24,  | 852      |                | Failure      | to Capture                      | 2       |    | Extra C  | ardiac Stimulat                | ion 2      |
|                               | Number of Leads  | s Active in Stud | у      | 779      |                | Insula       | ation (ESC)                     | 1       |    |          |                                |            |
| <b>•</b> 10                   |                  |                  |        |          |                |              |                                 |         |    |          |                                |            |
| %) (%                         | 00               |                  |        |          |                | -            |                                 |         |    |          |                                |            |
| bilit                         | 90               |                  |        |          |                |              |                                 |         |    |          |                                |            |
| oba                           | 80               |                  |        |          |                |              |                                 |         |    |          |                                |            |
| al Pro                        | 0                | 1                | 2 3    |          | 4              | 5            | 6                               | 7       | 8  | ç        | ) 1                            | 0          |
| Lead Survival Probability (%) | Years After      | Implant          |        |          |                |              |                                 |         |    |          |                                |            |
| ead                           |                  | 1 yr             | 2 yr   | 3 yr     | 4 yr           | 5 yr         |                                 |         |    |          |                                |            |
| Ľ.                            | %                | 99.2             | 98.5   | 98.5     | 98.0           | 97.3         |                                 |         |    |          |                                |            |
|                               | #                | 650              | 389    | 230      | 136            | 45           |                                 |         |    |          |                                |            |

Effective Sample Size

|               | U               | IS Market Releas  | se               | Aug-08 | B Serial N | lumber Prefix  | AAD             |                                 |                                  | <b>US</b> Retur                      | ned Product Ar  | nalysi |
|---------------|-----------------|-------------------|------------------|--------|------------|----------------|-----------------|---------------------------------|----------------------------------|--------------------------------------|-----------------|--------|
|               | Re              | egistered US Im   | plants           | 10,200 | ) Type ar  | nd/or Fixation |                 | nous, Left Ver<br>ble Lobe Fixa | ntricular Cardiac Vein,<br>Ition | Conductor Fractur<br>Crimp/Weld/Bone |                 |        |
|               | Es              | stimated Active   | US Implants      | 8,800  | D Polarity | /              | Unipolar        |                                 |                                  |                                      | sulation Breach |        |
|               | Ad              | dvisories         |                  | None   | e Steroid  |                | Yes             |                                 |                                  |                                      | Other           | 2      |
| vste          | em L            | ongevity St       | udy Results      |        |            | Qualif         | fying Comp      | olications                      | 4 Total                          |                                      |                 |        |
|               | N               | lumber of Leads   | Enrolled in Stu  | Jdy    | 654        |                | Lead Dis        | lodgement                       | 1                                |                                      |                 |        |
|               | Cu              | umulative Mon     | ths of Follow-U  | lp 10  | ),682      |                | Conduct         | tor Fracture                    | 1                                |                                      |                 |        |
|               | N               | lumber of Leads   | A                | .,     | 501        |                |                 |                                 |                                  |                                      |                 |        |
|               | INI             |                   | s Active in Stud | у      | 591        | ł              | Extra Cardiac S | Stimulation                     | 2                                |                                      |                 |        |
| 5             |                 | Id hiber of Leads | S Active in Stud | y      | 591        |                | Extra Cardiac ! | Stimulation                     | 2                                |                                      |                 |        |
| 1011 <b>(</b> | 100             |                   | Active in Stud   | y      | 591        |                | Extra Cardiac S | Stimulation                     | 2                                |                                      |                 |        |
|               | 100<br>90       |                   |                  | y      |            |                | Extra Cardiac : |                                 | 2                                |                                      |                 |        |
| (a) (         | 100<br>90<br>80 |                   |                  |        |            |                |                 |                                 | 2                                |                                      |                 |        |
|               | 100<br>90<br>80 |                   |                  | 2      | 3          | 4              | Extra Cardiac : | 6                               | 2                                | 8                                    | 9               | 10     |
|               | 100<br>90<br>80 |                   | 1                |        |            |                |                 |                                 | 2                                | 8                                    | 9               | 10     |
|               | 100<br>90<br>80 | 0                 | 1                |        |            |                |                 |                                 | 2                                | 8                                    | 9               | 10     |
|               | 100<br>90<br>80 | 0                 | 1<br>Implant     | 2      | 3          | 4              |                 |                                 | 2                                | 8                                    | 9               | 10     |

### 4196 Attain Ability

### **Product Characteristics**

|     | US Market Release   |                  | May-09           | Serial Number Prefix | PVI                                            |         | US Returned Product Ar               | alysis |
|-----|---------------------|------------------|------------------|----------------------|------------------------------------------------|---------|--------------------------------------|--------|
|     | Registered US Imp   | lants            | 26,600           | Type and/or Fixation | Transvenous, Left Vent<br>Preformed Body, Doub |         | Conductor Fracture                   |        |
|     | Estimated Active U  | IS Implants      | 23,900           | Polarity             | Bipolar                                        |         | Crimp/Weld/Bond<br>Insulation Breach | (      |
|     | Advisories          |                  | None             | Steroid              | Yes                                            |         | Other                                | 1      |
| tem | n Longevity Stud    | dy Results       |                  | Qual                 | fying Complications                            | 2 Total |                                      |        |
|     | Number of Leads E   | nrolled in Study | 1,228            |                      | Lead Dislodgement                              | 1       |                                      |        |
|     | Cumulative Month    | s of Follow-Up   | 11,774           |                      | Extra Cardiac Stimulation                      | 1       |                                      |        |
|     | Number of Leads A   | Active in Study  | 1,138            |                      |                                                |         |                                      |        |
| 10  |                     |                  |                  |                      |                                                |         |                                      |        |
| 10  | 10                  |                  |                  |                      |                                                |         |                                      |        |
|     |                     |                  |                  |                      |                                                |         |                                      |        |
| 9   | 90                  |                  |                  |                      |                                                |         |                                      |        |
|     |                     |                  |                  |                      |                                                |         |                                      |        |
|     | 30                  | 1 2              |                  | 4                    | 5 6                                            | 7       | 8 9                                  | 10     |
|     | 0                   | 1 2              | 2.3              | 4                    | 5 6                                            | 7       | 8 9                                  | 10     |
|     | 30                  |                  | 2.3              | 4                    | 5 6                                            | 7       | 8 9                                  | 10     |
|     | 0                   |                  | 2. 3<br>at 18 mo | 4                    | 5 6                                            | 7       | 8 9                                  | 10     |
|     | 0<br>Vears After Ir | mplant           |                  | 4                    | 5 6                                            | 7       | 8 9                                  | 10     |
| 8   | 0<br>Vears After Ir | mplant<br>1 yr   | at 18 mo         | 4                    | 56                                             | 7       | 8 9                                  | 10     |

### Lead Survival Summary (95% Confidence Interval)

|                 |                   | ease              | ъ              | n Study               |                             | onths of<br>study                          | 1                 | Survival                      |                   | lity (%)          |                               |                   |                   |      |      |       |
|-----------------|-------------------|-------------------|----------------|-----------------------|-----------------------------|--------------------------------------------|-------------------|-------------------------------|-------------------|-------------------|-------------------------------|-------------------|-------------------|------|------|-------|
| Model<br>Number | Family            | US Market Release | Leads Enrolled | Leads Active in Study | Qualifying<br>Complications | Cumulative Months of<br>Follow-Up in Study | Years A<br>1 yr   | fter Imp                      | lant<br>3 yr      | 4 yr              | 5 yr                          | бyr               | 7 yr              | 8 yr | 9 yr | 10 yr |
| 2187            | Attain LV         | Aug-01            | 134            | 25                    | 1                           | 6,289                                      | 99.1<br>+0.8/-5.1 | 99.1<br>+0.8/-5.1             | 99.1<br>+0.8/-5.1 | 99.1<br>+0.8/-5.1 | 99.1<br>+0.8/-5.1<br>at 57 mo |                   |                   |      |      |       |
| 2188            | Attain CS         | Aug-01            | 15             | 0                     | 1                           | 460                                        | 100.0<br>at 0 mo  |                               |                   |                   |                               |                   |                   |      |      |       |
| 4193            | Attain<br>OTW     | May-02            | 675            | 179                   | 38                          | 28,309                                     | 95.9<br>+1.3/-1.8 | 94.9<br>+1.5/-2               | 94.2<br>+1.7/-2.2 | 94.2<br>+1.7/-2.2 | 94.2<br>+1.7/-2.2             | 93.1<br>+2.1/-2.9 | 93.1<br>+2.1/-2.9 |      |      |       |
| 4194            | Attain<br>OTW     | Aug-04            | 1,034          | 779                   | 13                          | 24,852                                     | 99.2<br>+0.4/-0.9 | 98.5<br>+0.7/-1.3             | 98.5<br>+0.7/-1.3 | 98.0<br>+1/-1.8   | 97.3<br>+1.4/-2.8             |                   |                   |      |      |       |
| 4195            | Attain<br>StarFix | Aug-08            | 654            | 591                   | 4                           | 10,682                                     | 99.4<br>+0.4/-1.3 | 99.4<br>+0.4/-1.3             | 98.2<br>+1.3/-5.3 | 98.2<br>+1.3/-5.3 |                               |                   |                   |      |      |       |
| 4196            | Attain<br>Ability | May-09            | 1,228          | 1,138                 | 2                           | 11,774                                     | 99.8<br>+0.2/-0.6 | 99.8<br>+0.2/-0.6<br>at 18 mo |                   |                   |                               |                   |                   |      |      |       |

Source: System Longevity Study Data as of January 31, 2011

### **US Returned Product Analysis Summary**

| Model<br>Number | Family         | US Market<br>Release | Estimated<br>US Implants | Estimated<br>US Active | Conductor<br>Fracture | Crimp/Weld/<br>Bond | Insulation<br>Breach | Other |
|-----------------|----------------|----------------------|--------------------------|------------------------|-----------------------|---------------------|----------------------|-------|
| 2187            | Attain LV      | Aug-01               | 12,000                   | 3,400                  | 0                     | 0                   | 0                    | 16    |
| 2188            | Attain CS      | Aug-01               | 1,800                    | 400                    | 1                     | 0                   | 0                    | 0     |
| 4193            | Attain OTW     | May-02               | 100,800                  | 43,500                 | 38                    | 0                   | 2                    | 72    |
| 4194            | Attain OTW     | Aug-04               | 96,300                   | 64,500                 | 5                     | 0                   | 31                   | 17    |
| 4195            | Attain StarFix | Aug-08               | 10,200                   | 8,800                  | 1                     | 0                   | 1                    | 21    |
| 4196            | Attain Ability | May-09               | 26,600                   | 23,900                 | 0                     | 0                   | 2                    | 14    |

Source: Returned Product Analysis Data as of January 31, 2011

## **US Reports of Acute Lead Observations**

| Model<br>Number | Family         | Estimated<br>US Implants | Cardiac<br>Perforation | Conductor<br>Fracture | Lead<br>Dislodgement | Failure<br>to Capture | Oversensing | Failure<br>to Sense |   | Impedance<br>Abnormal | Extracardiac<br>Stimulation | Unspecified |
|-----------------|----------------|--------------------------|------------------------|-----------------------|----------------------|-----------------------|-------------|---------------------|---|-----------------------|-----------------------------|-------------|
| 2187            | Attain LV      | 12,000                   | 1                      | 0                     | 8                    | 4                     | 0           | 1                   | 0 | 0                     | 1                           | 0           |
| 2188            | Attain CS      | 1,800                    | 0                      | 0                     | 2                    | 0                     | 0           | 0                   | 0 | 0                     | 0                           | 0           |
| 4193            | Attain OTW     | 100,800                  | 1                      | 1                     | 50                   | 14                    | 0           | 0                   | 0 | 2                     | 18                          | 0           |
| 4194            | Attain OTW     | 96,300                   | 1                      | 2                     | 80                   | 22                    | 2           | 0                   | 0 | 3                     | 16                          | 3           |
| 4195            | Attain StarFix | 10,200                   | 0                      | 0                     | 17                   | 9                     | 0           | 0                   | 0 | 1                     | 11                          | 0           |
| 4196            | Attain Ability | 26,600                   | 1                      | 1                     | 56                   | 17                    | 0           | 0                   | 2 | 7                     | 26                          | 1           |

Report Cutoff Date: January 31, 2011

## **Reference Chart**

| Model<br>Number | Family         | Туре                                            | Insulation                                | Conductor<br>Material | Tip<br>Electrode                          | Connector<br>Type |
|-----------------|----------------|-------------------------------------------------|-------------------------------------------|-----------------------|-------------------------------------------|-------------------|
| 2187            | Attain LV      | Transvenous<br>Cardiac Vein<br>Preformed Body   | Polyurethane<br>(55D)                     | MP35N                 | Platinized<br>Platinum                    | IS-1 UNI          |
| 2188            | Attain CS      | Transvenous<br>Cardiac Vein<br>Preformed Body   | Polyurethane<br>(55D)                     | MP35N                 | Platinized<br>Platinum                    | IS-1 BI           |
| 4193            | Attain OTW     | Transvenous<br>Cardiac Vein<br>Preformed Body   | Polyurethane<br>(55D)                     | MP35N                 | Platinized<br>Platinum                    | IS-1 UNI          |
| 4194            | Attain OTW     | Transvenous<br>Cardiac Vein<br>Preformed Body   | Polyurethane<br>(55D)/<br>Silicone (4719) | MP35N                 | Platinum Alloy                            | IS-1 BI           |
| 4195            | Attain StarFix | Transvenous Cardiac<br>Vein Deployable<br>Lobes | Polyurethane<br>(55D)                     | MP35N                 | Platinum Alloy                            | IS-1 Uni          |
| 4196            | Attain Ability | Transvenous<br>Cardiac Vein<br>Preformed Body   | Polyurethane<br>(55D),<br>SI polyimide    | Ag core –<br>MP35N    | Tapered,<br>Annualar,<br>Titanium nitride | IS-1 BI           |

# **Defibrillation Leads**

# 6721, 6921 Epicardial Patch

### **Product Characteristics**

|             | US Market Rele  | ase                    | F         | eb-93     | Serial Number Prefix | ТВН, ТВ          | G, TBB, TAD, T  | AC, or TAB     | US R                       | eturned Produ   | ct Analy        | /sis |
|-------------|-----------------|------------------------|-----------|-----------|----------------------|------------------|-----------------|----------------|----------------------------|-----------------|-----------------|------|
|             | Registered US   | Implants               |           | 8,600     | Type and/or Fixation | Epicard          | ial Defib Patch | n, Suture      |                            | Conductor Fra   |                 | 7    |
|             | Estimated Acti  | ive US Implants        |           | 1,400     | Polarity             | Defib E          | lectrode only   |                | Crimp/Weld<br>Insulation F |                 |                 | 1    |
|             | Advisories      |                        |           | None      | Steroid              | No               |                 |                |                            |                 | oreach<br>Other | 1    |
| ystem       | n Longevity S   | Study Result           | s         |           | Qua                  | lifying Com      | plications      | 51 Total       |                            |                 |                 |      |
|             | Number of Lea   | ads Enrolled in S      | itudy     | 407       |                      | Failur           | e to Capture    | 8              | I                          | mpedance Out of | Range           |      |
|             | Cumulative Mo   | onths of Follow-       | -Up       | 20,011    |                      | Conduc           | ctor Fracture   | 21             |                            | Overs           | ensing          | 1    |
|             | Number of Lea   | ads Active in Stu      | ıdy       | 7         | Insu                 | lation (not furt | her defined)    | 2              |                            |                 |                 |      |
| 10          |                 |                        |           |           |                      |                  |                 |                |                            |                 |                 |      |
| 10          |                 |                        |           |           |                      |                  |                 |                |                            |                 |                 |      |
| 9           | 0               |                        |           |           |                      |                  |                 |                |                            |                 |                 |      |
| 8           | 80              |                        |           |           |                      |                  |                 |                |                            |                 |                 |      |
|             |                 |                        |           |           |                      |                  |                 |                |                            |                 |                 |      |
| 7           | /0              |                        |           |           |                      |                  |                 |                |                            |                 |                 |      |
| 7           | 0               | 1                      | 2         | 3         | 4                    | 5                | 6               | 7              | 8                          | 9               | 10              |      |
| 7           | 1               | 1<br>r Implant         | 2         | 3         | 4                    | 5                | 6               | 7              | 8                          | 9               | 10              |      |
| 9<br>8<br>7 | 0               | 1<br>r Implant<br>1 yr | 2<br>2 yr | 3<br>3 yr |                      | 5<br>5 yr        | 6<br>6 yr       | 7<br>7<br>7 yr | 8<br>8 yr                  | 9<br>at 99 mo   | 10              |      |
|             | 0               |                        | _         |           | 4 yr                 | -                |                 | 1              |                            |                 | 10              |      |
| 9           | 0<br>Years Afte | 1 yr                   | 2 yr      | 3 yr      | 4 yr                 | 5 yr             | 6 yr            | 7 yr           | 8 yr                       | at 99 mo        |                 |      |

### 6930 Sprint Fidelis

**Product Characteristics** 

| <br>                                                |        |                      |                                                   |                                           |
|-----------------------------------------------------|--------|----------------------|---------------------------------------------------|-------------------------------------------|
| US Market Release                                   | 5ep-04 | Serial Number Prefix | LFK                                               | US Returned Product Analysis              |
| Registered US Implants                              | 400    | Type and/or Fixation | Transvenous, Vent, Defib and Pace/Sense,<br>Tines | Conductor Fracture 3<br>Crimp/Weld/Bond 0 |
| Estimated Active US Implants                        | 200    | Polarity             | True Bipolar/One Coil                             | Insulation Breach 0                       |
| Advisories<br>See page 142 – 2007 Potential Conduct |        | Steroid              | Yes                                               | Other 0                                   |
| Wire Fracture                                       | JI     |                      |                                                   |                                           |
|                                                     |        |                      |                                                   |                                           |

### System Longevity Study Results

### **Qualifying Complications** 0 Total

| Number of Leads Enrolled in Study | 4  |
|-----------------------------------|----|
| Cumulative Months of Follow-Up    | 12 |
| Number of Leads Active in Study   | 2  |

|       | Survival estimation | ate not availabl | e due to insuffi | cient sample size | 2 |     |   |     |     |     |   |
|-------|---------------------|------------------|------------------|-------------------|---|-----|---|-----|-----|-----|---|
|       |                     |                  |                  |                   |   |     |   |     |     |     |   |
| 80  - |                     |                  |                  |                   |   |     |   |     |     |     |   |
|       |                     |                  |                  |                   |   |     |   |     |     |     |   |
| 0     |                     | ⊿                | 2                | 3 4               | 1 | 5 ( | 6 | / 8 | 5   | 9 1 | 0 |
| 0     | Years After         | Implant          | 2                | 3 4               | 1 | 5 ( | 6 | / 2 | 3 9 | 9   | 0 |
| 0     | Years After         | Implant          | 2                | 3 4               |   |     | 6 | / 2 | 5 5 | 9 1 | 0 |
| 0     | Years After         | Implant          |                  | 3 4               |   | 5 ( | 6 | / 2 | 3 5 | 9 1 | 0 |
|       | Years After         | Implant          | 2                | 3 4               |   |     | b |     | 3   |     |   |
| %     | Years After         | Implant          |                  |                   |   |     |   |     |     |     |   |

| _    | Sprint Fid                      | CIIS             |             | Product Chara     | reteristies |                               |                      |                     |                         |       |
|------|---------------------------------|------------------|-------------|-------------------|-------------|-------------------------------|----------------------|---------------------|-------------------------|-------|
|      | US Market Releas                | e                | Sep-04      | Serial Number Pre | efix LF     | L                             |                      | US Returned F       | Product An              | alysi |
|      | Registered US Im                | plants           | 8,100       | Type and/or Fixat |             | ansvenous, Vent, D<br>crew-in | efib and Pace/Sense, | Conducto<br>Crimp/M | r Fracture<br>/eld/Bond | 363   |
|      | Estimated Active                | US Implants      | 4,800       | Polarity          | Tr          | ue Bipolar/One Coi            |                      |                     | on Breach               | C     |
|      | Advisories                      |                  |             | Steroid           | Ye          | 25                            |                      |                     | Other                   | 2     |
|      | See page 142 –<br>Wire Fracture | 2007 Potential C | onductor    |                   |             |                               |                      |                     |                         |       |
| sten | n Longevity Stu                 | udy Results      |             |                   | Qualifying  | Complications                 | 16 Total             |                     |                         |       |
|      | Number of Leads                 | Enrolled in Stud | y 294       | ł                 | L€          | ad Dislodgement               | 2                    | Impedance O         | ut of Range             | 3     |
|      | Cumulative Mont                 | hs of Follow-Up  | 10,456      | 5                 |             | Failure to Capture            | 3                    | C                   | versensing              | 3     |
|      | Number of Leads                 | Active in Study  | 189         | )                 | C           | onductor Fracture             | 3                    |                     | OTH                     | 1     |
|      |                                 |                  |             |                   |             | Failure to Sense              | 1                    |                     |                         |       |
| 10   | 0                               |                  |             |                   |             |                               |                      |                     |                         |       |
| 10   | 0                               |                  |             |                   |             |                               |                      |                     |                         |       |
| 9    | Ŭ                               |                  |             |                   |             |                               |                      |                     |                         |       |
| 9    | Ŭ                               |                  |             |                   |             |                               |                      |                     |                         |       |
| 9    | 0                               | 2                | 3           | 4                 | 5           | 6                             | 7 8                  | 9                   | 10                      |       |
| 9    | 0                               |                  | 3           | 4                 | 5           | 6                             | 7 8                  | 9                   | 10                      |       |
| 9    | 0 1                             | Implant          | 3<br>2 yr 3 |                   | 5           | 6                             | 7 8                  | 9                   | 10                      |       |
| 8    | 0 1                             | Implant<br>1 yr  | -           | yr 4 yr           | 5           | 6                             | 7 8                  | 9                   | 10                      |       |

6932 Sprint

### **Product Characteristics**

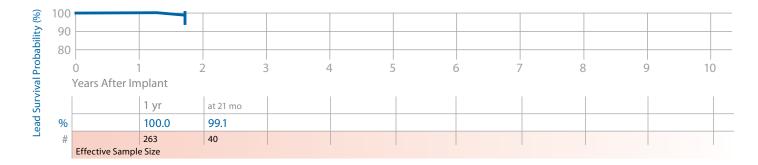
| JJZ Sprint                                                                                                                                                         | 1100         |                     |                                      |                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------|--------------------------------------|-------------------------------------------------------|
| US Market Release                                                                                                                                                  | Aug-96 Seria | al Number Prefix TC | A                                    | US Returned Product Analysis                          |
| Registered US Implants                                                                                                                                             | 15,000 Туре  |                     | ansvenous, Vent, Defib and Pa<br>nes | ace/Sense, Conductor Fracture 20<br>Crimp/Weld/Bond 0 |
| Estimated Active US Implants                                                                                                                                       | 5,000 Polar  | rity Tr             | ue Bipolar/One Coil                  | Insulation Breach 22                                  |
| Advisories                                                                                                                                                         | None Stero   | oid Ye              | S                                    | Other 9                                               |
| ystem Longevity Study Results                                                                                                                                      |              | Qualifying (        | Complications 10 Tota                | al                                                    |
| Number of Leads Enrolled in Study                                                                                                                                  | 411          |                     | Failure to Capture 2                 | Extra Cardiac Stimulation 1                           |
| Cumulative Months of Follow-Up                                                                                                                                     | 23,850       |                     | Failure to Sense 2                   | Oversensing 4                                         |
| Number of Leads Active in Study                                                                                                                                    | 60           | Impeda              | nce Out of Range 1                   |                                                       |
| 2 100                                                                                                                                                              |              |                     |                                      |                                                       |
| 90                                                                                                                                                                 |              |                     |                                      |                                                       |
| 80                                                                                                                                                                 |              |                     |                                      |                                                       |
| 0 1 2 3 4                                                                                                                                                          | 5 6 7        | 8 9 10 1            | 1 12 13 14                           | 15 16 17 18 19 20 21                                  |
| Years After Implant                                                                                                                                                |              |                     |                                      |                                                       |
| 100       90         90       90         80       0       1       2       3       4         Years After Implant         1       yr       2 yr       3 yr       4 y | r 5yr 6yr 7  | yr 8yr 9yr 10yr     | at<br>126 mo                         |                                                       |
| % 99.2 98.3 98.3 98.                                                                                                                                               |              | 7.7 96.8 96.8 96.8  | 96.8                                 |                                                       |
| # 355 277 230 191                                                                                                                                                  | 152 125 10   | 05 92 78 59         | 49                                   |                                                       |
| Effective Sample Size                                                                                                                                              |              |                     |                                      |                                                       |

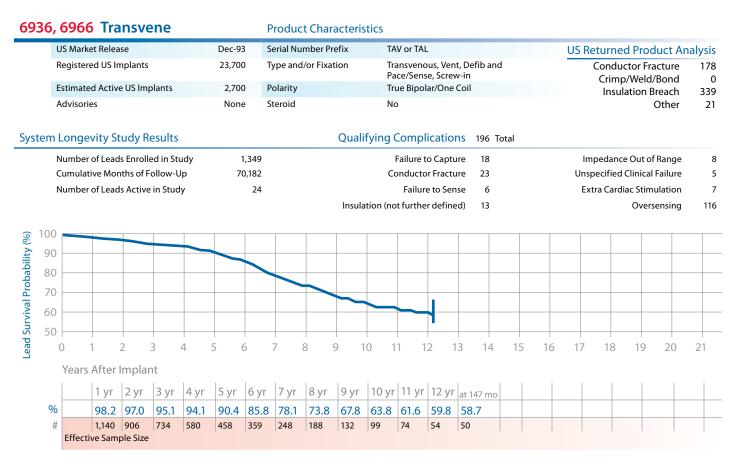
| l    | JS Mark  | et Relea  | se        |           |      | Dec-93 | 3 9   | Serial Nu | mber Pr  | efix   | T/        | AT, TBU, | or TAF       |          |      |    | US Re | eturne   | d Proc   | luct An         | alysis   |
|------|----------|-----------|-----------|-----------|------|--------|-------|-----------|----------|--------|-----------|----------|--------------|----------|------|----|-------|----------|----------|-----------------|----------|
| F    | Register | ed US In  | nplants   |           |      | 16,100 | ר כ   | Гуре and  | /or Fixa | tion   | Tr        | ansven   | ous CS or S  | VC Defib |      |    |       |          |          | racture         | 16       |
| E    | stimate  | ed Activ  | e US Imj  | olants    |      | 2,700  | D F   | Polarity  |          |        | 0         | ne Defi  | o Coil       |          |      |    |       |          | •        | d/Bond          | (        |
| A    | dvisor   | ies       |           |           |      | None   | e 9   | Steroid   |          |        | N         | 0        |              |          |      |    |       | inst     | liation  | Breach<br>Other | 32<br>16 |
| em l | Longe    | evity St  | udy R     | esults    |      |        |       |           |          | Quali  | fying     | Comp     | lications    | 56 To    | otal |    |       |          |          |                 |          |
| ١    | lumbei   | r of Lead | s Enroll  | ed in Stu | ıdy  |        | 966   |           |          |        | L         | ead Disl | odgement     | 1        |      |    | Im    | pedanc   | e Out of | Range           | 4        |
| C    | Cumula   | tive Mor  | nths of F | ollow-U   | р    | 49     | 9,814 |           |          |        |           | Failure  | to Capture   | 8        |      |    | Unsp  | pecified | Clinical | Failure         | 4        |
| ١    | lumbei   | r of Lead | s Active  | in Stud   | у    |        | 25    |           |          |        | С         | onduct   | or Fracture  | 19       |      |    | Ext   | tra Card | iac Stim | ulation         | 5        |
|      |          |           |           |           |      |        |       |           |          |        |           | Failu    | re to Sense  | 1        |      |    |       |          | Overs    | ensing          | 12       |
|      |          |           |           |           |      |        |       |           |          | Insula | ation (no | ot furth | er defined)  | 2        |      |    |       |          |          |                 |          |
| 100  |          |           |           |           |      |        |       |           |          |        |           |          |              |          |      |    |       |          |          |                 |          |
| 90   |          |           |           |           |      |        |       |           |          |        |           | -        |              |          |      |    |       |          |          |                 |          |
| 80   |          |           |           |           |      |        |       |           |          |        |           | -        |              |          |      |    |       |          |          |                 |          |
|      | 0        | 1         | 2         | 3 4       | 4 !  | 5 (    | б     | 7         | 8        | 9 1    | 0         | 11 ·     | 12 13        | 14       | 15   | 16 | 17    | 18       | 19       | 20              | 21       |
|      | Years    | After     | Implai    | nt        |      |        |       |           |          |        |           |          |              |          |      |    |       |          |          |                 |          |
|      |          | 1 yr      | 2 yr      | 3 yr      | 4 yr | 5 yr   | 6 yr  | 7 yr      | 8 yr     | 9 yr   | 10 yr     | 11 yr    | at<br>135 mo |          |      |    |       |          |          |                 |          |
|      |          | 00.4      | 97.5      | 97.2      | 96.6 | 95.0   | 94.4  |           | 92.7     | 91.3   | 90.2      | 90.2     | 90.2         |          |      |    |       |          |          |                 |          |
| %    |          | 98.4      | 21.5      | 11.2      |      |        |       |           |          |        |           |          |              |          |      |    |       |          |          |                 |          |

## 6935 Sprint Quattro Secure

### **Product Characteristics**

| 1922 | Sprint Quattro Secure            |        | Product Characteristics | S                                                    |                                       |    |
|------|----------------------------------|--------|-------------------------|------------------------------------------------------|---------------------------------------|----|
|      | US Market Release                | Nov-08 | Serial Number Prefix    | TAU                                                  | US Returned Product Analys            | is |
|      | Registered US Implants           | 16,800 | Type and/or Fixation    | Transvenous, Vent, Defib and Pace/Sense,<br>Screw-in | Conductor Fracture<br>Crimp/Weld/Bond | 5  |
|      | Estimated Active US Implants     | 15,700 | Polarity                | True Bipolar/One Coil                                | Insulation Breach                     | 0  |
|      | Advisories                       | None   | Steroid                 | Yes                                                  | Other                                 | 22 |
|      | Performance Note: See page 149 - |        |                         |                                                      |                                       |    |

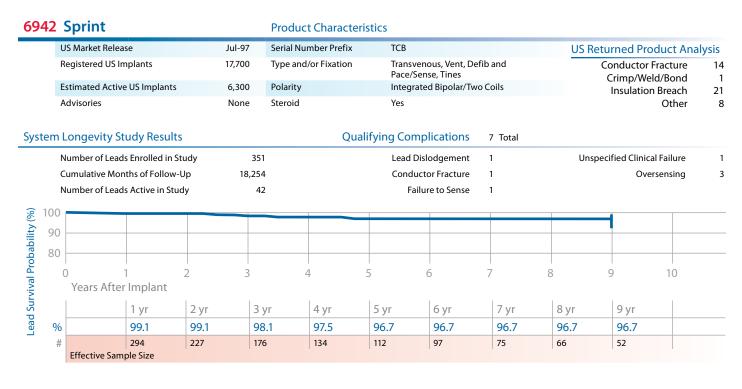

Helix Retraction


Henx netraction

## System Longevity Study Results

### Qualifying Complications 1 Total

| Number of Leads Enrolled in Study | 773   | Conductor Fracture 1 |
|-----------------------------------|-------|----------------------|
| Cumulative Months of Follow-Up    | 8,465 |                      |
| Number of Leads Active in Study   | 735   |                      |






6939, 6999 Sub-Q Patch **Product Characteristics** US Market Release Dec-93 Serial Number Prefix TBA or TAP **US Returned Product Analysis Registered US Implants** 3,600 Type and/or Fixation Subcutaneous Defib Patch, Suture **Conductor Fracture** 28 Estimated Active US Implants Crimp/Weld/Bond 0 300 Polarity Defib Electrode Only **Insulation Breach** 5 Advisories None Steroid No Other 1 System Longevity Study Results **Qualifying Complications** 47 Total Number of Leads Enrolled in Study 384 Failure to Capture 11 Impedance Out of Range 2 Cumulative Months of Follow-Up 18,141 **Conductor Fracture** 12 **Unspecified Clinical Failure** 2 Number of Leads Active in Study Extra Cardiac Stimulation 2 Failure to Sense 1 5 Insulation (not further defined) 4 Oversensing 10 Lead Survival Probability (%) 90 80 9 2 3 4 5 6 7 8 10 Years After Implant 4 yr 2 yr 3 yr 5 yr 6 yr 7 yr 1 yr at 93 mo % 96.0 94.1 93.7 93.7 91.5 88.3 86.0 86.0 116 # 311 249 193 146 82 60 50

Leads

Effective Sample Size of Lead Group Overall



| -            | Sprint                                                         |              |              |              | Product C    | haracteris | lics      |                                 |          |      |                 |                               |         |
|--------------|----------------------------------------------------------------|--------------|--------------|--------------|--------------|------------|-----------|---------------------------------|----------|------|-----------------|-------------------------------|---------|
|              | US Market Re                                                   | lease        |              | Oct-97       | Serial Numb  | er Prefix  | TCE       |                                 |          | ι    | JS Returned     | d Product Ana                 | lysis   |
|              | Registered U                                                   | 5 Implants   |              | 20,800       | Type and/or  | Fixation   |           | ious, Vent, De<br>1se, Screw-in | efib and |      |                 | uctor Fracture<br>p/Weld/Bond | 56<br>1 |
|              | Estimated Ac                                                   | tive US Impl | ants         | 7,500        | Polarity     |            | True Bipo | olar/One Coil                   |          |      |                 | lation Breach                 | 23      |
|              | Advisories                                                     |              |              | None         | Steroid      |            | Yes       |                                 |          |      |                 | Other                         | 11      |
| sten         | m Longevity Study Results<br>Number of Leads Enrolled in Study |              | sults        |              |              | Qualif     | ying Comp | lications                       | 82 Total |      |                 |                               |         |
|              | Number of Le                                                   | ads Enrolle  | d in Study   | 1,311        |              |            | Lead Dis  | lodgement                       | 1        | Ins  | ulation (not fu | rther defined)                | 1       |
|              | Cumulative N                                                   | lonths of Fo | llow-Up      | 76,043       | 5            |            | Failure   | to Capture                      | 11       |      | Impedance       | Out of Range                  | 7       |
|              | Number of Le                                                   | ads Active i | n Study      | 284          | Ļ            |            | Conduct   | or Fracture                     | 17       |      | Unspecified (   | Clinical Failure              | 3       |
|              |                                                                |              |              |              |              |            | Failu     | re to Sense                     | 6        |      |                 | Oversensing                   | 35      |
|              |                                                                |              |              |              |              |            |           |                                 |          |      |                 | Other                         | 1       |
| 10           | 0                                                              |              |              |              |              |            |           |                                 |          |      |                 |                               |         |
| 9            | 0                                                              |              |              |              |              |            |           |                                 |          |      |                 |                               |         |
| 8            | 0                                                              |              |              |              |              |            |           |                                 |          |      |                 |                               |         |
|              | 0                                                              | 1            | 2            | 3            | 4            | 5          |           | 6                               | 7        | 8    | 9               | 10                            |         |
|              |                                                                | ter Implai   | nt           |              |              |            |           |                                 |          |      |                 |                               |         |
|              | Years Af                                                       |              |              | 1            | 4            | 5 yr       | бyr       | 7 yr                            | 8 yr     | 9 yr | 10 yr           | at 123 mo                     |         |
| 10<br>9<br>8 | Years Af                                                       | 1 yr         | 2 yr         | 3 yr         | 4 yr         | Jyi        | O yr      |                                 |          | - ). |                 | 011251110                     |         |
| %            | Years Af                                                       | 1 yr<br>98.7 | 2 yr<br>97.7 | 3 yr<br>96.5 | 4 yr<br>95.5 | 93.7       | 92.1      | 91.5                            | 91.2     | 90.2 | 90.2            | 90.2                          |         |

|                                          |               |                   | D     | . 0.0  | Control Nierro | h D (°      | TDC         |                                     |          |   |          |                 |          |
|------------------------------------------|---------------|-------------------|-------|--------|----------------|-------------|-------------|-------------------------------------|----------|---|----------|-----------------|----------|
|                                          | US Market Rel |                   |       | c-00   | Serial Num     |             | TDC         |                                     |          |   | US Retur | ned Product     | Analysis |
|                                          | Registered US | Implants          | 37,   | 700    | Type and/o     | or Fixation |             | svenous, Vent, De<br>e/Sense, Tines | fib and  |   |          | ductor Fracture |          |
|                                          | Estimated Act | ive US Implants   | 21,   | 200    | Polarity       |             | True        | Bipolar/Two Coils                   | ;        |   |          | sulation Breach |          |
|                                          | Advisories    |                   | Ν     | one    | Steroid        |             | Yes         |                                     |          |   |          | Othe            | r 10     |
| vsten                                    | n Longevity   | Study Results     | 5     |        |                | Qua         | alifying Co | omplications                        | 5 Total  |   |          |                 |          |
|                                          | Number of Le  | ads Enrolled in S | tudy  | 362    |                |             |             | Failure to Sense                    | 1        |   |          |                 |          |
|                                          | Cumulative M  | onths of Follow-  | Up    | 11,578 |                |             | Impedan     | ce Out of Range                     | 1        |   |          |                 |          |
|                                          | Number of Le  | ads Active in Stu | dy    | 224    |                |             | Unspecified | l Clinical Failure                  | 1        |   |          |                 |          |
|                                          |               |                   |       |        |                |             |             | Oversensing                         | 2        |   |          |                 |          |
| 8 10 10 10 10 10 10 10 10 10 10 10 10 10 | -             |                   |       |        |                |             |             |                                     |          |   |          |                 |          |
| 8                                        |               |                   |       |        |                |             |             |                                     |          |   |          |                 |          |
| 0                                        | 0             | 1                 | 2     | 3      | 4              |             | 5           | 6                                   | <br>7    | 8 | 9        | 10              |          |
|                                          | Years Aft     | er Implant        |       |        |                |             |             |                                     |          |   |          |                 |          |
| 5                                        |               | 1 yr              | 2 yr  | 3 уі   | r 4            | l yr        | 5 yr        | бyr                                 | at 78 mo |   |          |                 |          |
| ģ                                        | %             | 100.0             | 100.0 | 99.    | 1 9            | 97.0        | 94.4        | 94.4                                | 94.4     |   |          |                 |          |
|                                          | #             | 229               | 134   | 101    | 7              | '8          | 61          | 56                                  | 50       |   |          |                 |          |

|                 | Sprir     |          |              |           |     |        |      |           |           | ~      |                              |                         |         |         |      |    |       |          |                    |         |        |
|-----------------|-----------|----------|--------------|-----------|-----|--------|------|-----------|-----------|--------|------------------------------|-------------------------|---------|---------|------|----|-------|----------|--------------------|---------|--------|
|                 | US Marke  |          |              |           |     | Sep-97 |      | erial Nur |           |        | TDA                          |                         |         |         |      |    | US Re | eturne   | ed Proc            | duct Ar | alysis |
| F               | Registere | ed US Im | plants       |           |     | 42,800 | ) Ty | /pe and,  | /or Fixat | ion    |                              | svenous,<br>e/Sense, S  |         | fib and |      |    |       |          | uctor Fr<br>p/Weld |         | 107    |
| E               | Estimate  | d Active | US Imp       | lants     |     | 15,100 | P    | olarity   |           |        | Inte                         | grated Bip              | olar/Tw | o Coils |      |    |       |          | lation E           |         | 31     |
| ŀ               | Advisorie | 25       |              |           |     | None   | s St | teroid    |           |        | Yes                          |                         |         |         |      |    |       |          |                    | Other   | 15     |
| tem             | Longe     | vity St  | udy Re       | sults     |     |        |      |           |           | Qualif | ying Co                      | omplica                 | tions   | 36 To   | otal |    |       |          |                    |         |        |
| 1               | Number    | of Leads | 5 Enrolle    | d in Stu  | ıdy | 1      | ,154 |           |           |        | Fa                           | ilure to Ca             | apture  | 2       |      |    | Unsp  | pecified | l Clinical         | Failure | 1      |
| C               | Cumulati  | ve Mon   | ths of Fo    | ollow-U   | р   | 63     | ,334 |           |           |        | Con                          | ductor Fr               | acture  | 6       |      |    | Ex    | tra Carc | liac Stim          | ulation | 1      |
|                 |           |          |              |           |     |        |      |           |           |        |                              |                         |         |         |      |    |       |          |                    |         |        |
| 1               | Number    | of Leads | Active       | in Study  | y   |        | 164  |           |           |        |                              | Failure to              | Sense   | 4       |      |    |       |          | Over               | sensing | 17     |
| 1               | Number    | of Leads | Active       | in Study  | ý   |        | 164  |           |           | I      |                              | Failure to<br>ce Out of |         | 4<br>5  |      |    |       |          | Over               | sensing | 17     |
| 1               | Number    | of Leads | Active       | in Study  | y   |        | 164  |           |           | I      |                              |                         |         |         |      |    |       |          | Over               | sensing | 17     |
| <b>۱</b><br>100 | Number    | of Leads | S Active     | in Study  | y   |        | 164  |           |           | 1      |                              |                         |         |         |      |    |       |          | Over               | sensing | 17     |
|                 | Number    | of Leads | Active       | in Study  | y   |        | 164  |           |           | 1      |                              |                         |         |         |      |    |       |          | Over               | sensing | 17     |
| 100<br>90       | Number    | of Leads | Active       | in Study  | y   |        | 164  |           |           |        |                              |                         |         |         |      |    |       |          | Over               | sensing | 17     |
| 100<br>90<br>80 | Number    | of Leads | Active       | in Study  |     | 5 6    |      | 7 8       | 3 9       |        | mpedan                       |                         |         |         | 15   | 16 | 17    | 18       | Over:              | sensing | 21     |
| 100<br>90<br>80 | 0         |          | 2 3          | 3 2       |     | 5 6    |      | 7 8       | 3 9       |        | mpedan                       | ce Out of               | Range   | 5       | 15   | 16 | 17    | 18       |                    |         |        |
| 100<br>90<br>80 | 0         |          | Active       | 3 2       |     | 5 6    |      | 7 8       | 3 9       |        | mpedan                       | ce Out of               | Range   | 5       | 15   | 16 | 17    | 18       |                    |         |        |
| 100<br>90<br>80 | 0         |          | 2 3<br>Impla | 3 2<br>nt | 4 5 | 5 6    |      | 7 E       | 8 yr      |        | mpedan                       | ce Out of               | Range   | 5       | 15   | 16 | 17    | 18       |                    |         |        |
| 100<br>90<br>80 | 0 f       | After    | 2 3<br>Impla | 3 2<br>nt |     |        | 5    |           |           | 9 yr   | mpedan<br>11<br>10 yr 1<br>1 | ce Out of<br>12         | Range   | 5       | 15   | 16 | 17    | 18       |                    |         |        |

|    | US Market Release                                         | Nov-01       | Serial Number Prefix | TDG                                             |          | US Retur  | ned Product Ar                    | nalysi |
|----|-----------------------------------------------------------|--------------|----------------------|-------------------------------------------------|----------|-----------|-----------------------------------|--------|
|    | Registered US Implants                                    | 303,100      | Type and/or Fixation | Transvenous, Vent, De<br>Pace/Sense, Screw-in   | efib and |           | iductor Fracture<br>imp/Weld/Bond | 21     |
|    | Estimated Active US Implants                              | 217,100      | Polarity             | True Bipolar/Two Coil                           | s        |           | sulation Breach                   | 1      |
|    | Advisories                                                | None         | Steroid              | Yes                                             |          |           | Other                             | 14     |
|    | Performance Note: See page 14<br>Helix Retraction         | <u> 19</u> - |                      |                                                 |          |           |                                   |        |
| en | n Longevity Study Results                                 |              | Qual                 | ifying Complications                            | 28 Total |           |                                   |        |
|    | Number of Leads Enrolled in Study                         | 2,698        |                      | Lead Dislodgement                               | 3        | Impeda    | ance Out of Range                 |        |
|    | Cumulative Months of Follow-Up                            | 93,822       | !                    | Failure to Capture                              | 1        | Unspecifi | ied Clinical Failure              |        |
|    | Number of Leads Active in Study                           | 1,618        | ł                    | Conductor Fracture                              | 4        |           | Oversensing                       |        |
|    |                                                           |              |                      |                                                 |          |           |                                   |        |
|    |                                                           |              |                      | Failure to Sense                                | 2        |           |                                   |        |
|    |                                                           |              | Insul                | Failure to Sense<br>ation (not further defined) | 2<br>2   |           |                                   |        |
| 10 |                                                           |              | Insul                |                                                 |          | -         |                                   |        |
| 9  | 0                                                         |              | Insul                |                                                 |          | -1        |                                   |        |
|    | 0                                                         |              | Insul                |                                                 |          |           |                                   |        |
| 9  | 0                                                         | 3            |                      |                                                 |          | 8 9       | 10                                |        |
| 9  | 0                                                         | 3            |                      | ation (not further defined)                     |          | 8 9       | 10                                |        |
| 9  | 0<br>0<br>0<br>1<br>2<br>Years After Implant              | 3<br>yr 3    | 4                    | ation (not further defined)                     |          |           | 10<br>at 99 mo                    |        |
| 9  | 0<br>0<br>0<br>1<br>2<br>Years After Implant<br>1 yr<br>2 | _            | 4<br>/r 4 yr         | ation (not further defined)                     | 2        | 8 yr      |                                   |        |

## 6948 Sprint Fidelis

**Product Characteristics** 

| US Market Release                | Sep-04  | Serial Number Prefix | LFH                                               | US Returned Product Ana               | alysis |
|----------------------------------|---------|----------------------|---------------------------------------------------|---------------------------------------|--------|
| Registered US Implants           | 10,400  | Type and/or Fixation | Transvenous, Vent, Defib and Pace/Sense,<br>Tines | Conductor Fracture<br>Crimp/Weld/Bond | 80     |
| Estimated Active US Implants     | 6,300   | Polarity             | True Bipolar/Two Coils                            | Insulation Breach                     | 1      |
| Advisories                       |         | Steroid              | Yes                                               | Other                                 | 6      |
| See page 142 – 2007 Potential Co | nductor |                      |                                                   |                                       |        |

**Qualifying Complications** 

0 Total

See page 142 – 2007 Potential Conductor Wire Fracture

### System Longevity Study Results

| Number of Leads Enrolled in Study | 30    |
|-----------------------------------|-------|
| Cumulative Months of Follow-Up    | 1,237 |
| Number of Leads Active in Study   | 19    |

| 100<br>90 | Survival estim        | ate not availabl | e due to insuffi | cient sample size | e   |   |         |     |   |   |
|-----------|-----------------------|------------------|------------------|-------------------|-----|---|---------|-----|---|---|
| 90        |                       |                  |                  |                   |     |   |         |     |   |   |
| 80        |                       |                  |                  |                   |     |   |         |     |   |   |
|           |                       |                  |                  |                   |     |   |         |     |   |   |
| C         | 0 1                   | 2                | )                | 3 4               | - 5 | 6 | 7       | 8   | 9 | 1 |
| 0         | 0 1<br>Years After In | 2<br>nplant      |                  | 3 4               | 5   | 6 | ) 7<br> | 8   | 9 |   |
| %         | 0 1<br>Years After In | 2<br>nplant      |                  | 3 4               | 5   | 6 | )       | / 8 | 9 | 1 |

|                 | -                                           | delis             | -            |        |                     |                |                  |                     |                                       |        |
|-----------------|---------------------------------------------|-------------------|--------------|--------|---------------------|----------------|------------------|---------------------|---------------------------------------|--------|
|                 | US Market Relea                             |                   | Sep          |        | erial Number Prefix | LFJ            |                  |                     | US Returned Product A                 | nalysi |
|                 | Registered US I                             | mplants           | 186,         | 800 T  | ype and/or Fixation | Trans<br>Screw |                  | fib and Pace/Sense, | Conductor Fracture<br>Crimp/Weld/Bond | 408    |
|                 | Estimated Activ                             | e US Implants     | 105,         | 300 P  | olarity             | True E         | Bipolar/Two Coil | S                   | Insulation Breach                     |        |
|                 | Advisories<br>See page 142<br>Wire Fracture | – 2007 Potentia   | al Conductor | S      | teroid              | Yes            |                  |                     | Other                                 | 6      |
| tem             | n Longevity S                               | tudy Results      | 5            |        | Qua                 | alifying Co    | mplications      | 44 Total            |                                       |        |
|                 | Number of Lead                              | ds Enrolled in St | tudy         | 795    |                     | Lead           | Dislodgement     | 1                   | Insulation (not further defined)      |        |
|                 | Cumulative Mo                               | nths of Follow-I  | Up           | 32,621 |                     | Fail           | ure to Capture   | 2                   | Impedance Out of Range                |        |
|                 | Number of Lead                              | ds Active in Stud | dy           | 424    |                     | Cond           | uctor Fracture   | 18                  | Oversensing                           | 1      |
|                 |                                             |                   |              |        |                     | F              | ailure to Sense  | 2                   | Other                                 |        |
| 100<br>90<br>80 |                                             | 1                 | 2            | 3      | 4                   | 5              | 6                | 7 8                 | 9 10                                  |        |
|                 | Years Afte                                  |                   | ~            | 5      |                     | 5              | 0                | / 0                 | 9 10                                  |        |
|                 |                                             | 1 yr              | 2 yr         | 3 yr   | 4 yr                | 5 yr           | at 66 mo         |                     |                                       |        |
| 0               | 6                                           | 98.8              | 96.9         | 94.9   | 93.8                | 92.5           | 91.3             |                     |                                       |        |
| 7               |                                             |                   |              |        |                     | 112            | 50               |                     |                                       |        |

| 996 5           | Sub-Q Lead                         |                  | Product Charact      | teristics             |                   |                                      |        |
|-----------------|------------------------------------|------------------|----------------------|-----------------------|-------------------|--------------------------------------|--------|
| U               | JS Market Release                  | Jun-01           | Serial Number Prefix | C TCR                 |                   | US Returned Product An               | alysis |
| R               | legistered US Implants             | 3,100            | Type and/or Fixation | n Subcutaneous De     | efib Coil, Suture | Conductor Fracture                   | 7      |
| Es              | stimated Active US Implants        | 1,900            | Polarity             | One Defib Coil        |                   | Crimp/Weld/Bond<br>Insulation Breach | C      |
| A               | dvisories                          | None             | Steroid              | No                    |                   | Other                                | C      |
| stem L          | Longevity Study Results            |                  | Q                    | ualifying Complicatio | ns 1 Total        |                                      |        |
| N               | lumber of Leads Enrolled in Study  | 28               | 3                    | Conductor Fract       | ure 1             |                                      |        |
| C               | Cumulative Months of Follow-Up     | 777              | ,                    |                       |                   |                                      |        |
| N               | lumber of Leads Active in Study    | 18               | 3                    |                       |                   |                                      |        |
| 100<br>90<br>80 | Survival estimate not available du | ue to insufficie | ent sample size      |                       |                   |                                      |        |
| 90              |                                    |                  |                      |                       |                   |                                      |        |
| 80              |                                    |                  |                      |                       |                   |                                      |        |
|                 | 0 1 2                              | 3                | 4                    | 5 6                   | 7                 | 8 9                                  | 10     |
|                 | Years After Implant                |                  |                      |                       |                   |                                      |        |
|                 |                                    |                  |                      |                       |                   |                                      |        |
| %               |                                    |                  |                      |                       |                   |                                      |        |
| #               |                                    |                  |                      |                       |                   |                                      |        |
|                 | Effective Sample Size              |                  |                      |                       |                   |                                      |        |

Leads

|                                  |                                                                                                                                                    | əssələ                                   | pə                    | ۲put2 ni ع              |                 | sdînoM<br>virês       | Device :          | survival F                    | Device Survival Probability (%) | ty (%)            |                   |                               |                               |                               |                                |                                |                                |       |       |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------|-------------------------|-----------------|-----------------------|-------------------|-------------------------------|---------------------------------|-------------------|-------------------|-------------------------------|-------------------------------|-------------------------------|--------------------------------|--------------------------------|--------------------------------|-------|-------|
| ımber<br>odel                    | λlim                                                                                                                                               | אפרket R                                 | lloın∃ sba            | əvitɔA ɛbɕ<br>pirifying | oiteoilqm       | əvitelum<br>1U-wollo7 | Years Al          | lqn                           |                                 |                   |                   |                               |                               |                               |                                |                                |                                |       |       |
| NN<br>W                          | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                        | sn [                                     | ъŢ                    | r                       | <sup>۲</sup> כס |                       | — F               |                               |                                 |                   |                   | 6 yr                          | 7 yr                          | 8 yr                          | 10 yr                          | 12 yr                          | 14 yr                          | 16 yr | 18 yr |
| 6721,<br>6921                    | Epicardial Patch                                                                                                                                   | Feb-93                                   | 407                   | ~                       | 51              | 20,011                | 96.5<br>+1.5/-2.4 | 95.0<br>+1.8/-2.8             | 92.3<br>+2.5/-3.5               | 91.3<br>+2.7/-3.8 | 88.7<br>+3.4/-4.7 | 81.6<br>+5.1/-6.6             | 79.6<br>+5.5/-7.2             | 79.6<br>+5.5/-7.2             | 79.6<br>+5.5/-7.2<br>at 99 mo  |                                |                                |       |       |
| 6930                             | Sprint Fidelis                                                                                                                                     | Sep-04                                   | 4                     | 2                       | 0               | 127                   | 100.0<br>at 0 mo  |                               |                                 |                   |                   |                               |                               |                               |                                |                                |                                |       |       |
|                                  | Advisories: See page 142 – 2007 Potential Conductor Wire Fracture                                                                                  | 007 Potentia                             | al Conduct            | or Wire Frac            | ture            |                       |                   |                               |                                 |                   |                   |                               |                               |                               |                                |                                |                                |       |       |
| 6931                             | Sprint Fidelis                                                                                                                                     | Sep-04                                   | 294                   | 189                     | 16              | 10,456                | 98.2<br>+1.1/-2.5 | 95.8<br>+1.9/-3.2             | 93.7<br>+2.5/-3.9               | 93.7<br>+2.5/-3.9 |                   |                               |                               |                               |                                |                                |                                |       |       |
|                                  | Advisories: See page 142 – 2007 Potential Conductor Wire Fracture                                                                                  | 007 Potentia                             | al Conduct            | or Wire Frac            | ture            |                       |                   |                               |                                 |                   |                   |                               |                               |                               |                                |                                |                                |       |       |
| 6932                             | Sprint                                                                                                                                             | 96-96                                    | 411                   | 60                      | 10              | 23,850                | 99.2<br>+0.5/-1.7 | 98.3<br>+0.9/-2.1             | 98.3<br>+0.9/-2.1               | 98.3<br>+0.9/-2.1 | 97.7<br>+1.3/-2.5 | 97.7<br>+1.3/-2.5             | 97.7<br>+1.3/-2.5             | 96.8<br>+1.7/-3.9             | 96.8<br>+1.7/-3.9              | 96.8<br>+1.7/-3.9<br>at 126 mo |                                |       |       |
| 6933,<br>6937,<br>6937A,<br>6963 | svc/cs                                                                                                                                             | Dec-93                                   | 966                   | 25                      | 56 4            | 49,814                | 98.4<br>+0.7/-1   | 97.5<br>+0.9/-1.3             | 97.2<br>+0.9/-1.4               | 96.6<br>+1.1/-1.6 | 95.0<br>+1.6/-2.1 | 94.4<br>+1.7/-2.3             | 93.2<br>+2/-2.8               | 92.7<br>+2.2/-3.1             | 90.2<br>+3.2/-4.7              | 90.2<br>+3.2/-4.7<br>at 135 mo |                                |       |       |
| 6935                             | Sprint Quattro Secure         Nov-08         773         735         1           See page 149 – Performance note on Helix Retraction 6935 and 6947 | Nov-08<br>e note on Hel                  | 773<br>lix Retractio  | 735<br>on 6935 and      | 1<br>16947      | 8,465                 | 100.0             | 99.1<br>+0.8/-5.6<br>at 21 mo |                                 |                   |                   |                               |                               |                               |                                |                                |                                |       |       |
| 6936,<br>6966                    | Transvene                                                                                                                                          | Dec-93                                   | 1,349                 | 24                      | 196             | 70,182                | 98.2<br>+0.6/-1   | 97.0<br>+0.8/-1.2             | 95.1<br>+1.2/-1.5               | 94.1<br>+1.3/-1.7 | 90.4<br>+1.9/-2.3 | 85.8<br>+2.5/-3               | 78.1<br>+3.5/-3.9             | 73.8<br>+3.9/-4.4             | 63.8<br>+5.1/-5.7              | 59.8<br>+5.8/-6.4              | 58.7<br>+6.1/-6.7<br>at 147 mo |       |       |
| 6939,<br>6999                    | Sub-Q Patch                                                                                                                                        | Dec-93                                   | 384                   | 7                       | 47              | 18,141                | 96.0<br>+1.6/-2.7 | 94.1<br>+2/-3.2               | 93.7<br>+2.1/-3.3               | 93.7<br>+2.1/-3.3 | 91.5<br>+2.9/-4.4 | 88.3<br>+3.8/-5.5             | 86.0<br>+4.6/-6.5             | 86.0<br>+4.6/-6.5<br>at 93 mo |                                |                                |                                |       |       |
| 6942                             | Sprint                                                                                                                                             | Jul-97                                   | 351                   | 42                      | 7               | 18,254                | 99.1<br>+0.6/-1.9 | 99.1<br>+0.6/-1.9             | 98.1<br>+1.1/-2.8               | 97.5<br>+1.4/-3.2 | 96.7<br>+1.8/-3.8 | 96.7<br>+1.8/-3.8             | 96.7<br>+1.8/-3.8             | 96.7<br>+1.8/-3.8             | 96.7<br>+1.8/-3.8<br>at 108 mo |                                |                                |       |       |
| 6943                             | Sprint                                                                                                                                             | Oct-97                                   | 1,311                 | 284                     | 82 7            | 76,043                | 98.7<br>+0.5/-0.9 | 97.7<br>+0.7/-1.1             | 96.5<br>+0.9/-1.3               | 95.5<br>+1.1/-1.4 | 93.7<br>+1.4/-1.8 | 92.1<br>+1.7/-2               | 91.5<br>+1.8/-2.3             | 91.2<br>+1.8/-2.3             | 90.2<br>+2.2/-2.8              | 90.2<br>+2.2/-2.8<br>at 123 mo |                                |       |       |
| 6944                             | Sprint Quattro                                                                                                                                     | Dec-00                                   | 362                   | 224                     | ŝ               | 11,578                | 100.0             | 100.0                         | 99.1<br>+0.8/-5.5               | 97.0<br>+2/-6.1   | 94.4<br>+3.2/-7.6 | 94.4<br>+3.2/-7.6             | 94.4<br>+3.2/-7.6<br>at 78 mo |                               |                                |                                |                                |       |       |
| 6945                             | Sprint                                                                                                                                             | Sep-97                                   | 1,154                 | 164                     | 36 6            | 63,334                | 99.4<br>+0.4/-0.6 | 98.7<br>+0.5/-1               | 98.3<br>+0.6/-1.1               | 97.7<br>+0.8/-1.3 | 96.8<br>+1.1/-1.6 | 96.1<br>+1.3/-1.9             | 95.5<br>+1.4/-2.1             | 94.3<br>+1.8/-2.6             | 93.2<br>+2.2/-3.1              | 93.2<br>+2.2/-3.1<br>at 129 mo |                                |       |       |
| 6947                             | Sprint Quattro Secure Nov-01 2,698 1,618 28<br>See page 149 – Performance note on Helix Retraction 6935 and 6947                                   | Nov-01<br>e note on He                   | 2,698<br>Iix Retracti | 1,618<br>ion 6935 and   |                 | 93,822                | 99.5<br>+0.2/-0.3 | 99.4<br>+0.2/-0.5             | 99.1<br>+0.3/-0.7               | 98.7<br>+0.5/-0.8 | 98.4<br>+0.6/-1   | 98.0<br>+0.7/-1.2             | 97.3<br>+1.1/-1.7             | 97.3<br>+1.1/-1.7             | 96.1<br>+2/-3.7<br>at 99 mo    |                                |                                |       |       |
| 6948                             | Sprint Fidelis                                                                                                                                     | Sep-04                                   | 30                    | 19                      | 0               | 1,237                 | 100 .0<br>at 0 mo |                               |                                 |                   |                   |                               |                               |                               |                                |                                |                                |       |       |
|                                  | Advisories: See page 142 – 2                                                                                                                       | – 2007 Potential Conductor Wire Fracture | al Conduct            | or Wire Frac            | ture            |                       |                   |                               |                                 |                   |                   |                               |                               |                               |                                |                                |                                |       |       |
| 6949                             | Sprint Fidelis                                                                                                                                     | Sep-04                                   | 795                   | 424                     | ,               | 32,621                | 98.8<br>+0.6/-1.1 | 96.9<br>+1.1/-1.5             | 94.9<br>+1.4/-2                 | 93.8<br>+1.7/-2.2 | 92.5<br>+2/-2.7   | 91.3<br>+2.7/-3.8<br>at 66 mo |                               |                               |                                |                                |                                |       |       |
|                                  | Advisories: See page 142 – 2007 Potential Conductor Wire Fracture                                                                                  | 2007 Potentia                            | al Conduct            | or Wire Frac            | ture            |                       |                   |                               |                                 |                   |                   |                               |                               |                               |                                |                                |                                |       |       |

www.medtronic.com/CRDMProductPerformance

## **US Returned Product Analysis Summary**

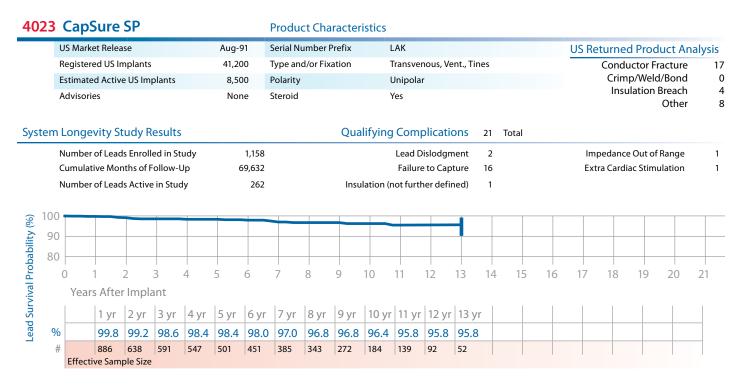
| Model<br>Number         | Family                | US Market<br>Release | Estimated<br>US Implants | Estimated<br>US Active | Conductor<br>Fracture | Crimp/Weld/<br>Bond | Insulation<br>Breach | Other |
|-------------------------|-----------------------|----------------------|--------------------------|------------------------|-----------------------|---------------------|----------------------|-------|
| 6721, 6921              | Epicardial Patch      | Feb-93               | 8,600                    | 1,400                  | 70                    | 1                   | 10                   | 1     |
| 6930                    | Sprint Fidelis        | Sep-04               | 400                      | 200                    | 3                     | 0                   | 0                    | 0     |
| 6931                    | Sprint Fidelis        | Sep-04               | 8,100                    | 4,800                  | 363                   | 0                   | 0                    | 2     |
| 6932                    | Sprint                | Aug-96               | 15,000                   | 5,000                  | 20                    | 0                   | 22                   | 9     |
| 6933, 6937, 6937A, 6963 | SVC/CS                | Dec-93               | 16,100                   | 2,700                  | 168                   | 0                   | 32                   | 16    |
| 6935                    | Sprint Quattro Secure | Nov-08               | 16,800                   | 15,700                 | 5                     | 0                   | 0                    | 22    |
| 6936, 6966              | Transvene             | Dec-93               | 23,700                   | 2,700                  | 178                   | 0                   | 339                  | 21    |
| 6939, 6999              | Sub-Q Patch           | Dec-93               | 3,600                    | 300                    | 28                    | 0                   | 5                    | 1     |
| 6942                    | Sprint                | Jul-97               | 17,700                   | 6,300                  | 14                    | 1                   | 21                   | 8     |
| 6943                    | Sprint                | Oct-97               | 20,800                   | 7,500                  | 56                    | 1                   | 23                   | 11    |
| 6944                    | Sprint Quattro        | Dec-00               | 37,700                   | 21,200                 | 56                    | 2                   | 2                    | 10    |
| 6945                    | Sprint                | Sep-97               | 42,800                   | 15,100                 | 107                   | 3                   | 31                   | 15    |
| 6947                    | Sprint Quattro Secure | Nov-01               | 303,100                  | 217,100                | 212                   | 4                   | 14                   | 143   |
| 6948                    | Sprint Fidelis        | Sep-04               | 10,400                   | 6,300                  | 80                    | 0                   | 1                    | 6     |
| 6949                    | Sprint Fidelis        | Sep-04               | 186,800                  | 105,300                | 4,081                 | 3                   | 9                    | 69    |
| 6996                    | Sub-Q Lead            | Jun-01               | 3,100                    | 1,900                  | 7                     | 0                   | 0                    | 0     |

## **US Reports of Acute Lead Observations**

| Model<br>Number            | Family                   | Estimated<br>US Implants | Cardiac<br>Perforation | Conductor<br>Fracture | Lead<br>Dislodgement | Failure<br>to Capture | Oversensing | Failure<br>to Sense |   | Impedance<br>Abnormal | Extracardiac<br>Stimulation | Unspecified |
|----------------------------|--------------------------|--------------------------|------------------------|-----------------------|----------------------|-----------------------|-------------|---------------------|---|-----------------------|-----------------------------|-------------|
| 6721, 6921                 | Epicardial Patch         | 8,600                    | 1                      | 1                     | 0                    | 0                     | 1           | 0                   | 2 | 4                     | 0                           | 4           |
| 6931                       | Sprint Fidelis           | 8,100                    | 1                      | 2                     | 1                    | 1                     | 3           | 1                   | 0 | 0                     | 0                           | 1           |
| 6932                       | Sprint                   | 15,000                   | 0                      | 0                     | 5                    | 2                     | 0           | 2                   | 0 | 1                     | 0                           | 1           |
| 6933, 6937,<br>6937A, 6963 | SVC/CS                   | 16,100                   | 0                      | 0                     | 2                    | 1                     | 1           | 0                   | 2 | 1                     | 0                           | 4           |
| 6935                       | Sprint Quattro<br>Secure | 16,800                   | 4                      | 3                     | 7                    | 10                    | 10          | 2                   | 1 | 7                     | 1                           | 0           |
| 6936, 6966                 | Transvene                | 23,700                   | 7                      | 2                     | 1                    | 6                     | 4           | 5                   | 1 | 1                     | 0                           | 5           |
| 6939, 6999                 | Sub-Q Patch              | 3,600                    | 0                      | 0                     | 0                    | 0                     | 0           | 0                   | 0 | 1                     | 0                           | 1           |
| 6942                       | Sprint                   | 17,700                   | 1                      | 1                     | 2                    | 4                     | 1           | 0                   | 0 | 2                     | 0                           | 1           |
| 6943                       | Sprint                   | 20,800                   | 1                      | 0                     | 0                    | 3                     | 1           | 1                   | 1 | 3                     | 0                           | 0           |
| 6944                       | Sprint Quattro           | 37,700                   | 1                      | 1                     | 9                    | 10                    | 8           | 2                   | 0 | 7                     | 0                           | 7           |
| 6945                       | Sprint                   | 42,800                   | 0                      | 1                     | 4                    | 6                     | 8           | 2                   | 2 | 1                     | 1                           | 3           |
| 6947                       | Sprint Quattro<br>Secure | 303,100                  | 15                     | 17                    | 69                   | 43                    | 86          | 26                  | 3 | 43                    | 1                           | 14          |
| 6948                       | Sprint Fidelis           | 10,400                   | 0                      | 1                     | 7                    | 7                     | 1           | 0                   | 0 | 1                     | 0                           | 0           |
| 6949                       | Sprint Fidelis           | 186,800                  | 9                      | 35                    | 28                   | 33                    | 29          | 23                  | 6 | 23                    | 0                           | 14          |
| 6996                       | SubQ                     | 3,100                    | 0                      | 0                     | 1                    | 0                     | 1           | 0                   | 0 | 1                     | 0                           | 1           |

Report Cutoff Date: January 31, 2011

## **Reference Chart**

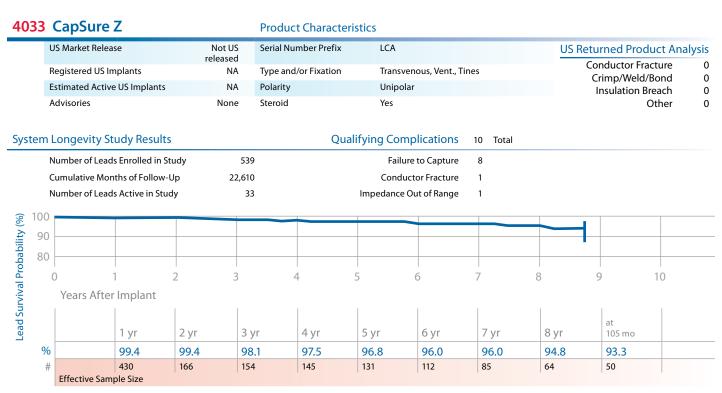

|                 |                          |                                              | Pin Conf    | iguration       | _                     |                                                        |                   |
|-----------------|--------------------------|----------------------------------------------|-------------|-----------------|-----------------------|--------------------------------------------------------|-------------------|
| Model<br>Number | Family                   | Туре                                         | Pace/Sense  | High<br>Voltage | Lead Body<br>Diameter | Insulation,<br>Lead Body                               | Fixation, Steroid |
| 6721            | Epicardial Patch         | Epi Patch                                    | —           | DF-1            | S, M, L               | Silicone, Single Lumen                                 | Suture            |
| 6921            | Epicardial Patch         | Epi Patch                                    | _           | 6.5 mm          | S, M, L               | Silicone, Single Lumen                                 | Suture            |
| 6930            | Sprint Fidelis           | Endo RV<br>True Bipolar Sensing              | IS-1        | DF-1            | 6.6 Fr                | Silicone with<br>Polyurethane Overlay,<br>Multilumen   | Passive, Steroid  |
| 6931            | Sprint Fidelis           | Endo RV<br>True Bipolar Sensing              | IS-1        | DF-1            | 6.6 Fr                | Silicone with<br>Polyurethane Overlay,<br>Multilumen   | Active, Steroid   |
| 6932            | Sprint                   | Endo RV<br>True Bipolar Sensing              | IS-1        | DF-1            | 7.8 Fr                | Silicone, Multilumen                                   | Passive, Steroid  |
| 6933            | SVC/CS                   | Endo SVC/CS<br>Coil                          | _           | DF-1            | 7 Fr                  | Silicone, Single Lumen                                 | Passive           |
| 6934S           | Transvene                | Endo RV<br>True Bipolar Sensing              | IS-1        | DF-1            | 12 Fr                 | Silicone, Coaxial                                      | Passive, Steroid  |
| 6935            | Sprint Quattro<br>Secure | Endo RV True Bipolar<br>Sensing              | IS-1        | DF-1            | 8.2 Fr                | Silicone with<br>Polyurethane Overlay,<br>Multilumen   | Active, Steroid   |
| 6936            | Transvene                | Endo RV<br>True Bipolar Sensing              | IS-1        | DF-1            | 10 Fr                 | Polyurethane, Coaxial                                  | Active            |
| 6937            | SVC/CS                   | Endo SVC<br>Coil                             | _           | DF-1            | 5.5 Fr                | Silicone, Single Lumen                                 | Passive           |
| 6937A           | SVC/CS                   | Endo SVC<br>Coil                             | _           | DF-1            | 7.5 Fr                | Silicone with<br>Polyurethane Overlay,<br>Single Lumen | Passive           |
| 6939            | Sub-Q Patch              | SQ Patch                                     | _           | DF-1            | One Size              | Silicone, Single Lumen                                 | Suture            |
| 6942            | Sprint                   | Endo RV/SVC<br>Integrated Bipolar<br>Sensing | IS-1        | 2 DF-1          | 7.8 Fr                | Silicone, Multilumen                                   | Passive, Steroid  |
| 6943            | Sprint                   | Endo RV<br>True Bipolar Sensing              | IS-1        | DF-1            | 7.8 Fr                | Silicone, Multilumen                                   | Active, Steroid   |
| 6944            | Sprint Quattro           | Endo RV/SVC<br>True Bipolar Sensing          | IS-1        | 2 DF-1          | 8.2 Fr                | Silicone with<br>Polyurethane Overlay,<br>Multilumen   | Passive, Steroid  |
| 6945            | Sprint                   | Endo RV/SVC<br>Integrated Bipolar<br>Sensing | IS-1        | 2 DF-1          | 7.8 Fr                | Silicone, Multilumen                                   | Active, Steroid   |
| 6947            | Sprint Quattro<br>Secure | Endo RV/SVC<br>True Bipolar Sensing          | IS-1        | 2 DF-1          | 8.2 Fr                | Silicone with<br>Polyurethane Overlay,<br>Multilumen   | Active, Steroid   |
| 6948            | Sprint Fidelis           | Endo RV/SVC<br>True Bipolar Sensing          | IS-1        | 2 DF-1          | 6.6 Fr                | Silicone with<br>Polyurethane Overlay,<br>Multilumen   | Passive, Steroid  |
| 6949            | Sprint Fidelis           | Endo RV/SVC<br>True Bipolar Sensing          | IS-1        | 2 DF-1          | 6.6 Fr                | Silicone with<br>Polyurethane Overlay,<br>Multilumen   | Active, Steroid   |
| 6963            | SVC/CS                   | Endo SVC/CS<br>Coil                          | _           | 6.5 mm          | 7 Fr                  | Silicone, Single Lumen                                 | Passive           |
| 6966            | Transvene                | Endo RV<br>True Bipolar Sensing              | 3.2 mm L.P. | 6.5 mm          | 10 Fr                 | Polyurethane, Coaxial                                  | Active            |
| 6996            | Sub-Q Lead               | SQ Coil                                      | _           | DF-1            | 7.5 Fr                | Silicone, Single Lumen                                 | Passive           |
| 6999            | Sub-Q Patch              | SQ Patch                                     | _           | 6.5 mm          | One Size              | Silicone, Single Lumen                                 | Suture            |

# Pacing Leads

### 3830 SelectSecure **Product Characteristics** US Market Release Aug-05 Serial Number Prefix LFF **US Returned Product Analysis Registered US Implants** 18,800 Type and/or Fixation Transvenous, V or A, Screw-in **Conductor Fracture** 2 Crimp/Weld/Bond 0 Estimated Active US Implants 15,500 Polarity Bipolar Insulation Breach 6 Advisories Steroid None Yes Other 5 **Atrial Placement** System Longevity Study Results **Qualifying Complications** 1 Total Number of Leads Enrolled in Study 596 Failure to Sense 1 Cumulative Months of Follow-Up 12,367 Number of Leads Active in Study 500 Lead Survival Probability (%) 100 90 80 0 2 3 4 5 6 8 9 10 7 Years After Implant 1 yr 2 yr 3 yr 4 yr 5 yr 99.8 % 99.8 99.8 99.8 99.8 # 271 142 101 64 48 Effective Sample Size

### **Ventricular Placement**

| tem L | ongevity St                     | udy Results      |       |              | Q     | ualifying Co | mplications    | 2 Tota | al |   |    |
|-------|---------------------------------|------------------|-------|--------------|-------|--------------|----------------|--------|----|---|----|
| С     | lumber of Lead<br>umulative Mon | ths of Follow-U  | Jp    | 374<br>9,721 |       | Impedanc     | e Out of Range | 2      |    |   |    |
| N     | lumber of Lead                  | s Active in Stuc | ly    | 281          |       |              |                |        |    |   |    |
| 100   |                                 |                  |       |              |       | _            |                |        |    |   |    |
| 90    |                                 |                  |       |              |       |              |                |        |    |   |    |
| 80    |                                 |                  |       |              |       |              |                |        |    |   |    |
| (     | 0                               | 1                | 2     | 3            | 4     | 5            | 6              | 7      | 8  | 9 | 10 |
|       | Years After                     | Implant          |       |              |       |              |                |        |    |   |    |
|       |                                 | 1 yr             | 2 yr  | 3 yr         | 4 yr  | 5 yr         |                |        |    |   |    |
| %     |                                 | 100.0            | 100.0 | 100.0        | 100.0 | 100.0        |                |        |    |   |    |
| #     |                                 | 202              | 123   | 92           | 66    | 50           |                |        |    |   |    |
|       | Effective Sam                   | ple Size         |       |              |       |              |                |        |    |   |    |




### 4024 CapSure SP

### **Product Characteristics**

|        | US Market Release                 | Oct-91  | Serial Number Pr  | efix LAJ                         |         | US Returned Product Ana                       | lysis          |
|--------|-----------------------------------|---------|-------------------|----------------------------------|---------|-----------------------------------------------|----------------|
|        | Registered US Implants            | 222,300 | Type and/or Fixat | tion Transvenous, Vent., Tin     | les     |                                               |                |
|        | Estimated Active US Implants      | 48,500  | Polarity          | Bipolar                          |         | Conductor Fracture                            | 28             |
|        | Advisories                        | None    | Steroid           | Yes                              |         | Crimp/Weld/Bond<br>Insulation Breach<br>Other | 0<br>148<br>41 |
| Syster | m Longevity Study Results         |         |                   | Qualifying Complications         | 4 Total |                                               |                |
|        | Number of Leads Enrolled in Study | 1,21    | 5                 | Failure to Capture               | 3       |                                               |                |
|        | Cumulative Months of Follow-Up    | 30,182  | 2                 | Insulation (not further defined) | 1       |                                               |                |
|        | Number of Leads Active in Study   | 19      | 9                 |                                  |         |                                               |                |





### 4067 CapSureFix

### **Product Characteristics**

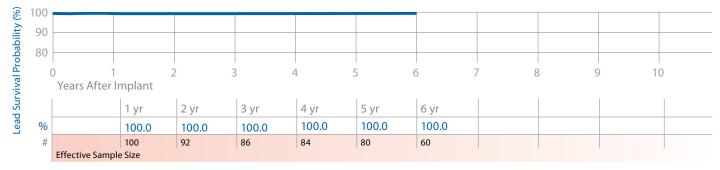
| stered US Implants<br>nated Active US Implants<br>sories<br>gevity Study Result<br>ber of Leads Enrolled in St<br>ulative Months of Follow<br>ber of Leads Active in St | Non<br>ts<br>Study<br>r-Up 1 | 00 Polar                         | bid                                                                | Unipo<br>Yes<br><b>lifying Con</b><br>Failu                                                                                                          | enous, V or A, S<br>lar<br>nplications<br>ure to Capture<br>Out of Range                                                                                                            | crew-in<br>8 Total<br>6<br>1                                                                                                                                                                                       |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                       | r Fracture<br>/eld/Bond<br>on Breach<br>Other                                                                                                                                                                                                                            | 1<br>C<br>C<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| sories<br>gevity Study Result<br>ber of Leads Enrolled in<br>ulative Months of Follow                                                                                   | Non<br>ts<br>Study<br>r-Up 1 | ne Sterc<br>171<br>10,425        | bid                                                                | Yes<br>lifying Con<br>Failu                                                                                                                          | nplications<br>ire to Capture                                                                                                                                                       | 6                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                       | on Breach                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| gevity Study Result<br>ber of Leads Enrolled in<br>ulative Months of Follow                                                                                             | ts<br>Study<br>'-Up 1        | 171<br>10,425                    |                                                                    | lifying Con<br>Failu                                                                                                                                 | ire to Capture                                                                                                                                                                      | 6                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                      | Insulatio                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ber of Leads Enrolled in Sulative Months of Follow                                                                                                                      | Study<br>r-Up 1              | 10,425                           | Qua                                                                | Failu                                                                                                                                                | ire to Capture                                                                                                                                                                      | 6                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ulative Months of Follow                                                                                                                                                | r-Up 1                       | 10,425                           |                                                                    |                                                                                                                                                      | -                                                                                                                                                                                   |                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                         | •                            |                                  |                                                                    | Impedance                                                                                                                                            | Out of Range                                                                                                                                                                        | 1                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ber of Leads Active in St                                                                                                                                               | udy                          | 48                               |                                                                    |                                                                                                                                                      |                                                                                                                                                                                     |                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                         |                              |                                  |                                                                    |                                                                                                                                                      | Oversensing                                                                                                                                                                         | 1                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                         |                              |                                  |                                                                    |                                                                                                                                                      |                                                                                                                                                                                     |                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                         |                              |                                  |                                                                    |                                                                                                                                                      |                                                                                                                                                                                     |                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                         |                              |                                  |                                                                    |                                                                                                                                                      |                                                                                                                                                                                     |                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                         |                              |                                  |                                                                    |                                                                                                                                                      |                                                                                                                                                                                     |                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1                                                                                                                                                                       | 2                            | 3                                | 4                                                                  | 5                                                                                                                                                    | 6                                                                                                                                                                                   | 7                                                                                                                                                                                                                  | 8                                                                                                                                                                                                                                                                    | 9                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ears After Implant                                                                                                                                                      |                              |                                  |                                                                    |                                                                                                                                                      |                                                                                                                                                                                     |                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                         |                              |                                  |                                                                    |                                                                                                                                                      |                                                                                                                                                                                     | at                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1 yr                                                                                                                                                                    | 2 yr                         | 3 yr                             | 4 yr                                                               | 5 yr                                                                                                                                                 | бyr                                                                                                                                                                                 | 78 mo                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 98.1                                                                                                                                                                    | 98.1                         | 98.1                             | 98.1                                                               | 98.1                                                                                                                                                 | 98.1                                                                                                                                                                                | 98.1                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 130                                                                                                                                                                     | 98                           | 90                               | 82                                                                 | 77                                                                                                                                                   | 65                                                                                                                                                                                  | 50                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                         | 1 yr<br>98.1                 | 1 yr 2 yr<br>98.1 98.1<br>130 98 | ars After Implant<br>1 yr 2 yr 3 yr<br>98.1 98.1 98.1<br>130 98 90 | ars After Implant         1 yr       2 yr       3 yr       4 yr         98.1       98.1       98.1       98.1         130       98       90       82 | ars After Implant         1 yr       2 yr       3 yr       4 yr       5 yr         98.1       98.1       98.1       98.1       98.1         130       98       90       82       77 | ars After Implant         1 yr       2 yr       3 yr       4 yr       5 yr       6 yr         98.1       98.1       98.1       98.1       98.1       98.1         130       98       90       82       77       65 | ars After Implant         1 yr       2 yr       3 yr       4 yr       5 yr       6 yr $\frac{at}{78 \text{ mo}}$ 98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1         130       98       90       82       77       65       50 | ars After Implant         1 yr       2 yr       3 yr       4 yr       5 yr       6 yr       at 78 mo         98.1       98.1       98.1       98.1       98.1       98.1       98.1         130       98       90       82       77       65       50 | ars After Implant         1 yr       2 yr       3 yr       4 yr       5 yr       6 yr       at 78 mo         98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1         130       98       90       82       77       65       50       0 | ars After Implant         1 yr       2 yr       3 yr       4 yr       5 yr       6 yr       at 78 mo       at 78 mo         98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1       98.1 |

| #      |          | 1,907    | 1,180      | 1,074     | 968  | 863      | 752   | 617       | 485      | 336    | 238                 | 181      | 119      | 59           | 46     |    |       |           |          |         |       |
|--------|----------|----------|------------|-----------|------|----------|-------|-----------|----------|--------|---------------------|----------|----------|--------------|--------|----|-------|-----------|----------|---------|-------|
| %      |          | 98.9     | 98.7       | 98.1      | 97.8 | 97.2     | 96.9  | 96.6      | 95.8     | 95.2   | 94.5                | 93.2     | 91.9     | 91.1         | 91.1   |    |       |           |          |         |       |
|        |          | 1 yr     | 2 yr       | 3 yr      | 4 yr | 5 yr     | бyr   | 7 yr      | 8 yr     | 9 yr   | 10 yr               | 11 yr    | 12 yr    | 13 yr        | 159 mo |    |       |           |          |         |       |
|        |          |          |            |           | 1    | 1        |       |           |          | 1      |                     |          |          |              | at     |    |       |           | 1        |         |       |
|        | -        | s After  | ~<br>Impl: | 0         |      |          |       | , (       |          | · 1    | - I                 |          | - I      | 5            | 15     | 10 | 17    | .0        |          | 20      | ~ I   |
|        | 0        | 1        | 2          | 3         | 4    | т<br>5 б | 5     | 7 8       | 3 9      | ) 10   | 0 1                 | 1 1      | 2 1      | 1 I<br>3 14  | 15     | 16 | 17    | 18        | 19       | 20      | 21    |
| 80     |          |          |            |           |      |          |       |           |          |        |                     |          |          |              |        |    |       |           |          |         |       |
| 90     |          |          |            |           |      |          |       |           |          |        |                     |          |          |              |        |    |       |           |          |         |       |
| 100    |          |          |            |           |      |          |       |           |          |        |                     |          |          |              |        |    |       |           |          |         |       |
|        |          |          |            |           |      |          |       |           |          |        |                     |          |          |              |        |    |       |           | Overs    | ensing  | :     |
|        |          |          |            |           |      |          |       |           |          | Insula | tion (no            | t furthe | r define | d) 1         |        |    | Ext   | tra Cardi | ac Stim  | ulation | :     |
|        |          |          |            |           |      |          |       |           |          |        |                     | Failure  | e to Sen | se 11        |        |    | Unsp  | pecified  | Clinical | Failure |       |
| Ν      | Number   | of Lead  | s Active   | e in Stud | y    |          | 447   |           |          |        | Co                  | nducto   | r Fractu | re 2         |        |    | Im    | pedanc    | e Out of | Range   |       |
|        | Cumulat  |          |            |           |      | 124      | ,040  |           |          |        |                     |          | o Captu  |              |        |    |       | Ir        | sulatio  | n (MIO) | :     |
| Ν      | Number   | of Lead  | s Enroll   | ed in Stu | udy  | 2        | 2,413 |           |          |        | Le                  | ad Dislo | dgeme    | nt 8         |        |    |       | Iı        | nsulatio | n (ESC) |       |
|        | Longe    |          | udy R      | esults    |      |          |       |           |          | Qualif | <sup>f</sup> ying C | Compl    | icatior  | <b>1S</b> 66 | Total  |    |       |           |          |         |       |
| sial D | lacen    |          |            |           |      |          |       |           |          |        |                     |          |          |              |        |    |       |           |          | Other   | 1     |
| A      | Advisori | es       |            |           |      | None     | e S   | teroid    |          |        | Yes                 | 5        |          |              |        |    |       | Insu      | lation   | Breach  | 11    |
| E      | Estimate | d Active | e US Im    | plants    |      | 36,000   | ) P   | olarity   |          |        | Bip                 | olar     |          |              |        |    |       | Crim      | p/Welc   | l/Bond  |       |
| F      | Register | ed US In | nplants    |           |      | 124,200  | ) T   | ype and/  | or Fixat | ion    | Tra                 | nsveno   | us, V or | A, Screw     | -in    |    |       |           |          | acture  | 4     |
| ι      | JS Mark  | et Relea | se         |           |      | Mar-96   | 5 S   | erial Nur | nber Pre | efix   | LCI                 | E        |          |              |        |    | US Re | eturne    | d Proc   | luct An | alvsi |
|        |          |          |            |           |      |          |       |           |          |        |                     |          |          |              |        |    |       |           |          |         |       |

### **Ventricular Placement**

|     | onge     | , 50    |           |           |      |      |       |      |      | 20.011 |       | · · · P | ications    | 42 | Total |    |      |           |          |         |   |
|-----|----------|---------|-----------|-----------|------|------|-------|------|------|--------|-------|---------|-------------|----|-------|----|------|-----------|----------|---------|---|
| Ν   | lumber   | of Lead | s Enrolle | ed in Stu | dy   | 1    | ,799  |      |      |        |       | Failure | o Capture   | 21 |       |    | lm   | pedanc    | e Out of | Range   |   |
| C   | umulati  | ve Mor  | nths of F | ollow-Up  | C    | 90   | ),731 |      |      |        | C     | onducto | or Fracture | 2  |       |    | Unsp | pecified  | Clinical | Failure |   |
| Ν   | lumber   | of Lead | s Active  | in Study  | ,    |      | 377   |      |      |        |       | Failur  | e to Sense  | 3  |       |    | Ext  | tra Cardi | ac Stim  | ulation |   |
|     |          |         |           |           |      |      |       |      |      |        |       |         |             |    |       |    |      |           | Overs    | ensing  |   |
| 100 |          |         |           |           |      |      |       |      |      |        |       |         |             |    |       |    |      |           |          |         |   |
| 90  |          |         |           |           |      |      |       |      |      |        |       |         |             |    |       |    |      |           |          |         |   |
| 80  |          |         |           |           |      |      |       |      |      |        |       |         | I           |    |       |    |      |           |          |         |   |
| (   | 0        | 1       | 2         | 3 4       | 4 !  | 5 (  | 6     | 7    | 8    | 9 1    | 0     | 1 '     | 2 13        | 14 | 15    | 16 | 17   | 18        | 19       | 20      | 2 |
|     | Years    | s After | r Impla   | nt        |      |      |       |      |      |        |       |         |             |    |       |    |      |           |          |         |   |
|     |          | 1 yr    | 2 yr      | 3 yr      | 4 yr | 5 yr | 6 yr  | 7 yr | 8 yr | 9 yr   | 10 yr | 11 yr   | 12 yr       |    |       |    |      |           |          |         |   |
| %   |          | 99.3    | 98.7      | 98.7      | 98.1 | 97.7 | 97.2  | 96.1 | 95.8 | 94.2   | 94.2  | 94.2    | 92.8        |    |       |    |      |           |          |         |   |
| #   |          | 1,428   | 950       | 863       | 764  | 676  | 576   | 446  | 295  | 179    | 106   | 71      | 51          |    |       |    |      |           |          |         |   |
|     | Effectiv |         | ple Size  |           |      |      |       |      |      |        |       |         |             |    |       |    |      |           |          |         |   |

## 4073 CapSure Sense


Product Characteristics

| •                            |        |                      |                           |                                |
|------------------------------|--------|----------------------|---------------------------|--------------------------------|
| US Market Release            | Jun-02 | Serial Number Prefix | BBF                       | US Returned Product Analysis   |
| Registered US Implants       | 700    | Type and/or Fixation | Transvenous, Vent., Tines | Conductor Fracture 0           |
| Estimated Active US Implants | 400    | Polarity             | Unipolar                  | Crimp/Weld/Bond 0              |
| Advisories                   | None   | Steroid              | Yes                       | Insulation Breach 0<br>Other 0 |

System Longevity Study Results

Qualifying Complications 0 Total

Number of Leads Enrolled in Study102Cumulative Months of Follow-Up6,820Number of Leads Active in Study74



|     | US Market Release                                                 | Jun-02                     | Serial Num            | ber Prefix  | BBD                 |                    | US Returne | ed Product Ana          | alysi |
|-----|-------------------------------------------------------------------|----------------------------|-----------------------|-------------|---------------------|--------------------|------------|-------------------------|-------|
|     | Registered US Implants                                            | 79,400                     | Type and/o            | or Fixation | Transvenous, Vent., | Tines              | -          | uctor Fracture          |       |
|     | Estimated Active US Implants                                      | 52,200                     | Polarity              |             | Bipolar             |                    |            | p/Weld/Bond             |       |
|     | Advisories                                                        | None                       | Steroid               |             | Yes                 |                    | Insu       | llation Breach<br>Other | 1     |
| ial | al Placement                                                      |                            |                       |             |                     |                    |            |                         |       |
| ter | em Longevity Study Results                                        |                            |                       | Qualifyi    | ng Complication     | 5 2 Total          |            |                         |       |
|     | Number of Leads Enrolled in Study                                 | 2                          | 14                    |             | Lead Dislodgemen    | t 1                |            |                         |       |
|     | itaniber of Leads Enfonce in Stady                                | -                          | ••                    |             | Lead Disloagemen    |                    |            |                         |       |
|     | Cumulative Months of Follow-Up                                    | 13,16                      |                       |             | Failure to Sense    |                    |            |                         |       |
|     |                                                                   | 13,16                      |                       |             | -                   |                    |            |                         |       |
| 10  | Cumulative Months of Follow-Up                                    | 13,16                      | 66                    |             | -                   |                    |            |                         |       |
|     | Cumulative Months of Follow-Up<br>Number of Leads Active in Study | 13,16                      | 66                    |             | -                   |                    |            |                         |       |
| 9   | Cumulative Months of Follow-Up<br>Number of Leads Active in Study | 13,16                      | 66                    |             | -                   |                    |            |                         |       |
| 9   | Cumulative Months of Follow-Up<br>Number of Leads Active in Study | 13,16                      | 66                    | 5           | -                   |                    | 8 9        | 10                      |       |
| 9   | Cumulative Months of Follow-Up<br>Number of Leads Active in Study | 13,16                      | 66<br>60              | 5           | Failure to Sense    | 2 1<br>1           | 8 9        | 10                      |       |
| 9   | Cumulative Months of Follow-Up<br>Number of Leads Active in Study | 13,16<br>16                | 66<br>60<br>4         | -           | Failure to Sense    | 2 1<br>1           | 8 9        | 10                      |       |
| 8   | Cumulative Months of Follow-Up<br>Number of Leads Active in Study | 13,16<br>16<br>3<br>2 yr 5 | 66<br>60<br>4<br>3 yr | 4 yr 5      | Failure to Sense    | 2 1<br>1<br>7<br>1 | 89         | 10                      |       |

### **Ventricular Placement**

| ystem Longevity Study Results Qualifying Complications    |                                                                                                        |          |      |                      |                          |      | 3 Total |             |   |   |    |
|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------|------|----------------------|--------------------------|------|---------|-------------|---|---|----|
| C                                                         | Number of Leads Enrolled in Study<br>Cumulative Months of Follow-Up<br>Number of Leads Active in Study |          |      | 606<br>24,280<br>482 | 4,280 Failure to Capture |      |         | 1<br>1<br>1 |   |   |    |
| 001 001 (%) 000 (%) 000 000 000 000 000 000 000 000 000 0 |                                                                                                        |          |      |                      |                          |      |         |             |   |   |    |
| 80                                                        | 0 1                                                                                                    |          | 2    | 3                    | 4                        | 5    | 6       | 7           | 8 | 9 | 10 |
|                                                           | Years After                                                                                            | Implant  |      |                      |                          |      |         |             |   |   |    |
| ;<br>;                                                    |                                                                                                        | 1 yr     | 2 yr | 3 yr                 | 4 yr                     | 5 yr | 6 yr    | at 81 mo    |   |   |    |
| %                                                         |                                                                                                        | 99.6     | 99.3 | 99.3                 | 99.3                     | 99.3 | 99.3    | 99.3        |   |   |    |
| #                                                         |                                                                                                        | 396      | 355  | 327                  | 275                      | 168  | 76      | 59          |   |   |    |
|                                                           | Effective Samp                                                                                         | ole Size |      |                      |                          |      |         |             |   |   |    |

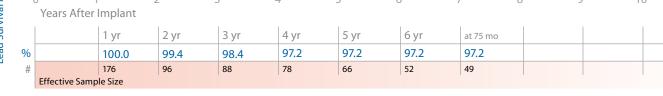
|                 | US Market Release                                                 | Feb-04          | Serial Number Prefix | BBL                                    |         |   | US Ret | urned Produ    | ict Anal     | lys |
|-----------------|-------------------------------------------------------------------|-----------------|----------------------|----------------------------------------|---------|---|--------|----------------|--------------|-----|
|                 | Registered US Implants                                            | 322,200         | Type and/or Fixation | Transvenous, V or A, S                 | crew-in |   | C      | Conductor Frac | ture         | 1   |
|                 | Estimated Active US Implants                                      | 255,300         | Polarity             | Bipolar                                |         |   |        | Crimp/Weld/B   |              |     |
|                 | Advisories                                                        | None            | Steroid              | Yes                                    |         |   |        | Insulation Bre | each<br>ther | 1   |
|                 | Placement<br>n Longevity Study Results                            |                 | Qu                   | alifying Complications                 | 5 Tota  | I |        |                |              |     |
|                 | Number of Leads Enrolled in Study                                 | 1,658           | 3                    | Lead Dislodgement                      | 3       |   |        |                |              |     |
|                 |                                                                   |                 |                      |                                        |         |   |        |                |              |     |
|                 | Cumulative Months of Follow-Up                                    | 45,025          | 5                    | Failure to Capture                     | 1       |   |        |                |              |     |
|                 | Cumulative Months of Follow-Up<br>Number of Leads Active in Study | 45,025<br>1,366 |                      | Failure to Capture<br>Failure to Sense | 1       |   |        |                |              |     |
|                 | Number of Leads Active in Study                                   |                 |                      | •                                      | •       |   |        |                |              |     |
| 100             | Number of Leads Active in Study                                   |                 |                      | •                                      | •       |   |        |                |              |     |
| 10(<br>9(       | Number of Leads Active in Study                                   |                 |                      | •                                      | •       | 8 |        | 9              | 10           |     |
| 10(<br>9(       | Number of Leads Active in Study                                   | 1,366           | 5                    | Failure to Sense                       | 1       | 8 |        | 9              | 10           |     |
| 10(<br>9(       | Number of Leads Active in Study                                   | 1,366           | 4                    | Failure to Sense                       | 1       | 8 |        | 9              | 10           |     |
| 10(<br>9(<br>8( | Number of Leads Active in Study                                   | 1,366           | 5<br>4<br>yr 4 yr    | Failure to Sense                       | 1       | 8 |        | 9              | 10           |     |

| Syst                          | em l | Longevity Stu                                         | udy Results    |      |                        | Qı   | ualifying Cor | nplications    | 2 Tota | al |   |    |
|-------------------------------|------|-------------------------------------------------------|----------------|------|------------------------|------|---------------|----------------|--------|----|---|----|
|                               | C    | Number of Leads<br>Cumulative Mont<br>Number of Leads | hs of Follow-U | Jp   | 1,225<br>38,151<br>976 |      | Failt         | ure to Capture | 2      |    |   |    |
| Lead Survival Probability (%) | 100  |                                                       |                |      |                        |      |               | •              |        |    |   |    |
|                               | 90   | )                                                     |                |      |                        |      |               |                |        |    |   |    |
| nan                           | 80   | )                                                     |                |      |                        |      |               |                |        |    |   |    |
| -                             |      | 0                                                     | 1              | 2    | 3                      | 4    | 5             | б              | 7      | 8  | 9 | 10 |
| 2                             |      | Years After                                           | Implant        |      |                        |      |               |                |        |    |   |    |
| Inc                           |      |                                                       | 1 yr           | 2 yr | 3 yr                   | 4 yr | 5 yr          | at 69 mo       |        |    |   |    |
| בקסר                          | %    |                                                       | 99.8           | 99.8 | 99.8                   | 99.8 | 99.8          | 99.8           |        |    |   |    |
|                               | #    |                                                       | 1,002          | 548  | 422                    | 295  | 133           | 46             |        |    |   |    |
|                               |      | Effective Samp                                        | le Size        |      |                        |      |               |                |        |    |   |    |

### 4092 CapSure SP Novus

Product Characteristics

|               | Capsure        |                 |                |           |                |         |             |               |     |       |           |                            |        |
|---------------|----------------|-----------------|----------------|-----------|----------------|---------|-------------|---------------|-----|-------|-----------|----------------------------|--------|
| U             | JS Market Rele | ease            |                | Sep-98    | Serial Number  | Prefix  | LEP         |               |     |       | US Ret    | urned Product Ana          | alysis |
| R             | legistered US  | Implants        |                | 166,700   | Type and/or Fi | xation  | Transvenou  | s, Vent., Tir | nes |       | C         | Conductor Fracture         |        |
| E             | stimated Act   | ive US Implai   | nts            | 82,600    | Polarity       |         | Bipolar     |               |     |       |           | Crimp/Weld/Bond            |        |
| A             | dvisories      |                 |                | None      | Steroid        |         | Yes         |               |     |       |           | Insulation Breach<br>Other | 2      |
| tem l         | Longevity      | Study Resi      | ilts           |           |                | Qualify | ing Complic | ations        | 18  | Total |           |                            |        |
|               | lumber of Lea  | -               |                | 1,147     | 7              | Quany   | Lead Dislod |               | 4   | Iotai | Imp       | edance Out of Range        | 1      |
|               | Cumulative Mo  |                 |                | 64,009    |                |         | Failure to  | -             | 9   |       | -         | Cardiac Stimulation        | 1      |
|               | lumber of Lea  |                 |                | 418       |                |         | Conductor   |               | 3   |       |           |                            |        |
| 100           |                |                 |                |           |                |         |             |               |     |       |           |                            |        |
| 100           |                |                 |                |           |                |         |             |               |     |       |           |                            |        |
|               |                |                 |                |           |                |         |             |               |     |       |           |                            |        |
| 90            |                |                 |                |           |                |         |             |               |     |       |           |                            |        |
| 90<br>80      |                |                 |                |           |                |         |             |               |     |       |           |                            |        |
| 90<br>80      | 0              | 1               | 2              | 3         | 4              |         | 6           |               | 7   |       | 8         | 9 10                       |        |
| 90<br>80<br>( |                | 1<br>er Implant | 2              | 3         | 4              | 5       | 6           |               | 7   | 1     | 8         | 9 10                       |        |
| 90<br>80<br>( |                | 1<br>er Implant | 2<br>2<br>2 yr | 3<br>3 yr | 4<br>4 yr      | 5 yr    | 6<br>6 yr   | 7 yr          | 7   | 8 yr  | 8<br>9 yr | 9 10<br>at 111 mo          |        |
| 80            |                |                 | 1              | -<br>I    | 1              | I.      |             | 7 yr<br>97.9  | 7   | I     |           |                            |        |


# 4523 CapSure SP

|                                                         | Aug-9   | Serial N      | umber Prefix  | ZE                    |          |       | US Retur | ned Product An            | alysis |
|---------------------------------------------------------|---------|---------------|---------------|-----------------------|----------|-------|----------|---------------------------|--------|
| <b>Registered US Implants</b>                           | 11,20   | ) Type ar     | d/or Fixation | Transvenous, Atrial-  | J, Tines | ;     | Co       | nductor Fracture          |        |
| Estimated Active US Implan                              | ts 2,70 | D Polarity    | ,             | Unipolar              |          |       |          | rimp/Weld/Bond            |        |
| Advisories                                              | Non     | e Steroid     |               | Yes                   |          |       | I        | nsulation Breach<br>Other |        |
| stem Longevity Study Resu                               | llts    |               | Qualif        | ying Complications    | 4        | Total |          |                           |        |
| Number of Leads Enrolled ir                             | n Study | 121           |               | Lead Dislodgement     | 2        |       |          |                           |        |
| Cumulative Months of Follo                              | w-Up    | 5,819         | h             | mpedance Out of Range | 1        |       |          |                           |        |
| Number of Leads Active in S                             | Study   | 11            |               | Oversensing           | 1        |       |          |                           |        |
| 100                                                     |         | 1             |               |                       |          |       |          |                           |        |
| 100                                                     |         |               |               |                       |          |       |          |                           |        |
| 90                                                      |         |               |               |                       |          |       |          |                           |        |
| 90 80                                                   |         |               |               |                       |          |       |          |                           |        |
| 90<br>80<br>Vears After Implant                         |         | 3             | 4 5           | 6                     | 7        | 8     | 9        | 10                        |        |
| 90<br>90<br>80<br>0<br>1<br>Years After Implant<br>1 yr |         | 3<br>at 27 mo | 4 5           | 6                     | 7        | 8     | 9        | 10                        |        |
| 80<br>0 1<br>Years After Implant                        |         |               | 4 5           | 6                     | 7        | 8     | 9        | 10                        |        |

#### 4524 CapSure SP **Product Characteristics** US Market Release Oct-91 Serial Number Prefix LAR **US Returned Product Analysis Registered US Implants** 101,800 Type and/or Fixation Transvenous, Atrial-J, Tines **Conductor Fracture** 1 Crimp/Weld/Bond 0 **Estimated Active US Implants** 27,800 Polarity Bipolar **Insulation Breach** 44 Advisories None Steroid Yes Other 13 System Longevity Study Results **Qualifying Complications** 6 Total Number of Leads Enrolled in Study 911 Lead Dislodgement 1 Cumulative Months of Follow-Up 27,302 Failure to Capture 3 Number of Leads Active in Study 44 Failure to Sense 2 Lead Survival Probability (%) 100 90 80 2 3 4 5 6 8 9 0 7 10 Years After Implant 3 yr 6 yr 7 yr 8 yr 2 yr 4 yr 9 yr 1 yr 5 yr at 114 mo % 99.6 99.2 99.2 98.4 98.4 98.4 98.4 98.4 98.4 98.4 # 682 138 124 112 99 89 81 73 62 51 Effective Sample Size

#### 4533 CapSure Z

#### **Product Characteristics** US Market Release Not US Serial Number Prefix LCB **US Returned Product Analysis** released **Registered US Implants** NA Type and/or Fixation Transvenous, Atrial-J, Tines **Conductor Fracture** Estimated Active US Implants NA Polarity Unipolar Crimp/Weld/Bond Advisories None Steroid Yes Insulation Breach Other System Longevity Study Results **Qualifying Complications** 4 Total 206 Lead Dislodgement Oversensing Number of Leads Enrolled in Study 1 Cumulative Months of Follow-Up 10,116 Failure to Capture 1 Number of Leads Active in Study 14 Failure to Sense 1 100 Lead Survival Probability (%) 90 80 2 3 4 5 6 7 8 9 10 0



1

0

0

0

1

#### 4558M Screw-In **Product Characteristics** US Market Release Nov-94 Serial Number Prefix LDC **US Returned Product Analysis Registered US Implants** 20,000 Type and/or Fixation Transvenous, Atrial-J, Screw-in **Conductor Fracture** 1 Estimated Active US Implants 4,800 Crimp/Weld/Bond Polarity Bipolar 1 Insulation Breach 19 Steroid Advisories None No Other 1 System Longevity Study Results **Qualifying Complications** 12 Total 539 Insulation (not further defined) 2 Number of Leads Enrolled in Study **Electrical Abandonment** 1 18,294 3 2 Cumulative Months of Follow-Up Failure to Capture Impedance Out of Range Number of Leads Active in Study 22 Failure to Sense 2 Oversensing 2 100 Lead Survival Probability (%) 90 80 2 3 5 6 7 8 9 10 0 4 Years After Implant 2 yr 3 yr 4 yr 5 yr 6 yr 7 yr 8 yr 9 yr 1 yr % 99.3 99.3 99.3 99.3 99.3 97.2 95.9 95.9 91.1 # 353 125 111 106 99 82 75 62 50 **Effective Sample Size**

#### 4568 CapSureFix

| I         | US Market Release                                                 | Jan-97           | Serial Number Prefix | LDD                      |          | US Ret         | urned Product An           | alysi |
|-----------|-------------------------------------------------------------------|------------------|----------------------|--------------------------|----------|----------------|----------------------------|-------|
| I         | Registered US Implants                                            | 69,800           | Type and/or Fixation | Transvenous, Atrial-J, S | crew-in  | С              | Conductor Fracture         |       |
| I         | Estimated Active US Implants                                      | 26,100           | Polarity             | Bipolar                  |          |                | Crimp/Weld/Bond            |       |
| 1         | Advisories                                                        | None             | Steroid              | Yes                      |          |                | Insulation Breach<br>Other |       |
| em        | Longevity Study Results                                           |                  | Qua                  | lifying Complications    | 33 Total |                |                            |       |
| I         | Number of Leads Enrolled in Study                                 | 656              | 5                    | Lead Dislodgement        | 9        | Impe           | edance Out of Range        |       |
|           | C 1.0. M .1. (C. II                                               |                  |                      | Failure to Conture       | 18       |                |                            |       |
| (         | Cumulative Months of Follow-Up                                    | 31,183           | 3                    | Failure to Capture       | 10       |                | Medical Judgment           |       |
|           | Cumulative Months of Follow-Up<br>Number of Leads Active in Study | 31,183<br>179    |                      | Failure to Capture       | 3        |                | Medical Judgment           |       |
| 100<br>90 | Number of Leads Active in Study                                   |                  |                      | •                        |          |                |                            |       |
| 100       | Number of Leads Active in Study                                   |                  |                      | •                        |          | 8              | 9 10                       |       |
| 100<br>90 | Number of Leads Active in Study                                   | 175              |                      | Failure to Sense         | 3        | 8              |                            |       |
| 100<br>90 | Number of Leads Active in Study                                   | 175              | 4                    | Failure to Sense         | 3        | 8<br>8<br>8 yr |                            |       |
| 100<br>90 | Number of Leads Active in Study                                   | 179<br>3<br>yr 3 | 4                    | Failure to Sense         | 3        | _              | 9 10                       |       |

### 4574 CapSure Sense

#### Product Characteristics

135

| US Market Release             | Jun-02 | Serial Number Prefix | BBE                          | US Returned Product Analysis |
|-------------------------------|--------|----------------------|------------------------------|------------------------------|
| <b>Registered US Implants</b> | 51,700 | Type and/or Fixation | Transvenous, Atrial-J, Tines | Conductor Fracture 4         |
| Estimated Active US Implants  | 36,600 | Polarity             | Bipolar                      | Crimp/Weld/Bond 0            |
| Advisories                    | None   | Steroid              | Yes                          | Insulation Breach 2          |
|                               | None   | 5101010              |                              | Other 0                      |

#### System Longevity Study Results

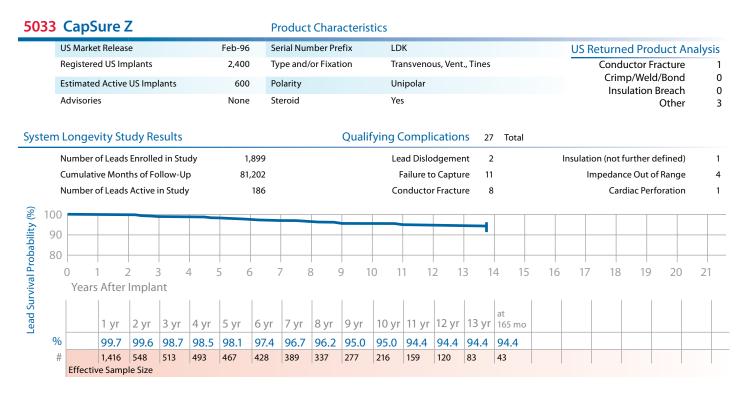
Number of Leads Enrolled in Study

Qualifying Complications 0 Total

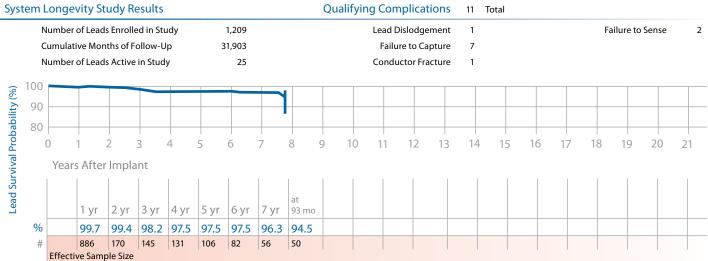
|    |                |                  | у                 | 120             |   |   |   |   |   |     |   |
|----|----------------|------------------|-------------------|-----------------|---|---|---|---|---|-----|---|
| 0  | Survival estim | ate not availabl | e due to insuffic | ient sample siz | e |   |   |   |   |     |   |
|    |                |                  |                   |                 |   |   |   |   |   |     |   |
| 80 |                |                  |                   |                 |   |   |   |   |   |     |   |
| (  | ) .            | 1 2              | 2 3               | 3               | 4 | 5 | 6 | 7 | 8 | 9 1 | 0 |
|    |                |                  |                   |                 |   |   |   |   |   |     |   |
|    | Years After    | Implant          |                   |                 |   |   |   |   |   |     |   |
|    | Years After    | Implant          |                   |                 |   |   |   |   |   |     |   |
| %  | Years After    | Implant          |                   |                 |   |   |   |   |   |     |   |

#### 4592 CapSure SP Novus

|              | US                  | Market Releas                                                                                                                       | e              | 0    | ct-98  | Serial Numbe  | er Prefix | LER        |                  |                | US R           | Returned Prod | uct Analys     |
|--------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------|------|--------|---------------|-----------|------------|------------------|----------------|----------------|---------------|----------------|
|              | Reg                 | gistered US Im                                                                                                                      | plants         | 8    | 1,300  | Type and/or I | Fixation  | Transvend  | ous, Atrial-J, T | nes            |                | Conductor Fra | cture          |
|              | Est                 |                                                                                                                                     |                |      | 2,700  | Polarity      |           | Bipolar    |                  |                |                | Crimp/Weld/   |                |
|              | Ad                  | lvisories                                                                                                                           |                | I    | None   | Steroid       |           | Yes        |                  |                |                | Insulation B  | reach<br>Other |
| ster         | m Lc                | ongevity Stu                                                                                                                        | udy Results    | ;    |        |               | Qualify   | ing Compl  | ications         | 5 Total        |                |               |                |
|              | Nu                  | umber of Leads                                                                                                                      | Enrolled in St | tudy | 283    |               |           | Lead Dislo | odgement         | 2              |                |               |                |
|              | Cu                  | imulative Mont                                                                                                                      | ths of Follow- | Up   | 14,023 |               |           | Failure t  | o Capture        | 2              |                |               |                |
|              |                     | n Longevity Study Results<br>Number of Leads Enrolled in Study<br>Cumulative Months of Follow-Up<br>Number of Leads Active in Study |                |      |        |               |           |            |                  |                |                |               |                |
|              | Nu                  | Cumulative Months of Follow-Up<br>Number of Leads Active in Study                                                                   |                |      | 79     |               |           | Failur     | e to Sense       | 1              |                |               |                |
| 10           |                     | umber of Leads                                                                                                                      | Active in Stu  | dy   | 79     |               |           | Failur     | e to Sense       | 1              |                |               |                |
| 10           |                     | umber of Leads                                                                                                                      | Active in Stu  | dy   | 79     |               |           | Failur     | e to Sense       | 1              | -              |               |                |
| 10<br>9      | 00                  | umber of Leads                                                                                                                      | Active in Stu  | dy   | 79     |               |           | Failur     | e to Sense       | 1              |                |               |                |
| 10<br>9<br>8 | 00<br>90 -          | umber of Leads                                                                                                                      | Active in Stu  | dy   | 79     | 4             | 5         |            | e to Sense       | 1              | 8              | 9             | 10             |
| 10<br>9<br>8 | 00<br>90<br>80<br>0 | umber of Leads                                                                                                                      |                |      |        |               | 5         |            |                  | 1<br>7         | 8              | 9             | 10             |
| 10<br>9<br>8 | 00<br>90<br>80<br>0 |                                                                                                                                     |                |      |        |               | 5         |            |                  | 7              | 8              | 9<br>at       | 10             |
| 10<br>9<br>8 | 00<br>90<br>80<br>0 |                                                                                                                                     |                |      |        | 4             |           |            |                  | 1<br>7<br>7 yr | 8<br>8<br>8 yr |               | 10             |
| 8            | 00<br>90<br>80<br>0 |                                                                                                                                     | I<br>Implant   | 2    | 3      | 4<br>/r 4     | yr 5      | (          | 5                | 7              |                | at            | 10             |


### 5023, 5023M CapSure SP

Product Characteristics


|                                         | US         | 5 Marke                                                             | t Releas | se         |          |      | Nov-8 | 8 .     | Serial Nu | ımber P   | refix | SX       | or LAS    |               |      |       |     | US Re  | turne    | d Prod         | uct Ar  | nalysis |
|-----------------------------------------|------------|---------------------------------------------------------------------|----------|------------|----------|------|-------|---------|-----------|-----------|-------|----------|-----------|---------------|------|-------|-----|--------|----------|----------------|---------|---------|
|                                         | Re         | gistere                                                             | d US Im  | plants     |          |      | 9,90  | 0 -     | Type and  | d/or Fixa | tion  | Tra      | insvenou  | ıs, Vent., Ti | ines |       |     |        | Conduc   |                |         | 6       |
|                                         | Est        | Longevity Study Results                                             |          |            |          |      | 2,30  | 0 1     | Polarity  |           |       | Un       | ipolar    |               |      |       |     |        |          | /Weld/         |         | 0       |
|                                         | Ad         | Advisories                                                          |          |            |          | Non  | e s   | Steroid |           |           | Ye    | 5        |           |               |      |       |     | Insula | ation B  | reach<br>Other | 1<br>0  |         |
|                                         |            | Longevity Study Results                                             |          |            |          |      |       |         |           |           |       |          |           |               |      |       |     |        | ,        | Julei          | 0       |         |
| ysten                                   | n Lo       | ongev                                                               | ity St   | udy Re     | esults   |      |       |         |           |           | Qual  | ifying C | Compli    | cations       | 19   | Total |     |        |          |                |         |         |
|                                         | Νu         | umber c                                                             | of Leads | Enrolle    | d in Stu | udy  |       | 1,354   |           |           |       | F        | ailure to | Capture       | 10   |       |     | Ext    | ra Cardi | ac Stimu       | ulation | 4       |
|                                         | Cu         | Number of Leads Enrolled in Study<br>Cumulative Months of Follow-Up |          |            | lp       | 7    | 9,518 |         |           |           | Co    | nductor  | Fracture  | 3             |      |       |     |        |          |                |         |         |
|                                         | Νu         | umber c                                                             | of Leads | Active     | in Stud  | у    |       | 365     |           |           |       | Impeda   | nce Out   | of Range      | 2    |       |     |        |          |                |         |         |
| <u>s</u> 10                             | 0 -        |                                                                     |          |            |          |      |       |         |           |           |       |          |           |               |      |       |     |        |          |                |         |         |
| <u>6</u> 9                              |            |                                                                     |          |            |          |      |       |         |           |           |       |          |           |               |      |       |     |        |          |                |         |         |
|                                         |            |                                                                     |          |            |          |      |       |         |           |           |       |          |           |               |      |       |     |        |          |                |         |         |
| 8 8                                     |            |                                                                     |          |            | -        | 4    | -     | _       | -         | -         |       | 10 1     | 1 17      | 12            | 1.4  | 15    | 1.0 | 17     | 10       | 10             | 20      |         |
| al P                                    | 0          |                                                                     | After    | z<br>Impla | 3<br>nt  | 4    | 5     | 6       | /         | 8         | 9     | 10 1     |           | 2 13          | 14   | 15    | 16  | 17     | 18       | 19             | 20      | 21      |
| 2<br>Z                                  | I          | rears                                                               | / liter  |            |          | 1    | 1     | 1       | I         | 1         | 1     | 1        | 1         |               | I    | 1     | I   | I      |          |                |         |         |
| Lead Survival Probability (%)<br>8 6 01 |            |                                                                     | 1 yr     | 2 yr       | 3 yr     | 4 yr | 5 yr  | 6 yr    | 7 yr      | 8 yr      | 9 yr  | 10 yr    | 11 yr     | 12 yr         |      |       |     |        |          |                |         |         |
| a                                       | v <u> </u> |                                                                     | 99.7     | 99.7       | 99.5     | 99.4 | 99.4  | 98.9    | 97.4      | 97.4      | 97.1  | 96.6     | 95.7      | 95.7          |      |       |     |        |          |                |         |         |
| ý Ľe                                    |            |                                                                     |          |            |          |      |       |         |           |           |       |          |           |               |      |       |     |        |          |                |         |         |
| - '                                     | #          |                                                                     | 1,077    | 818        | 760      | 698  | 617   | 545     | 423       | 331       | 230   | 151      | 88        | 43            |      |       |     |        |          |                |         |         |

#### 5024, 5024M CapSure SP

| U      | JS Marke                                                                                               | t Releas | se       |        |      | Mar-90  | S     | erial Nur | nber Pr   | efix   | SY        | or LAT   |             |            |       |       | US      | Retur   | ned     | Prod        | uct An         | alysis   |
|--------|--------------------------------------------------------------------------------------------------------|----------|----------|--------|------|---------|-------|-----------|-----------|--------|-----------|----------|-------------|------------|-------|-------|---------|---------|---------|-------------|----------------|----------|
| R      | legistere                                                                                              | d US Im  | plants   |        |      | 201,600 | Ty    | ype and,  | /or Fixat | tion   | Tra       | nsvenou  | us, Vent    | ., Tines   |       |       |         | Con     | duct    | or Fra      | cture          | 52       |
| E      | stimated                                                                                               | d Active | US Imp   | olants |      | 49,200  | P     | olarity   |           |        | Bip       | olar     |             |            |       |       |         |         |         | /Weld       |                | 10       |
| A      | dvisorie                                                                                               | S        |          |        |      | None    | S     | teroid    |           |        | Yes       |          |             |            |       |       |         | In      | isulat  | ion Bi<br>( | reach<br>Other | 50<br>39 |
| stem l | Longevity Study Results<br>Number of Leads Enrolled in Stur<br>Cumulative Months of Follow-Up          |          |          |        |      |         |       |           | Qualif    | ying C | ompli     | cation   | <b>S</b> 5- | 4 Tota     | I     |       |         |         |         |             |                |          |
| N      | Number of Leads Enrolled in Stud<br>Cumulative Months of Follow-Up                                     |          |          | ıdy    | 8    | ,153    |       |           |           | Lea    | ad Dislo  | dgemer   | nt          | 5          |       |       | Imped   | dance   | Out o   | f Range     | 3              |          |
| C      | Number of Leads Enrolled in Study<br>Cumulative Months of Follow-Up<br>Number of Leads Active in Study |          |          | р      | 330  | ,810    |       |           |           | F      | ailure to | o Captur | re 2        | 7          |       | ι     | Jnspeci | ified C | linical | Failure     | 1              |          |
| Ν      | Number of Leads Enrolled in Study<br>Cumulative Months of Follow-Up                                    |          |          | у      |      | 452     |       |           |           | Co     | nductor   | Fractur  | e           | 3          |       |       | Extra ( | Cardia  | ic Stim | ulation     | 2              |          |
|        |                                                                                                        |          |          |        |      |         |       |           |           |        |           | Failure  | to Sens     | e          | 2     |       |         |         |         | Over        | sensing        | 4        |
|        |                                                                                                        |          |          |        |      |         |       |           |           | Insula | tion (not | further  | defined     | d) (b      | 5     |       |         |         |         |             | Other          | 1        |
|        |                                                                                                        |          |          |        |      |         |       |           |           |        |           | Insulat  | ion (ESC    | <b>_</b> ) | 1     |       |         |         |         |             |                |          |
| 100    |                                                                                                        |          |          |        |      |         |       |           |           |        |           |          |             |            |       |       |         |         |         |             |                |          |
| 90     |                                                                                                        |          |          |        |      |         |       |           |           |        |           |          |             |            |       |       |         |         |         |             |                |          |
| 80     |                                                                                                        |          |          |        |      |         |       |           |           |        |           |          |             |            |       |       |         |         |         |             |                |          |
| (      | 0                                                                                                      | 1 2      | 2        | 3      | 4    | 5 6     | 5     | 7         | 8         | 9 1    | 0 1       | 1 12     | 2 1         | 3 1        | 4 15  | 5 16  | 5 17    | 7 1     | 8       | 19          | 20             | 21       |
|        | Years                                                                                                  | After    | Impla    | int    |      |         |       |           |           |        |           |          |             |            |       |       |         |         |         |             |                |          |
|        |                                                                                                        | 1 yr     | 2 yr     | 3 yr   | 4 yr | 5 yr    | 6 yr  | 7 yr      | 8 yr      | 9 yr   | 10 yr     | 11 yr    | 12 yr       | 13 yr      | 14 yr | 15 yr | 16 yr   | 17 yr   |         |             |                |          |
| %      |                                                                                                        | 99.6     | 99.5     | 99.3   | 99.2 | 99.1    | 99.0  | 98.8      | 98.7      | 98.5   | 98.4      |          | 98.2        |            | 98.0  | 97.1  | 97.1    | 95.7    |         |             |                |          |
| #      |                                                                                                        | 6,128    | 2,101    | 1,996  |      | 1,789   | 1,620 |           | 1,190     | 994    | 793       | 605      | 454         | 330        | 240   | 156   | 96      | 56      |         |             |                |          |
|        | Effectiv                                                                                               | e Samp   | ole Size |        |      |         |       |           |           |        |           |          |             |            |       |       |         |         |         |             |                |          |







|                | US Market Relea                  | ise              |       | lun-98        | Serial N | umber Prefix  | LEI         | 4              |           |         | l              | JS Reti | urned Produ   | uct Anal      | vsi |
|----------------|----------------------------------|------------------|-------|---------------|----------|---------------|-------------|----------------|-----------|---------|----------------|---------|---------------|---------------|-----|
|                | Registered US In                 | nplants          |       | 92,000        | Type an  | d/or Fixation | Tra         | nsvenous, Ve   | nt., Tine | 5       | -              |         | onductor Frac |               |     |
|                | Estimated Active                 | e US Implants    |       | 43,400        | Polarity | ,             | Bip         | olar           |           |         |                |         | Crimp/Weld/E  |               |     |
|                | Advisories                       |                  |       | None          | Steroid  |               | Ye          | 5              |           |         |                |         | Insulation Br | each<br>Other |     |
|                | l Placement<br>evity Study Res   | sults            |       |               |          | Οι            | ualifving ( | Complicatio    | ons       | 2 Total |                |         |               |               |     |
|                | Number of Lead                   |                  | itudy | 424           | 4        |               |             | ad Dislodger   |           | 1       |                |         |               |               |     |
|                |                                  |                  |       |               |          |               |             |                |           |         |                |         |               |               |     |
|                | Cumulative Mor                   | nths of Follow-  | Up    | 31,421        | 1        |               |             | ailure to Cap  |           | 1       |                |         |               |               |     |
|                | Cumulative Mor                   |                  | •     | 31,421<br>185 |          |               |             |                |           | 1       |                |         |               |               |     |
|                |                                  |                  | •     |               |          |               |             |                |           | 1       |                |         |               |               |     |
|                | Cumulative Mor<br>Number of Lead |                  | •     |               |          |               |             |                |           | 1       |                |         |               |               |     |
| 10             | Cumulative Mor<br>Number of Lead |                  | •     |               |          |               |             |                |           | 1       |                | -       |               |               |     |
| 10             | Cumulative Mor<br>Number of Lead |                  | •     |               |          |               |             |                |           | 1       |                |         |               |               |     |
| 10<br>9<br>8   | Cumulative Mor<br>Number of Lead |                  | •     |               |          |               |             |                |           | 1       |                |         |               |               |     |
| 9              | Cumulative Mor<br>Number of Lead | ls Active in Stu | •     |               |          |               |             |                |           |         | 8              | 9       | 10            |               |     |
| 10<br>9<br>8   | Cumulative Mor<br>Number of Lead | ls Active in Stu | idy   | 185           | 5        |               | F           | ailure to Cap  | ure       |         | 8              | 9       | 10            |               |     |
| 10<br>9<br>8   | Cumulative Mor<br>Number of Lead | ls Active in Stu | idy   | 185           | 5        |               | F           | ailure to Cap  | ure       |         | 8              | 9       | 10            |               |     |
| 10<br>• 9<br>8 | Cumulative Mor<br>Number of Lead | ls Active in Stu | idy   | 3             | 5        | 4 yr          | F           | ailure to Cap  | ure       |         | 8<br>8<br>8 yr | -       | 10<br>9 yr    |               |     |
| 8              | Cumulative Mor<br>Number of Lead | s Active in Stu  | dy    | 3             | 5        |               | 5           | Failure to Cap | 7         |         |                | _       |               |               |     |

| mber of Leads En                    | rolled in Study |        |                                                          |                                                                                                                              |                                                                                                                                                                                 |                                                                                                                                                                                                                       |                                                                                                                                                                                                              |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                            |
|-------------------------------------|-----------------|--------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| mulative Months<br>mber of Leads Ac | of Follow-Up    | 34,    | 967<br>,109<br>125                                       |                                                                                                                              | Failure                                                                                                                                                                         | slodgement<br>e to Capture<br>ure to Sense                                                                                                                                                                            | 1<br>6<br>1                                                                                                                                                                                                  | Imp                                                                                                                                                                                                                                          | edance Out of Range                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                            |
|                                     |                 |        |                                                          |                                                                                                                              |                                                                                                                                                                                 |                                                                                                                                                                                                                       |                                                                                                                                                                                                              |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                            |
| 1<br>Years After Im<br>ا            | 2<br>plant      | 3      |                                                          | 4                                                                                                                            | 5                                                                                                                                                                               | 6                                                                                                                                                                                                                     | 7                                                                                                                                                                                                            | 8                                                                                                                                                                                                                                            | 9 10                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                            |
| 1                                   | yr 2            | 2 yr   | 3 yr                                                     | 4 yr                                                                                                                         | 5 yr                                                                                                                                                                            | бyr                                                                                                                                                                                                                   | 7 yr                                                                                                                                                                                                         | 8 yr                                                                                                                                                                                                                                         | 9 yr                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                            |
| 9                                   | 9.5 9           | 99.4   | 99.4                                                     | 99.0                                                                                                                         | 99.0                                                                                                                                                                            | 97.6                                                                                                                                                                                                                  | 97.6                                                                                                                                                                                                         | 97.6                                                                                                                                                                                                                                         | 97.6                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                            |
| 6                                   | 56 3            | 41     | 295                                                      | 264                                                                                                                          | 230                                                                                                                                                                             | 178                                                                                                                                                                                                                   | 137                                                                                                                                                                                                          | 99                                                                                                                                                                                                                                           | 47                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                            |
|                                     | 1<br>9<br>6     | 99.5 9 | Years After Implant<br>1 yr 2 yr<br>99.5 99.4<br>656 341 | Years After Implant         2 yr         3 yr           99.5         99.4         99.4           656         341         295 | Years After Implant         1 yr         2 yr         3 yr         4 yr           99.5         99.4         99.0         99.0           656         341         295         264 | Years After Implant         1 yr         2 yr         3 yr         4 yr         5 yr           99.5         99.4         99.4         99.0         99.0           656         341         295         264         230 | Years After Implant       1 yr       2 yr       3 yr       4 yr       5 yr       6 yr         99.5       99.4       99.0       99.0       97.6         656       341       295       264       230       178 | Years After Implant       1 yr       2 yr       3 yr       4 yr       5 yr       6 yr       7 yr         99.5       99.4       99.0       99.0       97.6       97.6         656       341       295       264       230       178       137 | Years After Implant       1 yr       2 yr       3 yr       4 yr       5 yr       6 yr       7 yr       8 yr         99.5       99.4       99.0       99.0       97.6       97.6       97.6         656       341       295       264       230       178       137       99 | Years After Implant       1 yr       2 yr       3 yr       4 yr       5 yr       6 yr       7 yr       8 yr       9 yr         99.5       99.4       99.0       99.0       97.6       97.6       97.6       97.6         656       341       295       264       230       178       137       99       47 |

|     | US Mark  | ot Poloa     | .0           |           |      | Jan-9  | 7 0   | Serial Nu | mbor Pr  | ofix   |          | DJ        |            |         |       |    |      |        | d Due            | J       | a a la cati |
|-----|----------|--------------|--------------|-----------|------|--------|-------|-----------|----------|--------|----------|-----------|------------|---------|-------|----|------|--------|------------------|---------|-------------|
|     |          |              |              |           |      |        |       |           |          |        |          |           | us Vor A   | Coro    | in    |    | US R |        |                  | duct A  |             |
|     | Register |              | •            | 1         |      | 103,20 |       | Type and  | /or Fixa | tion   |          |           | us, V or A | , Screw | -IN   |    |      |        | uctor Fr         |         | 3           |
|     | Estimate |              | US Imp       | biants    |      | 34,20  |       | Polarity  |          |        |          | ipolar    |            |         |       |    |      |        | p/Weld<br>lation |         | 5           |
|     | Advisori | es           |              |           |      | Non    | e s   | Steroid   |          |        | Ye       | es        |            |         |       |    |      | mbe    |                  | Other   | 1           |
| ial | Placer   | nent         |              |           |      |        |       |           |          |        |          |           |            |         |       |    |      |        |                  |         |             |
| em  | Longe    | vity St      | udy Re       | esults    |      |        |       |           |          | Qual   | ifying   | Compl     | cations    | 7       | Total |    |      |        |                  |         |             |
|     | Number   | of Lead      | s Enrolle    | ed in Stu | udy  |        | 967   |           |          |        | L        | ead Dislo | dgement    | t 1     |       |    | Im   | pedanc | e Out o          | f Range |             |
|     | Cumulat  | ive Mon      | ths of F     | ollow-U   | lp   | 3      | 0,149 |           |          |        |          | Failure t | o Capture  | 2 2     |       |    |      |        | Over             | sensing |             |
|     | Number   | of Lead      | S Active     | in Stud   | у    |        | 46    |           |          | Insula | ation (n | ot furthe | defined    | ) 1     |       |    |      |        |                  |         |             |
|     |          |              |              |           |      |        |       |           |          |        |          |           |            |         |       |    |      |        |                  |         |             |
| 10( |          |              |              |           |      | 1      |       |           |          |        |          |           |            |         |       |    |      |        |                  |         |             |
| 9(  | o ——— c  |              |              |           |      |        |       |           |          |        | 1        |           |            |         |       |    |      |        |                  |         |             |
| 8(  | o —— c   |              |              |           |      |        |       |           |          |        |          |           |            |         |       |    |      |        |                  |         |             |
|     | 0        | 1            | 2            | 3         | 4    | 5      | 6     | 7         | 8        | 9 1    | 0        | 11 1      | 2 13       | 14      | 15    | 16 | 17   | 18     | 19               | 20      | 21          |
|     | Year     | s After      | Impla        | nt        |      |        |       |           |          |        |          |           |            |         |       |    |      |        |                  |         |             |
|     |          |              |              |           |      |        |       |           |          |        |          | at        |            |         |       |    |      |        |                  |         |             |
|     |          |              | 2.00         | 3 yr      | 4 yr | 5 yr   | бyr   | 7 yr      | 8 yr     | 9 yr   | 10 yr    |           |            |         |       |    |      |        |                  |         |             |
|     |          | 1 yr         | 2 yr         | 0 ).      | -    |        |       |           |          |        |          |           |            |         |       |    |      |        |                  |         |             |
| 9   | 6        | 1 yr<br>99.6 | 2 yr<br>99.6 | 99.6      | 99.1 | 99.1   | 99.1  | 99.1      | 97.4     | 97.4   | 97.4     | 97.4      |            |         |       |    |      |        |                  |         |             |

| study Result     | :S                                                                                |           | Qi                                                                                                                       | ualifying Cor                                                                                                                      | nplications                                                                                                                      | 5 Total                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                 |
|------------------|-----------------------------------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ds Enrolled in S | Study                                                                             | 1,362     |                                                                                                                          | Lead                                                                                                                               | Dislodgement                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                | Insulatio                                                                                                                                                                                                                                                                                                                                           | n (not further d                                                                                                                                                                                                                                                                                                                            | efined)                                                                                                                                                                                                         |
| onths of Follow  | -Up                                                                               | 37,404    |                                                                                                                          | Faile                                                                                                                              | ure to Capture                                                                                                                   | 2                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                 |
| ds Active in Stu | ıdy                                                                               | 92        |                                                                                                                          | Cond                                                                                                                               | uctor Fracture                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                 |
|                  |                                                                                   |           |                                                                                                                          |                                                                                                                                    |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                             | _                                                                                                                                                                                                               |
|                  |                                                                                   |           |                                                                                                                          |                                                                                                                                    |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                 |
|                  |                                                                                   |           |                                                                                                                          |                                                                                                                                    |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                 |
| 1                | 2                                                                                 | 3         | 4                                                                                                                        | 5                                                                                                                                  | 6                                                                                                                                | 7                                                                                                                                                                                                                                                                                                                | 8                                                                                                                                                                                                                                                                                                                                                   | 9                                                                                                                                                                                                                                                                                                                                           | 10                                                                                                                                                                                                              |
| er Implant       | 1                                                                                 | 1         |                                                                                                                          |                                                                                                                                    |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                               |
| 1 yr             | 2 yr                                                                              | 3 yr      | 4 yr                                                                                                                     | 5 yr                                                                                                                               | бyr                                                                                                                              | 7 yr                                                                                                                                                                                                                                                                                                             | 8 yr                                                                                                                                                                                                                                                                                                                                                | 9 yr                                                                                                                                                                                                                                                                                                                                        | 10 yr                                                                                                                                                                                                           |
| 99.9             | 99.7                                                                              | 99.4      | 99.0                                                                                                                     | 99.0                                                                                                                               | 99.0                                                                                                                             | 98.4                                                                                                                                                                                                                                                                                                             | 98.4                                                                                                                                                                                                                                                                                                                                                | 98.4                                                                                                                                                                                                                                                                                                                                        | 98.4                                                                                                                                                                                                            |
|                  |                                                                                   |           |                                                                                                                          | 219                                                                                                                                | 189                                                                                                                              | 155                                                                                                                                                                                                                                                                                                              | 134                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                             | 54                                                                                                                                                                                                              |
| 1                | ads Enrolled in Sonths of Follow<br>ads Active in Stu-<br>1<br>er Implant<br>1 yr | 1 yr 2 yr | ads Enrolled in Study 1,362<br>onths of Follow-Up 37,404<br>ads Active in Study 92<br>1 2 3<br>er Implant 1 yr 2 yr 3 yr | ads Enrolled in Study 1,362<br>onths of Follow-Up 37,404<br>ads Active in Study 92<br>1 2 3 4<br>er Implant<br>1 yr 2 yr 3 yr 4 yr | ads Enrolled in Study 1,362<br>Lead 1<br>and S Active in Study 92<br>Cond<br>1 2 3 4 5<br>er Implant<br>1 yr 2 yr 3 yr 4 yr 5 yr | ads Enrolled in Study     1,362     Lead Dislodgement       ponths of Follow-Up     37,404     Failure to Capture       ads Active in Study     92     Conductor Fracture       1     2     3     4     5     6       1     2     3     4     5     6       er Implant     1     1     2     3     4     5     7 | ads Enrolled in Study     1,362     Lead Dislodgement     1       onths of Follow-Up     37,404     Failure to Capture     2       ads Active in Study     92     Conductor Fracture     1       1     2     3     4     5     6     7       1     1     2     3     4     5     6     7       er Implant     1     1     2     3     4     5     9 | ads Enrolled in Study     1,362     Lead Dislodgement     1     Insulation       onths of Follow-Up     37,404     Failure to Capture     2       ads Active in Study     92     Conductor Fracture     1       1     2     3     4     5     6     7     8       1     1 yr     2 yr     3 yr     4 yr     5 yr     6 yr     7 yr     8 yr | ads Enrolled in Study 1,362<br>Lead Dislodgement 1 Insulation (not further d<br>Failure to Capture 2<br>Conductor Fracture 1<br>1 2 3 4 5 6 7 8 9<br>er Implant<br>1 yr 2 yr 3 yr 4 yr 5 yr 6 yr 7 yr 8 yr 9 yr |



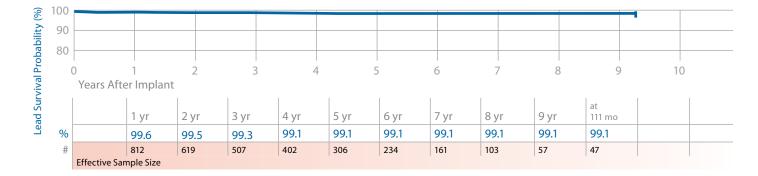
|         | US Market Rele | ase          |              | Aug-00       | Serial Num   | nber Prefix  | PJN            |                 |          |              | US Returned   | Product An   | alvsi |
|---------|----------------|--------------|--------------|--------------|--------------|--------------|----------------|-----------------|----------|--------------|---------------|--------------|-------|
|         | Registered US  | mplants      |              | 1,297,100    | Type and/    | or Fixation  | Trans          | venous, V or A, | Screw-in |              |               | or Fracture  | 25    |
|         | Estimated Acti | •            | ants         | 860,900      | Polarity     |              | Bipol          |                 |          |              |               | Veld/Bond    | 25    |
|         | Advisories     |              |              | None         | Steroid      |              | Yes            |                 |          |              | Insulat       | ion Breach   | 26    |
|         |                |              |              |              |              |              |                |                 |          |              |               | Other        | 17    |
| ial     | Placement      |              |              |              |              |              |                |                 |          |              |               |              |       |
| tem     | Longevity S    | study Res    | sults        |              |              | Qua          | lifying Co     | mplications     | 17 1     | Total        |               |              |       |
|         | Number of Lea  | ds Enrollec  | l in Study   | 2,73         | 3            |              | Lead           | Dislodgement    | 4        |              | Impedance C   | out of Range |       |
|         | Cumulative Mc  | onths of Fol | low-Up       | 126,012      | 2            |              | Fail           | ure to Capture  | 5        |              | Extra Cardiac | Stimulation  |       |
|         | Number of Lea  | ds Active i  | n Study      | 894          | 1            |              | Cond           | uctor Fracture  | 1        |              | (             | Oversensing  |       |
|         |                |              |              |              |              | Insu         | lation (not fu | rther defined)  | 1        |              | Cardiac       | Perforation  |       |
|         |                |              |              |              |              |              |                |                 |          |              |               |              |       |
| 100     | )              |              |              |              |              |              |                |                 |          |              |               |              |       |
| 90      |                |              |              |              |              |              |                |                 |          |              |               |              |       |
| 50      |                |              |              |              |              |              |                |                 |          |              |               |              |       |
| _       | )              |              |              |              |              |              |                |                 |          |              |               |              |       |
| 80      | 0              | 1            | 2            | 3            | 4            |              | 5              | б               | 7        | 8            | 9             | 10           |       |
| 80      |                | r Imnlar     | it           |              |              |              |                |                 |          |              |               |              |       |
| 80      | Years Afte     |              |              |              |              |              |                |                 |          |              | at            |              |       |
| 80      |                |              |              |              |              | _            |                |                 | 0.10     | 0.1/2        | 111 mo        |              |       |
|         |                | 1 yr         | 2 yr         | 3 yr         | 4 yr         | 5 yr         | 6 yr           | 7 yr            | 8 yr     | 9 yr         | TIT mo        |              |       |
| 80<br>% |                |              | 2 yr<br>99.6 | 3 yr<br>99.4 | 4 yr<br>99.1 | 5 yr<br>99.1 | 6 yr<br>99.0   | 7 yr<br>99.0    | 99.0     | 9 yr<br>99.0 | 99.0          |              |       |

| ystern Lt | ongevity Stu   |                 |      |        |      | duniying co | mplications      | 10 Total |      |                |          |  |
|-----------|----------------|-----------------|------|--------|------|-------------|------------------|----------|------|----------------|----------|--|
| Nu        | umber of Leads | Enrolled in Stu | udy  | 1,536  |      | Lead        | l Dislodgement   | 2        |      | Failure        | to Sense |  |
| Cu        | umulative Mont | hs of Follow-L  | Jp   | 63,799 |      | Fa          | ilure to Capture | 3        | I    | mpedance Out o | of Range |  |
| Nu        | umber of Leads | Active in Stud  | У    | 388    |      | Con         | ductor Fracture  | 1        |      | Cardiac Per    | foration |  |
| § 100 -   |                |                 |      |        |      |             |                  |          |      |                |          |  |
| 90        |                |                 |      |        |      |             |                  |          |      |                |          |  |
| 80 -      |                |                 |      |        |      |             |                  |          |      |                |          |  |
| 0         | ) 1            |                 | 2    | 3      | 4    | 5           | 6                | 7        | 8    | 9              | 10       |  |
| VIVa      | Years After I  | mplant          |      |        |      |             |                  |          |      |                |          |  |
|           |                | 1 yr            | 2 yr | 3 yr   | 4 yr | 5 yr        | 6 yr             | 7 yr     | 8 yr | at<br>102 mo   |          |  |
| ۳<br>%    |                | 99.6            | 99.4 | 99.3   | 99.0 | 99.0        | 99.0             | 99.0     | 99.0 | 99.0           |          |  |
|           |                | 1,084           | 853  | 723    | 601  | 473         | 363              | 222      | 123  | 62             |          |  |

### 5092 CapSure SP Novus

**Product Characteristics** 

| US Market Release            | Jun-98  | Serial Number Prefix | LET                       | US Returned Product Analy  | sis      |
|------------------------------|---------|----------------------|---------------------------|----------------------------|----------|
| Registered US Implants       | 124,100 | Type and/or Fixation | Transvenous, Vent., Tines | Conductor Fracture         | 6        |
| Estimated Active US Implants | 61,400  | Polarity             | Bipolar                   | Crimp/Weld/Bond            | 0        |
| Advisories                   | None    | Steroid              | Yes                       | Insulation Breach<br>Other | 35<br>12 |


System Longevity Study Results

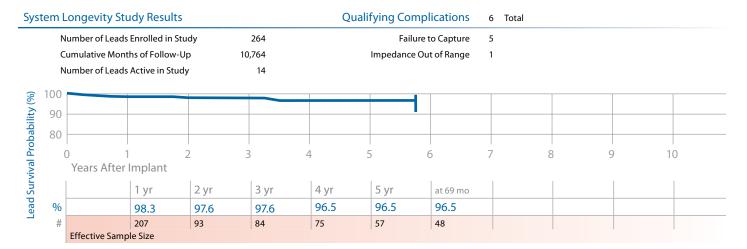
| Qualifying Complications | 7 Total |
|--------------------------|---------|
| Lead Dislodgement        | 5       |

1

1

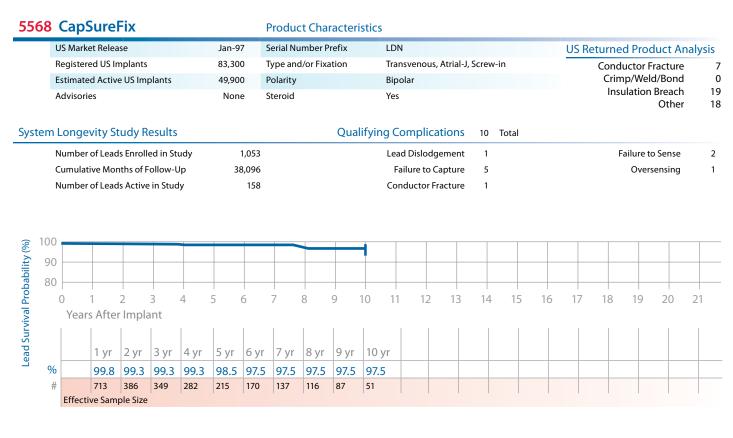
| Number of Leads Enrolled in Study | 1,172  | Lead Dislodgement         |
|-----------------------------------|--------|---------------------------|
| Cumulative Months of Follow-Up    | 46,062 | Failure to Capture        |
| Number of Leads Active in Study   | 167    | Extra Cardiac Stimulation |




#### 5524, 5524M CapSure SP

|                 | US Mark  | et Relea              | se        |                       |      | Mar-9         | 0 9           | Serial Nu   | umber P     | refix       | Х               | V or LA     | V           |                 |             |            | ι            | JS Ret    | urne   | d Pro    | duct           | Anal | ysi |
|-----------------|----------|-----------------------|-----------|-----------------------|------|---------------|---------------|-------------|-------------|-------------|-----------------|-------------|-------------|-----------------|-------------|------------|--------------|-----------|--------|----------|----------------|------|-----|
| I               | Register | ed US In              | nplants   |                       |      | 60,60         | 0 -           | Type and    | d/or Fixa   | ation       | Т               | ransver     | nous, At    | rial-J, Ti      | nes         |            |              | C         | ondu   | ctor Fi  | racture        | 3    | 1   |
| I               | Estimate | d Active              | e US Imp  | olants                |      | 18,30         | 0 1           | Polarity    |             |             | B               | lipolar     |             |                 |             |            |              | (         | •      |          | l/Bong         |      |     |
|                 | Advisori | es                    |           |                       |      | Non           | e s           | Steroid     |             |             | Y               | 'es         |             |                 |             |            |              |           | Insul  | ation    | Breach<br>Othe | -    | 1   |
| stem            | Longe    | vity St               | udy R     | esults                |      |               |               |             |             | Qual        | ifying          | Comp        | licatio     | ons :           | 37 Tot      | al         |              |           |        |          |                |      |     |
| I               | Number   | of Lead               | s Enrolle | ed in Sti             | udy  |               | 4,497         |             |             |             | L               | ead Dis     | lodgem      | ent             | 3           |            | Insu         | ulation ( | not fu | irther o | definec        | )    |     |
| (               | Cumulat  | ive Mor               | nths of F | ollow-L               | Jp   | 20            | 3,232         |             |             |             |                 | Failure     | to Capt     | ure 2           | 22          |            |              | Impe      | edance | e Out o  | of Rang        | e    | 1   |
| I               | Number   | of Lead               | s Active  | in Stud               | ly   |               | 404           |             |             |             | C               | onduct      | or Fract    | ure             | 1           |            |              |           |        | Over     | sensin         | g    |     |
|                 |          |                       |           |                       |      |               |               |             |             |             |                 | Failu       | re to Se    | nse             | 4           |            |              |           |        |          | Othe           | r    |     |
| 100             |          | _                     |           |                       |      |               |               |             |             |             |                 | 1           |             |                 |             |            |              |           | 1      |          |                |      |     |
| 90              |          |                       |           | <u> </u>              |      |               |               |             |             |             |                 |             |             |                 |             |            |              |           |        |          |                |      |     |
| 80              |          |                       |           | <u> </u>              |      |               |               |             |             |             |                 |             |             |                 |             |            |              |           |        |          |                |      |     |
|                 | 0        | 1                     | 2         | 3 .                   | 4    | 5             | 6             | 7           | 8           | 9 1         | 0 1             | ,<br>1 1    | 2 1         | 3 1             | 4 1         | 5 1        | 61           | 7 1       | 8      | 19       | 20             | 21   |     |
|                 | Year     | s After               | r Impla   | ant                   |      |               |               |             |             |             |                 |             |             |                 |             |            |              |           |        |          |                |      |     |
|                 | 1        |                       | 1         | 1                     | 1    | 1             | 1             | 1           | 1           | 1           |                 |             |             |                 |             |            | 1            | 1         |        |          |                |      |     |
|                 |          |                       |           |                       | 4 yr | 5 yr          | 6 yr          | 7 yr        | 8 yr        | 9 yr        | 10 vr           | 11 yr       | 12 vr       | 13 yr           | 14 yr       | 15 vr      | at<br>189 mo |           |        |          |                |      |     |
|                 |          | 1 vr                  | 2 vr      | ∣ ⊰ ∨r                |      |               | , v , i       | 1           | 0 91        |             |                 |             |             |                 |             |            |              |           |        |          |                |      |     |
| 100<br>90<br>80 |          | 1 yr                  | 2 yr      | 3 yr                  | -    | 98.9          | 98.8          | 98 5        | 98.0        | 976         | 97.2            | 97.0        | 97.0        | 970             | 970         | 970        | 970          |           |        |          |                |      |     |
| %               |          | 1 yr<br>99.8<br>3,439 | 99.7      | 3 yr<br>99.3<br>1,375 | 99.0 | 98.9<br>1,183 | 98.8<br>1,059 | 98.5<br>912 | 98.0<br>775 | 97.6<br>653 | <b>97.2</b> 525 | 97.0<br>400 | 97.0<br>304 | <b>97.0</b> 219 | 97.0<br>144 | 97.0<br>81 | 97.0<br>48   |           |        |          |                |      |     |

### 5534 CapSure Z


#### Product Characteristics

| US Market Release             | Feb-96 | Serial Number Prefix | LDG                          | US Returned Product Analysis |
|-------------------------------|--------|----------------------|------------------------------|------------------------------|
| <b>Registered US Implants</b> | 26,100 | Type and/or Fixation | Transvenous, Atrial-J, Tines | Conductor Fracture 3         |
| Estimated Active US Implants  | 7,900  | Polarity             | Bipolar                      | Crimp/Weld/Bond 0            |
| Advisories                    | None   | Steroid              | Yes                          | Insulation Breach 6          |
| Advisories                    | None   | Steroid              | 103                          | Other 5                      |



|              | US Market Relea             | ase              |       | Jun-98 | Serial Nur | mber Prefix  | LEJ              |                 |         | ι | JS Returned | Product An           | alysis  |
|--------------|-----------------------------|------------------|-------|--------|------------|--------------|------------------|-----------------|---------|---|-------------|----------------------|---------|
|              | Registered US I             | mplants          |       | 59,400 | Type and   | /or Fixation | Transvenous,     | , Atrial-J, Tir | es      |   |             | or Fracture          |         |
|              | Estimated Activ             | e US Implants    |       | 30,800 | Polarity   |              | Bipolar          |                 |         |   | •           | Weld/Bond            | (       |
|              | Advisories                  |                  |       | None   | Steroid    |              | Yes              |                 |         |   | Insulat     | tion Breach<br>Other | 13<br>2 |
| ster         | m Longevity S               | tudy Result      | s     |        |            | Qua          | lifying Complica | ations          | 4 Total |   |             |                      |         |
|              | Number of Lead              | ds Enrolled in S | itudy | 344    | 1          |              | Lead Dislodg     | jement          | 1       |   |             | Oversensing          | 1       |
|              | Cumulative Mo               | nths of Follow-  | Un    | 10,597 | 7          |              | Failure to C     | anture          | 1       |   |             |                      |         |
|              | cumulative mo               |                  | ·υμ   | 10,597 |            |              | i anuic to c     | apture          |         |   |             |                      |         |
|              | Number of Lead              |                  | •     | 43     |            |              | Impedance Out of |                 | 1       |   |             |                      |         |
| 10           |                             |                  | •     |        |            |              |                  |                 | 1       |   |             |                      |         |
| 10           | Number of Lead              |                  | •     |        |            |              |                  |                 | 1       |   |             |                      |         |
| 10<br>9      | Number of Lead              |                  | •     |        |            |              |                  |                 | 1       |   |             |                      |         |
| 10<br>9<br>8 | Number of Lead           00 |                  | idy   | 43     | 3          |              | Impedance Out of |                 | -<br>1  |   |             | 10                   |         |
| 10<br>9<br>8 | Number of Lead              | ds Active in Stu | •     |        | 3          | 4            |                  |                 | 7       | 8 | 9           | 10                   |         |
| 10<br>9<br>8 | Number of Lead              | ds Active in Stu | idy   | 43     | 3          | 4<br>4 yr    | Impedance Out of |                 | 7       | 8 | 9           | 10                   |         |
| 3            | Number of Lead              | ds Active in Stu | 2     | 3      | 3          | -            | Impedance Out of |                 | 7       | 8 | 9           | 10                   |         |

116 Medtronic CRDM Product Performance Report www.medtronic.com/CRDMProductPerformance



#### 5592 CapSure SP Novus

|       | Number of Leads Enrolled in Study | 67     | n                    | Lead Dislodgement      | ſ       |                            |        |
|-------|-----------------------------------|--------|----------------------|------------------------|---------|----------------------------|--------|
| Syste | m Longevity Study Results         |        | Quali                | fying Complications    | 4 Total |                            |        |
|       | Advisories                        | None   | Steroid              | Yes                    |         | Insulation Breach<br>Other | 3<br>0 |
|       | Estimated Active US Implants      | 18,700 | Polarity             | Bipolar                |         | Crimp/Weld/Bond            | 0      |
|       | Registered US Implants            | 31,700 | Type and/or Fixation | Transvenous, Atrial-J, | Tines   | Conductor Fracture         | 2      |
|       | US Market Release                 | Jun-98 | Serial Number Prefix | LEU                    |         | US Returned Product Analy  | ysis   |

| Cumulative | e Months of Follov | v-Up              | 29,718         |           | Fail           | ure to Capture | 2                 |           |               |    |
|------------|--------------------|-------------------|----------------|-----------|----------------|----------------|-------------------|-----------|---------------|----|
| Number of  | Leads Active in St | udy               | 138            |           |                |                |                   |           |               |    |
| 0          |                    |                   |                |           |                |                |                   |           |               |    |
| 0          |                    |                   |                |           |                |                |                   |           |               |    |
| 0          |                    |                   |                |           |                |                |                   |           |               |    |
|            |                    |                   |                |           |                |                |                   |           |               |    |
| 0          | 1                  | 2                 | 3              | 4         | 5              | 6              | 7                 | 8         | 9             | 10 |
| -          | 1<br>After Implant | 2                 | 3              | 4         | 5              | 6              | 7                 | 8         | 9             | 10 |
| -          |                    | 2                 |                |           |                |                | 7                 |           | 9             | 10 |
| -          | After Implant      | 2<br>2 yr         | 3<br>3<br>3 yr | 4<br>4 yr | 5<br>5<br>5 yr | 6<br>6 yr      | 7<br>7<br>7 yr    | 8<br>8 yr | 9<br>at 99 mo | 10 |
| -          |                    | 2<br>2 yr<br>99.3 |                |           |                |                | 7<br>7 yr<br>99.3 |           |               | 10 |

#### 5594 CapSure SP Novus **Product Characteristics** US Market Release Serial Number Prefix LFD Jun-01 **US Returned Product Analysis** Registered US Implants Type and/or Fixation 13,800 Transvenous, Atrial-J, Tines **Conductor Fracture** 4 **Estimated Active US Implants** 9,600 Polarity Bipolar Crimp/Weld/Bond 0 Insulation Breach 5 Advisories None Steroid Yes Other 1 System Longevity Study Results **Qualifying Complications** 0 Total 21 Number of Leads Enrolled in Study Cumulative Months of Follow-Up 1,451

Number of Leads Active in Study 14 100 Survival estimate not available due to insufficient sample size

| ity ( | 90 | Survivarestim    | ate not available | e due to insuffici | ent sample size | <u> </u> |   |   |     |          |    |
|-------|----|------------------|-------------------|--------------------|-----------------|----------|---|---|-----|----------|----|
| lideo | 80 |                  |                   |                    |                 |          |   |   |     |          |    |
| Prob  |    | 0                | 1 2               | 2 3                | 4               | - 5      | 6 | 7 | 7 8 | <u>ç</u> | 10 |
| vival |    | Years After I    | mplant            |                    |                 |          |   |   |     |          |    |
| Sur   |    |                  |                   |                    |                 |          |   |   |     |          |    |
| ead   | %  |                  |                   |                    |                 |          |   |   |     |          |    |
|       | #  |                  |                   |                    |                 |          |   |   |     |          |    |
|       |    | Effective Sample | e Size            |                    |                 |          |   |   |     |          |    |

(%)

| 6940                          | Cap      | Sure      | Fix       |           |      |       | I     | Produc    | t Cha     | racteri | istics  |          |          |         |       |       |    |      |         |          |                 |         |
|-------------------------------|----------|-----------|-----------|-----------|------|-------|-------|-----------|-----------|---------|---------|----------|----------|---------|-------|-------|----|------|---------|----------|-----------------|---------|
|                               | US Mark  | ket Relea | ise       |           |      | Oct-9 | 8     | Serial Nu | ımber P   | refix   | ٦       | ТСР      |          |         |       |       |    | US R | leturne | d Prod   | duct A          | nalysis |
|                               | Register | red US Ir | nplants   |           |      | 25,50 | 0 1   | Гуре and  | d/or Fixa | ation   | ٦       | Transver | ious, A  | or V, S | crew- | in    |    |      | Condu   | ctor Fr  | acture          | 11      |
|                               | Estimate | ed Activ  | e US Im   | plants    |      | 8,50  | 0     | Polarity  |           |         | E       | Bipolar  |          |         |       |       |    |      | •       | o/Weld   |                 | 0       |
|                               | Advisor  | ies       |           |           |      | Non   | e s   | Steroid   |           |         | Y       | Yes      |          |         |       |       |    |      | Insu    | lation E | Breach<br>Other | 15<br>4 |
| Syster                        | n Longe  | evity St  | tudy R    | esults    |      |       |       |           |           | Qua     | lifying | g Comp   | olicati  | ons     | 11    | Total |    |      |         |          |                 |         |
|                               | Number   | r of Lead | ls Enroll | ed in St  | udy  |       | 816   |           |           |         | I       | Lead Dis | lodger   | nent    | 1     |       |    |      |         | Over     | sensing         | 6       |
|                               | Cumula   | tive Mor  | nths of F | ollow-U   | Jp   | 4     | 1,330 |           |           |         |         | Conduct  | or Frac  | ture    | 1     |       |    |      |         |          |                 |         |
|                               | Number   | r of Lead | ls Active | e in Stud | ly   |       | 112   |           |           |         |         | Failu    | ire to S | ense    | 3     |       |    |      |         |          |                 |         |
| <u>ଛ</u> ା(                   | 00       |           |           |           |      |       |       |           |           |         |         |          |          |         |       |       |    |      |         |          |                 |         |
| lity                          | 90       |           |           |           |      |       |       |           |           |         |         |          |          |         |       |       |    |      |         |          |                 |         |
| oabi                          | 30       |           |           |           |      |       |       |           |           |         | _       |          |          |         |       |       |    |      |         |          |                 |         |
| Prof                          | 0        | 1         | 2         | 3         | 4    | 5     | 6     | 7         | 8         | 9       | 10      | 11       | 12       | 13      | 14    | 15    | 16 | 17   | 18      | 19       | 20              | 21      |
| Lead Survival Probability (%) | Year     | rs Aftei  | r Impla   | ant       |      |       |       |           |           |         |         |          |          |         |       |       |    |      |         |          |                 |         |
| d Sur                         |          |           |           |           |      |       |       |           |           |         |         | at       |          |         |       |       |    |      |         |          |                 |         |
| -eac                          |          | 1 yr      | 2 yr      | 3 yr      | 4 yr | 5 yr  | бyr   | 7 yr      | 8 yr      | 9 yr    | 10 yr   | 126 mo   |          |         |       |       |    |      |         |          |                 |         |
|                               | %        | 99.7      | 99.6      | 98.3      | 98.0 | 98.0  | 98.0  | 98.0      | 98.0      | 98.0    | 98.0    | 98.0     |          |         |       |       |    |      |         |          |                 |         |

46

641

**Effective Sample Size** 

#

506

413

331

277

237

196

149

116

84

| evice Survival Probability (%) |        | 4 yr         5 yr         6 yr         7 yr         8 yr         10 yr         12 yr         14 yr         16 yr         18 yr         20 yr | 99.8 99.8 +0.2/-1 +0.2/-1 | 100.0        | 98.6         98.4         98.0         97.0         96.8         96.4         95.8         95.8           +0.6/-1.2         +0.7/-1.3         +0.8/-1.4         +1.2/-1.8         +1.2/-1.9         +1.3/-2.1         +1.6/-2.5           at 156 mo         at 156 mo | 998 99.8 99.8 99.8 99.8 99.8 99.8 98.0 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0.7 +0.1/-0 | 97.5         96.8         96.0         94.8         93.3           +1.5/-3.5         +1.8/-3.9         +2.1/-4.4         +2.7/-5.5         +3.4/-6.7           at 105 mo         at 105 mo         at 105 mo         at 105 mo | 98.1 98.1 98.1 98.1 98.1 98.1 13/-3.9 +1.3/-3.9 +1.3/-3.9 +1.3/-3.9 at 78 mo | 98.1         97.8         97.2         96.9         96.6         95.8         94.5         91.9         91.1           +0.5/-0.8         +0.6/-0.9         +0.8/-1         +0.9/-1.2         +1.1/-1.4         +1.4/-2         +2.4/-3.3         +2.7/-3.9at | 98.7 98.1 97.7 97.2 97.2 96.1 95.8 94.2 92.8 94.2 92.8 +0.5/-0.8 +0.5/-1.2 +0.5/-1.3 +1.2/-1.6 +1.3/-1.7 +1.8/-2.6 +2.8/-4.4 | 100.0 100.0 100.0 | 991 991 991 991 991 991 991 991 991 +0.7/28 +0.7/28 10.7/28 10.7/28 | 99.3 99.3 99.3 99.3 99.3 99.3 99.3 10.5/-14 +0.5/-14 +0.5/-14 = 10.5/-14 at 81 mo | 99.7 99.7 99.7 99.7 99.7 +0.2/-0.5 +0.2/-0.5 at 66 mo | 998 99.8 99.8 99.8 99.8 10.2 <sup>-0.5</sup> +0.2 <sup>-0.5</sup> at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at 69.00 at | 98.4         98.1         97.9         97.9         97.9         97.9           +0.6/-1.1         +0.8/-1.3         +0.8/-1.3         +0.8/-1.3         +0.8/-1.3         +0.8/-1.3 |
|--------------------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ے<br>vpn32 ni c                |        |                                                                                                                                              | 12,367 99.8 +0.2/-1       | 9,721 100.0  | 69,632 99.8<br>+0.2/-0.6                                                                                                                                                                                                                                                                                                                      | 30,182 99.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22,610 99.4 +0.4/-1.4                                                                                                                                                                                                          | 10,425 98.1 +1.3/-3.9                                                        | 124,040 98.9                                                                                                                                                                                                                                                 | 90,731 99.3 +0.3/-0.6                                                                                                        | 6,820 100.0       | 13,166 99.1<br>+0.7/-2.8                                            | 24,280 99.6 +0.3/-1.2                                                             | 45,025 99.8 +0.1/-0.5                                 | 38,151 99.8 +0.2/-0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 64,009 98.9<br>+0.5/-0.8                                                                                                                                                            |
| su<br>su                       |        | Inmu)<br>Iqmo2                                                                                                                               | -                         | 2            | 21 6                                                                                                                                                                                                                                                                                                                                          | 4 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10 2                                                                                                                                                                                                                           | 8                                                                            | 66 12                                                                                                                                                                                                                                                        | 42 9                                                                                                                         | 0                 | 2 1                                                                 | 3 2                                                                               | 5                                                     | 2 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18                                                                                                                                                                                  |
|                                | βuiγ   | †ilen O                                                                                                                                      | 500                       | 281          | 262                                                                                                                                                                                                                                                                                                                                           | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 33                                                                                                                                                                                                                             | 48                                                                           | 447 0                                                                                                                                                                                                                                                        | 377                                                                                                                          | 74                | 160                                                                 | 482                                                                               | 66                                                    | 976                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 418                                                                                                                                                                                 |
| λpnţς ui a                     |        |                                                                                                                                              | 596 5(                    | 374 28       | 1,158 2(                                                                                                                                                                                                                                                                                                                                      | 1,215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 539                                                                                                                                                                                                                            | 171                                                                          |                                                                                                                                                                                                                                                              |                                                                                                                              | 102               | 214 16                                                              | 606 48                                                                            | 58 1,366                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                     |
|                                |        | sbeəl                                                                                                                                        |                           |              |                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                |                                                                              | 96 2,413                                                                                                                                                                                                                                                     | 96 1,799                                                                                                                     |                   |                                                                     |                                                                                   | 04 1,658                                              | 04 1,225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 98 1,147                                                                                                                                                                            |
| əssələ                         | rket R | ₽W SU                                                                                                                                        | Aug-05                    | Aug-05       | Aug-91                                                                                                                                                                                                                                                                                                                                        | Oct-91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Not US<br>released                                                                                                                                                                                                             | Jan-97                                                                       | Mar-96                                                                                                                                                                                                                                                       | Mar-96                                                                                                                       | Jun-02            | Jun-02                                                              | Jun-02                                                                            | Feb-04                                                | Feb-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sep-98                                                                                                                                                                              |
|                                | Jêr    | լառվշ                                                                                                                                        | Atrial                    | Vent         | Vent                                                                                                                                                                                                                                                                                                                                          | Vent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Vent                                                                                                                                                                                                                           | Atrial                                                                       | Atrial                                                                                                                                                                                                                                                       | Vent                                                                                                                         | Vent              | Atrial                                                              | Vent                                                                              | Atrial                                                | Vent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Vent                                                                                                                                                                                |
|                                | ,      | γlime٦                                                                                                                                       | SelectSecure              | SelectSecure | CapSure SP                                                                                                                                                                                                                                                                                                                                    | CapSure SP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CapSure Z                                                                                                                                                                                                                      | CapSureFix                                                                   | CapSureFix                                                                                                                                                                                                                                                   | CapSureFix                                                                                                                   | CapSure<br>Sense  | CapSure<br>Sense                                                    | CapSure<br>Sense                                                                  | CapSureFix<br>Novus                                   | CapSureFix<br>Novus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CapSure SP<br>Novus                                                                                                                                                                 |
|                                | θĽ     | ləboM<br>dmuN                                                                                                                                | 3830                      | 3830         | 4023                                                                                                                                                                                                                                                                                                                                          | 4024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4033                                                                                                                                                                                                                           | 4067                                                                         | 4068                                                                                                                                                                                                                                                         | 4068                                                                                                                         | 4073              | 4074                                                                | 4074                                                                              | 4076                                                  | 4076                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4092                                                                                                                                                                                |

Source: Medtronic Device Registration and Returned Product Analysis Data as of January 31, 2011

|                                 |                    | 20 yr           |                                      |                                |                             |                                       |                                       |                  |                                       |                          |                                       |                                       |                                       |                                      |                                       |                                |
|---------------------------------|--------------------|-----------------|--------------------------------------|--------------------------------|-----------------------------|---------------------------------------|---------------------------------------|------------------|---------------------------------------|--------------------------|---------------------------------------|---------------------------------------|---------------------------------------|--------------------------------------|---------------------------------------|--------------------------------|
|                                 |                    | 18 yr           |                                      |                                |                             |                                       |                                       |                  |                                       |                          | <b>95.7</b><br>+2.2/-4.6<br>at 204 mo |                                       |                                       |                                      |                                       |                                |
|                                 |                    | 16 yr           |                                      |                                |                             |                                       |                                       |                  |                                       |                          | 97.1<br>+1.2/-1.8                     |                                       |                                       |                                      |                                       |                                |
|                                 |                    | 14 yr           |                                      |                                |                             |                                       |                                       |                  |                                       |                          | 98.0<br>+0.7/-0.9                     | <b>94.4</b><br>+1.9/-2.8<br>at 165 mo | <b>98.8</b><br>+0.8/-1.9<br>at 150 mo |                                      |                                       |                                |
|                                 |                    | 12 yr           |                                      |                                |                             |                                       |                                       |                  |                                       | 95.7<br>+1.9/-3.1        | 98.2<br>+0.6/-0.7                     | 94.4<br>+1.9/-2.8                     | 98.8<br>+0.8/-1.9                     |                                      |                                       |                                |
|                                 |                    | 10 yr           |                                      | 98.4<br>+1.1/-3.3<br>at 114 mo |                             | <b>91.1</b><br>+4.6/-9.3<br>at 108 mo | <b>93.3</b><br>+2.1/-2.9<br>at 102 mo |                  | <b>97.4</b><br>+1.5/-3.9<br>at 102 mo | 96.6<br>+1.4/-2.4        | 98,4<br>+0.5/-0.7                     | 95.0<br>+1.7/-2.5                     | 98.8<br>+0.8/-1.9                     |                                      | <b>99.5</b><br>+0.4/-1.4<br>at 108 mo | 97.6<br>+1.3/-2.7<br>at 108 mo |
|                                 |                    | 8 yr            |                                      | 98.4<br>+1.1/-3.3              |                             | 95.9<br>+2.5/-6.3                     | 93.3<br>+2.1/-2.9                     |                  | 97.4<br>+1.5/-3.9                     | 97.4<br>+1.1/-1.6        | 98.7<br>+0.4/-0.6                     | 96.2<br>+1.4/-2.1                     | 98.8<br>+0.8/-1.9                     | <b>94.5</b><br>+3.1/-7.3 at<br>93 mo | 99.5<br>+0.4/-1.4                     | 97.6<br>+1.3/-2.7              |
|                                 |                    | 7 yr            |                                      | 98.4<br>+1.1/-3.3              | 97.2<br>+1.9/-6<br>at 75 mo | 95.9<br>+2.5/-6.3                     | 93.3<br>+2.1/-2.9                     |                  | 97.4<br>+1.5/-3.9                     | 97.4<br>+1.1/-1.6        | 98.8<br>+0.4/-0.5                     | 96.7<br>+1.3/-1.9                     | 99.2<br>+0.5/-1.8                     | 96.3<br>+2.1/-5                      | 99.5<br>+0.4/-1.4                     | 97.6<br>+1.3/-2.7              |
|                                 |                    | 6 yr            |                                      | 98.4<br>+1.1/-3.3              | 97.2<br>+1.9/-6             | 97.2<br>+1.8/-5.4                     | 93.9<br>+1.9/-2.7                     |                  | 97.4<br>+1.5/-3.9                     | <b>98.9</b><br>+0.5/-1.1 | 99.0<br>+0.3/-0.4                     | 97.4<br>+1.1/-1.7                     | 99.5<br>+0.4/-1.6                     | 97.5<br>+1.4/-3.5                    | 99.5<br>+0.4/-1.4                     | 97.6<br>+1.3/-2.7              |
|                                 |                    | 5 yr            |                                      | 98.4<br>+1.1/-3.3              | 97.2<br>+1.9/-6             | 99.3<br>+0.5/-1.4                     | 93.9<br>+1.9/-2.7                     |                  | 97.4<br>+1.5/-3.9                     | <b>99.4</b><br>+0.3/-0.8 | <b>99.1</b><br>+0.3/-0.3              | 98.1<br>+0.8/-1.5                     | 99.5<br>+0.4/-1.6                     | 97.5<br>+1.4/-3.5                    | 99.5<br>+0.4/-1.4                     | 99.0<br>+0.6/-1.4              |
| ity (%)                         |                    | 4 yr            |                                      | 98.4<br>+1.1/-3.3              | 97.2<br>+1.9/-6             | 99.3<br>+0.5/-1.4                     | 94.6<br>+1.7/-2.5                     |                  | 98.2<br>+1.1/-3                       | <b>99.4</b><br>+0.3/-0.8 | <b>99.2</b><br>+0.3/-0.4              | 98.5<br>+0.7/-1.3                     | 99.5<br>+0.4/-1.6                     | 97.5<br>+1.4/-3.5                    | 99.5<br>+0.4/-1.4                     | <b>99.0</b><br>+0.6/-1.4       |
| Device Survival Probability (%) | ant                | 3 yr            | <b>98.1</b><br>+1.4/-5.3<br>at 27 mo | <b>99.2</b><br>+0.5/-1.2       | 98.4<br>+1.2/-5.1           | <b>99.3</b><br>+0.5/-1.4              | 95.2<br>+1.5/-2.3                     |                  | 98.2<br>+1.1/-3                       | <b>99.5</b><br>+0.3/-0.7 | 99.3<br>+0.2/-0.3                     | 98.7<br>+0.6/-1.2                     | <b>99.5</b><br>+0.4/-1.6              | 98.2<br>+1.1/-2.9                    | <b>99.5</b><br>+0.4/-1.4              | 99.4<br>+0.3/-0.9              |
| Survival                        | ears After Implant | 2 yr            | 98.1<br>+1.4/-5.3                    | <b>99.2</b><br>+0.5/-1.2       | <b>99.4</b><br>+0.5/-3.5    | <b>99.3</b><br>+0.5/-1.4              | 96.4<br>+1.3/-1.9                     |                  | 98.2<br>+1.1/-3                       | <b>99.7</b><br>+0.2/-0.6 | <b>99.5</b><br>+0.2/-0.1              | <b>99.6</b><br>+0.2/-0.4              | 99.5<br>+0.4/-1.6                     | <b>99.4</b><br>+0.3/-0.8             | 99.5<br>+0.4/-1.4                     | 99.4<br>+0.3/-0.9              |
| Device                          | Years A            | 1 yr            | 98.1<br>+1.4/-5.3                    | 99.6<br>+0.3/-0.7              | 100.0                       | 99.3<br>+0.5/-1.4                     | 96.8<br>+1.2/-1.8                     | 100.0<br>at 0 mo | 98.2<br>+1.1/-3                       | <b>99.7</b><br>+0.2/-0.5 | <b>99.6</b><br>+0.1/-0.2              | <b>99.7</b><br>+0.2/-0.4              | 99.5<br>+0.4/-1.6                     | 99.7<br>+0.2/-0.6                    | 99.5<br>+0.4/-1.4                     | 99.5<br>+0.3/-0.8              |
| sdtnoM<br>γbut2 ni c            |                    |                 | 6,819                                | 27,302                         | 10,116                      | 18,294                                | 31,183                                | 1,858            | 14,023                                | 79,518                   | 330,810                               | 81,202                                | 42,987                                | 31,903                               | 31,421                                | 34,109                         |
| su                              |                    | filenØ<br>IqmoD | 4                                    | Q                              | 4                           | 12                                    | 33                                    | 0                | 2                                     | 19                       | 54                                    | 27                                    | 4                                     | 11                                   | 2                                     | 6                              |
| γbut2 ni s                      | əvitəA             | speəJ           | 1                                    | 44                             | 14                          | 22                                    | 179                                   | 120              | 79                                    | 365                      | 452                                   | 186                                   | 147                                   | 25                                   | 185                                   | 125                            |
| pə                              | Enroll             | speəj           | 121                                  | 911                            | 206                         | 539                                   | 656                                   | 135              | 283                                   | 1,354                    | 8,153                                 | 1,899                                 | 386                                   | 1,209                                | 424                                   | 967                            |
| əseələ                          | rket R             | ₽W SU           | Aug-91                               | Oct-91                         | Not US<br>released          | Nov-94                                | Jan-97                                | Jun-02           | Oct-98                                | Nov-88                   | Mar-90                                | Feb-96                                | Feb-96                                | Feb-96                               | Jun-98                                | Jun-98                         |
|                                 | oer                | լառվշ           | Atrial                               | Atrial                         | Atrial                      | Atrial                                | Atrial                                | Atrial           | Atrial                                | Vent                     | Vent                                  | Vent                                  | Atrial                                | Vent                                 | Atrial                                | Vent                           |
|                                 |                    | γlime٦          | CapSure SP                           | CapSure SP                     | CapSure Z                   | Screw-In                              | CapSureFix                            | CapSure<br>Sense | CapSure SP<br>Novus                   | CapSure SP               | CapSure SP                            | CapSure Z                             | CapSure Z                             | CapSure Z                            | CapSure Z<br>Novus                    | CapSure Z<br>Novus             |
|                                 |                    | ləboM<br>dmuN   | 4523                                 | 4524                           | 4533                        | 4558M                                 | 4568                                  | 4574             | 4592                                  | 5023,<br>5023M           | 5024,<br>5024M                        | 5033                                  | 5034                                  | 5034                                 | 5054                                  | 5054                           |

continued

120 Medtronic CRDM Product Performance Report www.medtronic.com/CRDMProductPerformance

Lead Survival Summary continued

|                                 |                     | 20 yr        |                                |                          |                                       |                                       |                                        |                                       |                              |                                    |                                      |                   |                                      |                     |                              |
|---------------------------------|---------------------|--------------|--------------------------------|--------------------------|---------------------------------------|---------------------------------------|----------------------------------------|---------------------------------------|------------------------------|------------------------------------|--------------------------------------|-------------------|--------------------------------------|---------------------|------------------------------|
|                                 | _                   | 18 yr 20     |                                |                          |                                       |                                       |                                        |                                       |                              |                                    |                                      |                   |                                      |                     |                              |
|                                 | _                   |              |                                |                          |                                       |                                       |                                        |                                       |                              |                                    |                                      |                   |                                      |                     |                              |
|                                 | _                   | 16 yr        |                                |                          |                                       |                                       |                                        |                                       | 97.0<br>+1/-1.3 at<br>189 mo |                                    |                                      |                   |                                      |                     |                              |
|                                 |                     | 14 yr        |                                |                          |                                       |                                       |                                        |                                       | 97.0<br>+1/-1.3              |                                    |                                      |                   |                                      |                     |                              |
|                                 | _                   | 12 yr        | 97.4<br>+1.6/-4.4 at<br>123 mo |                          |                                       |                                       |                                        |                                       | 97.0<br>+1/-1.3              |                                    |                                      |                   |                                      |                     | 98.0<br>+1/-1.6<br>at 126 mo |
|                                 | _                   | 10 yr        | 97.4<br>+1.6/-4.4              | 98.4<br>+1/-2.7          | <b>99.3</b><br>+0.5/-2.2<br>at 117 mo | <b>99.0</b><br>+0.4/-0.6<br>at 111 mo | <b>99 .0</b><br>+0.5/-0.9<br>at 102 mo | <b>99.1</b><br>+0.5/-1.2<br>at 111 mo | 97.2<br>+0.9/-1.2            |                                    |                                      | 97.5<br>+1.3/-2.8 | <b>99.3</b><br>+0.4/-1.3<br>at 99 mo |                     | 98.0<br>+1/-1.6              |
|                                 | _                   | 8 yr         | 97.4<br>+1.6/-4.4              | 98,4<br>+1/-2.7          | 99.3<br>+0.5/-2.2                     | <b>99.0</b><br>+0.4/-0.6              | <b>99.0</b><br>+0.5/-0.9               | <b>99.1</b><br>+0.5/-1.2              | 98.0<br>+0.6/-1              |                                    |                                      | 97.5<br>+1.3/-2.8 | 99.3<br>+0.4/-1.3                    |                     | 98.0<br>+1/-1.6              |
|                                 | _                   | 7 yr         | <b>99.1</b><br>+0.6/-1.9       | 98.4<br>+1/-2.7          | <b>99.3</b><br>+0.5/-2.2              | <b>99.0</b><br>+0.4/-0.6              | 99.0<br>+0.5/-0.9                      | <b>99.1</b><br>+0.5/-1.2              | 98.5<br>+0.6/-0.7            |                                    |                                      | 97.5<br>+1.3/-2.8 | <b>99.3</b><br>+0.4/-1.3             |                     | 98.0<br>+1/-1.6              |
|                                 | _                   | 6 yr         | 99.1<br>+0.6/-1.9              | 99.0<br>+0.7/-1.8        | 99.3<br>+0.5/-2.2                     | 99.0<br>+0.4/-0.6                     | 99.0<br>+0.5/-0.9                      | 99.1<br>+0.5/-1.2                     | 98.8<br>+0.5/-0.6            | <b>96.5</b><br>+2/-4.9 at<br>69 mo |                                      | 97.5<br>+1.3/-2.8 | 99.3<br>+0.4/-1.3                    |                     | 98.0<br>+1/-1.6              |
|                                 |                     | 5 yr         | 99.1<br>+0.6/-1.9              | <b>99.0</b><br>+0.7/-1.8 | <b>99.3</b><br>+0.5/-2.2              | <b>99.1</b><br>+0.4/-0.5              | 99.0<br>+0.5/-0.9                      | <b>99.1</b><br>+0.5/-1.2              | 98.9<br>+0.4/-0.6            | 96.5<br>+2/-4.9                    | <b>96.8</b><br>+2.1/-5.9<br>at 54 mo | 98.5<br>+0.9/-2   | 99.3<br>+0.4/-1.3                    |                     | 98.0<br>+1/-1.6              |
| ity (%)                         |                     | 4 yr         | 99.1<br>+0.6/-1.9              | 99.0<br>+0.7/-1.8        | 99.3<br>+0.5/-2.2                     | <b>99.1</b><br>+0.4/-0.5              | 99.0<br>+0.5/-0.9                      | <b>99.1</b><br>+0.5/-1.2              | 99.0<br>+0.4/-0.6            | 96.5<br>+2/-4.9                    | 96.8<br>+2.1/-5.9                    | 99.3<br>+0.4/-1   | 99.3<br>+0.4/-1.3                    |                     | 98.0<br>+1/-1.6              |
| Probabil                        | ant                 | 3 yr         | 99.6<br>+0.3/-0.9              | 99.4<br>+0.4/-1.5        | 99.3<br>+0.5/-2.2                     | <b>99.4</b><br>+0.3/-0.4              | 99.3<br>+0.4/-0.7                      | 99.3<br>+0.4/-0.9                     | 99.3<br>+0.3/-0.5            | 97.6<br>+1.4/-3.3                  | 98.0<br>+1.4/-4.8                    | 99.3<br>+0.4/-1   | 99.3<br>+0.4/-1.3                    |                     | 98.3<br>+0.8/-1.6            |
| Device Survival Probability (%) | Years After Implant | 2 yr         | 99.6<br>+0.3/-0.9              | <b>99.7</b><br>+0.2/-0.9 | 99.8<br>+0.2/-1.4                     | 99.6<br>+0.2/-0.3                     | 99.4<br>+0.3/-0.6                      | 99.5<br>+0.3/-0.8                     | 99.7<br>+0.2/-0.2            | 97.6<br>+1.4/-3.3                  | 99.0<br>+0.8/-2.8                    | 99.3<br>+0.4/-1   | 99.3<br>+0.4/-1.3                    |                     | 99.6<br>+0.3/-1              |
| Device                          | Years A             | 1 yr         | <b>99.6</b><br>+0.3/-0.9       | 99.9<br>+0.1/-0.7        | <b>99.8</b><br>+0.2/-1.4              | 99.7<br>+0.1/-0.4                     | 99.6<br>+0.2/-0.5                      | <b>99.6</b><br>+0.2/-0.7              | 99.8<br>+0.1/-0.3            | 98.3<br>+1.1/-2.7                  | 100.0                                | 99.8<br>+0.1/-0.7 | <b>99.7</b><br>+0.2/-1.1             | 100<br>at 0 mo      | 99.7<br>+0.2/-0.8            |
| sdtnoM<br>Montbs                |                     |              | 30,149                         | 37,404                   | 24,596                                | 126,012                               | 63,799                                 | 46,062                                | 203,232                      | 10,764                             | 10,597                               | 38,096            | 29,718                               | 1,451               | 41,330                       |
| su                              | Pirog<br>Picatio    |              | 2                              | ъ                        | 7                                     | 17                                    | 10                                     | 7                                     | 37                           | Q                                  | 4                                    | 10                | 4                                    | 0                   | 7                            |
| ۸put2 ni ع                      |                     |              | 46                             | 92                       | 85                                    | 894                                   | 388                                    | 167                                   | 404                          | 14                                 | 43                                   | 158               | 138                                  | 14                  | 112                          |
| pə                              | iloın3 a            | speəq        | 967                            | 1,362                    | 508                                   | 2,733                                 | 1,536                                  | 1,172                                 | 4,497                        | 264                                | 344                                  | 1,053             | 672                                  | 21                  | 816                          |
| əssələ                          | arket R             | W SU         | Jan-97                         | Jan-97                   | Jun-98                                | Aug-00                                | Aug-00                                 | Jun-98                                | Mar-90                       | Feb-96                             | Jun-98                               | Jan-97            | Jun-98                               | Jun-01              | Oct-98                       |
|                                 | ıper                | medD         | Atrial                         | Vent                     | Atrial                                | Atrial                                | Vent                                   | Vent                                  | Atrial                       | Atrial                             | Atrial                               | Atrial            | Atrial                               | Atrial              | Atrial                       |
|                                 | ٨                   | limsA        | CapSureFix                     | CapSureFix               | SureFix                               | CapSureFix<br>Novus                   | CapSureFix<br>Novus                    | CapSure SP<br>Novus                   | CapSure SP                   | CapSure Z                          | CapSure Z<br>Novus                   | CapSureFix        | CapSure SP<br>Novus                  | CapSure SP<br>Novus | CapSureFix                   |
|                                 |                     | amuN<br>amuN | 5068                           | 5068                     | 5072                                  | 5076                                  | 5076                                   | 5092                                  | 5524,<br>5524M               | 5534                               | 5554                                 | 5568              | 5592                                 | 5594                | 6940                         |

Lead Survival Summary continued

### **US Returned Product Analysis Summary**

| Model<br>Number | Family           | US Market<br>Release | Estimated<br>US Implants | Estimated<br>US Active | Conductor<br>Fracture | Crimp/Weld/<br>Bond | Insulation<br>Breach | Other |
|-----------------|------------------|----------------------|--------------------------|------------------------|-----------------------|---------------------|----------------------|-------|
| 3830            | SelectSecure     | Aug-05               | 18,800                   | 15,500                 | 2                     | 0                   | 6                    | 5     |
| 4023            | CapSure SP       | Aug-91               | 41,200                   | 8,500                  | 17                    | 0                   | 4                    | 8     |
| 4024            | CapSure SP       | Oct-91               | 222,300                  | 48,500                 | 28                    | 0                   | 148                  | 41    |
| 4033            | CapSure Z        | Not US released      | NA                       | NA                     | 0                     | 0                   | 0                    | 0     |
| 4067            | CapSureFix       | Jan-97               | 1,000                    | 200                    | 1                     | 0                   | 0                    | 1     |
| 4068            | CapSureFix       | Mar-96               | 124,200                  | 36,000                 | 40                    | 0                   | 118                  | 15    |
| 4073            | CapSure Sense    | Jun-02               | 700                      | 400                    | 0                     | 0                   | 0                    | 0     |
| 4074            | CapSure Sense    | Jun-02               | 79,400                   | 52,200                 | 1                     | 1                   | 14                   | 3     |
| 4076            | CapSureFix Novus | Feb-04               | 322,200                  | 255,300                | 14                    | 1                   | 12                   | 23    |
| 4092            | CapSure SP Novus | Sep-98               | 166,700                  | 82,600                 | 7                     | 0                   | 29                   | 8     |
| 4523            | CapSure SP       | Aug-91               | 11,200                   | 2,700                  | 1                     | 0                   | 2                    | 1     |
| 4524            | CapSure SP       | Oct-91               | 101,800                  | 27,800                 | 1                     | 0                   | 44                   | 13    |
| 4533            | CapSure Z        | Not US released      | NA                       | NA                     | 1                     | 0                   | 0                    | 0     |
| 4558M           | Screw-in         | Nov-94               | 20,000                   | 4,600                  | 1                     | 1                   | 19                   | 1     |
| 4568            | CapSureFix       | Jan-97               | 69,800                   | 26,100                 | 3                     | 0                   | 37                   | 6     |
| 4574            | CapSure Sense    | Jun-02               | 51,700                   | 36,600                 | 4                     | 0                   | 2                    | 0     |
| 4592            | CapSure SP Novus | Oct-98               | 81,300                   | 42,700                 | 5                     | 0                   | 11                   | 1     |
| 5023, 5023M     | CapSure SP       | Nov-88               | 9,900                    | 2,300                  | 6                     | 0                   | 1                    | 0     |
| 5024, 5024M     | CapSure SP       | Mar-90               | 201,600                  | 49,200                 | 52                    | 10                  | 50                   | 39    |
| 5033            | CapSure Z        | Feb-96               | 2,400                    | 600                    | 1                     | 0                   | 0                    | 3     |
| 5034            | CapSure Z        | Feb-96               | 56,100                   | 14,400                 | 14                    | 1                   | 16                   | 13    |
| 5054            | CapSure Z Novus  | Jun-98               | 92,000                   | 43,400                 | 7                     | 1                   | 17                   | 8     |
| 5068            | CapSureFix       | Jan-97               | 103,200                  | 34,200                 | 36                    | 3                   | 54                   | 16    |
| 5072            | SureFix          | Jun-98               | 9,500                    | 4,400                  | 2                     | 0                   | 6                    | 1     |
| 5076            | CapSureFix Novus | Aug-00               | 1,297,100                | 860,900                | 259                   | 0                   | 261                  | 170   |
| 5092            | CapSure SP Novus | Jun-98               | 124,100                  | 61,400                 | 6                     | 0                   | 35                   | 12    |
| 5524, 5524M     | CapSure SP       | Mar-90               | 60,600                   | 18,300                 | 11                    | 2                   | 13                   | 9     |
| 5534            | CapSure Z        | Feb-96               | 26,100                   | 7,900                  | 3                     | 0                   | 6                    | 5     |
| 5554            | CapSure Z Novus  | Jun-98               | 59,400                   | 30,800                 | 7                     | 0                   | 13                   | 4     |
| 5568            | CapSureFix       | Jan-97               | 83,300                   | 49,900                 | 7                     | 0                   | 19                   | 18    |
| 5592            | CapSure SP Novus | Jun-98               | 31,700                   | 18,700                 | 2                     | 0                   | 3                    | 0     |
| 5594            | CapSure SP Novus | Jun-01               | 13,800                   | 9,600                  | 4                     | 0                   | 5                    | 1     |
| 6940            | CapSureFix       | Oct-98               | 25,500                   | 8,500                  | 11                    | 0                   | 15                   | 4     |
|                 |                  |                      |                          |                        |                       |                     |                      |       |

### **US Reports of Acute Lead Observations**

| Model<br>Number | Family            | Estimated<br>US Implants | Cardiac<br>Perforation | Conductor<br>Fracture | Lead<br>Dislodgement | Failure<br>to Capture | Oversensing | Failure<br>to Sense |   |    | Extracardiac<br>Stimulation | Unspecified |
|-----------------|-------------------|--------------------------|------------------------|-----------------------|----------------------|-----------------------|-------------|---------------------|---|----|-----------------------------|-------------|
| 3830            | SelectSecure      | 18,800                   | 7                      | 0                     | 23                   | 8                     | 2           | 2                   | 1 | 0  | 0                           | 0           |
| 4023            | CapSure SP        | 41,200                   | 0                      | 1                     | 3                    | 4                     | 1           | 0                   | 3 | 0  | 1                           | 0           |
| 4024            | CapSure SP        | 222,300                  | 16                     | 11                    | 53                   | 110                   | 0           | 15                  | 2 | 10 | 2                           | 16          |
| 4067            | CapSure Fix       | 1,000                    | 1                      | 0                     | 0                    | 0                     | 0           | 0                   | 0 | 0  | 0                           | 0           |
| 4068            | CapSure Fix       | 124,200                  | 5                      | 3                     | 33                   | 29                    | 1           | 5                   | 1 | 2  | 1                           | 1           |
| 4074            | CapSure Sense     | 79,400                   | 5                      | 1                     | 11                   | 25                    | 0           | 1                   | 0 | 4  | 0                           | 1           |
| 4076            | CapSure Fix Novus | 322,200                  | 28                     | 4                     | 82                   | 43                    | 5           | 14                  | 1 | 10 | 4                           | 3           |
| 4092            | CapSure SP Novus  | 166,700                  | 2                      | 5                     | 19                   | 24                    | 0           | 0                   | 0 | 4  | 0                           | 2           |
| 4523            | CapSure SP        | 11,200                   | 0                      | 0                     | 2                    | 2                     | 0           | 1                   | 0 | 0  | 0                           | 0           |
| 4524            | CapSure SP        | 101,800                  | 0                      | 3                     | 23                   | 17                    | 0           | 5                   | 2 | 1  | 0                           | 10          |
| 4558M           | Screw-in          | 20,000                   | 2                      | 0                     | 4                    | 4                     | 0           | 1                   | 0 | 2  | 1                           | 0           |
| 4568            | CapSure Fix       | 69,800                   | 3                      | 1                     | 4                    | 6                     | 0           | 1                   | 0 | 2  | 0                           | 1           |
| 4574            | CapSure Sense     | 51,700                   | 0                      | 1                     | 17                   | 10                    | 1           | 4                   | 0 | 0  | 0                           | 3           |
| 4592            | CapSure SP Novus  | 81,300                   | 0                      | 0                     | 18                   | 9                     | 2           | 2                   | 0 | 0  | 0                           | 2           |
| 5023, 5023M     | CapSure SP        | 9,900                    | 0                      | 1                     | 2                    | 0                     | 1           | 0                   | 0 | 0  | 0                           | 1           |
| 5024, 5024M     | CapSure SP        | 201,600                  | 12                     | 8                     | 33                   | 52                    | 1           | 11                  | 5 | 3  | 3                           | 11          |
| 5033            | CapSure Z         | 2,400                    | 0                      | 0                     | 1                    | 0                     | 0           | 0                   | 0 | 0  | 0                           | 0           |
| 5034            | CapSure Z         | 56,100                   | 4                      | 6                     | 16                   | 33                    | 0           | 3                   | 2 | 1  | 0                           | 11          |
| 5054            | CapSure Z Novus   | 92,000                   | 1                      | 1                     | 11                   | 21                    | 0           | 2                   | 2 | 1  | 0                           | 10          |
| 5068            | CapSure Fix       | 103,200                  | 15                     | 4                     | 23                   | 35                    | 0           | 5                   | 1 | 2  | 0                           | 3           |
| 5072            | SureFix           | 9,500                    | 0                      | 0                     | 2                    | 1                     | 0           | 0                   | 0 | 0  | 0                           | 0           |
| 5076            | CapSure Fix Novus | 1,297,100                | 105                    | 11                    | 358                  | 182                   | 20          | 37                  | 6 | 23 | 12                          | 18          |
| 5092            | CapSure SP Novus  | 124,100                  | 4                      | 1                     | 32                   | 25                    | 1           | 7                   | 3 | 2  | 3                           | 8           |
| 5524, 5524M     | CapSure SP        | 60,600                   | 1                      | 4                     | 20                   | 14                    | 0           | 9                   | 2 | 0  | 0                           | 8           |
| 5534            | CapSure Z         | 26,100                   | 0                      | 0                     | 5                    | 5                     | 0           | 1                   | 0 | 0  | 2                           | 4           |
| 5554            | CapSure Z Novus   | 59,400                   | 0                      | 1                     | 27                   | 19                    | 0           | 1                   | 0 | 0  | 0                           | 3           |
| 5568            | CapSure Fix       | 83,300                   | 5                      | 0                     | 25                   | 15                    | 2           | 3                   | 1 | 2  | 2                           | 1           |
| 5592            | CapSure SP Novus  | 31,700                   | 0                      | 0                     | 18                   | 3                     | 0           | 1                   | 0 | 0  | 0                           | 1           |
| 5594            | CapSure SP Novus  | 13,800                   | 0                      | 1                     | 5                    | 0                     | 0           | 0                   | 0 | 0  | 0                           | 2           |
| 6940            | CapSure Fix       | 25,500                   | 0                      | 1                     | 6                    | 1                     | 0           | 0                   | 0 | 0  | 0                           | 1           |

Report Cutoff Date: January 31, 2011

### **Reference Chart**

| Model<br>Number | Family           | Туре                             | Insulation                           | Conductor<br>Material    | Tip<br>Electrode                           | Connector<br>Type                            |
|-----------------|------------------|----------------------------------|--------------------------------------|--------------------------|--------------------------------------------|----------------------------------------------|
| 3830            | SelectSecure     | Transvenous V or A<br>Screw-In   | Polyurethane/Silicone<br>(55D,4719)  | MP35N 5 Filars/<br>Cable | 1.8 mm Helix/Steroid                       | IS-1 BI                                      |
| 4023            | CapSure SP       | Transvenous<br>Ventricular Tines | Polyurethane<br>(55D)                | MP35N<br>4 Filars        | Porous Platinized/<br>Steroid              | IS-1 UNI                                     |
| 4024            | CapSure SP       | Transvenous<br>Ventricular Tines | Polyurethane<br>(55D)                | MP35N<br>4/5 Filars      | Porous Platinized/<br>Steroid              | IS-1 BI                                      |
| 4033            | CapSure Z        | Transvenous<br>Ventricular Tines | Polyurethane<br>(55D)                | MP35N<br>2 Filars        | CapSure Z<br>Platinized/Steroid            | IS-1 UNI                                     |
| 4067            | CapSureFix       | Transvenous V or A<br>Screw-In   | Polyurethane<br>(80A)                | MP35N<br>3 Filars        | 1.8 mm Helix/Steroid                       | IS-1 UNI                                     |
| 4068            | CapSureFix       | Transvenous V or A<br>Screw-In   | Polyurethane<br>(80A/55D)            | MP35N<br>4/3 Filars      | 1.8 mm Helix/Steroid                       | IS-1 BI                                      |
| 4073            | CapSure Sense    | Transvenous<br>Ventricular Tines | Polyurethane (55D)                   | MP35N<br>5 Filars        | TiN Coated Platinum<br>Iridium/Steroid     | IS-1 UNI                                     |
| 4074            | CapSure Sense    | Transvenous<br>Ventricular Tines | Polyurethane/Silicone<br>(55D, 4719) | MP35N<br>5/5 Filars      | TiN Coated<br>Platinum Iridium/<br>Steroid | IS-1 BI                                      |
| 4076            | CapSureFix Novus | Transvenous V or A<br>Screw-In   | Polyurethane/Silicone<br>(55D, 4719) | MP35N<br>4/6 Filars      | TiN Coated<br>Platinum Alloy/Steroid       | IS-1 BI                                      |
| 4092            | CapSure SP Novus | Transvenous<br>Ventricular Tines | Polyurethane/Silicone<br>(55D/4719)  | MP35N<br>6/4 Filars      | Porous Platinized/<br>Steroid              | IS-1 BI                                      |
| 4523            | CapSure SP       | Transvenous<br>Atrial-J Tines    | Polyurethane<br>(55D)                | MP35N<br>2 Filars        | Porous Platinized/<br>Steroid              | IS-1 UNI                                     |
| 4524            | CapSure SP       | Transvenous<br>Atrial-J Tines    | Polyurethane<br>(55D)                | MP35N<br>4/5 Filars      | Porous Platinized/<br>Steroid              | IS-1 BI                                      |
| 4533            | CapSure Z        | Transvenous<br>Atrial-J Tines    | Polyurethane<br>(55D)                | MP35N<br>2 Filars        | CapSure Z<br>Platinized/Steroid            | IS-1 UNI                                     |
| 4558M           | Screw-In         | Transvenous<br>Atrial-J Screw-In | Polyurethane<br>(80A/55D)            | MP35N<br>6/3 Filars      | 1.8 mm Helix/Steroid                       | IS-1 BI                                      |
| 4568            | CapSureFix       | Transvenous<br>Atrial-J Screw-In | Polyurethane<br>(80A/55D)            | MP35N<br>6/3 Filars      | 1.8 mm Helix/Steroid                       | IS-1 BI                                      |
| 4574            | CapSure Sense    | Transvenous<br>Atrial -J Tines   | Polyurethane/Silicone<br>(55D,4719)  | MP35N<br>5/5 Filars      | TiN Coated<br>Platinum Iridium             | IS-1 BI                                      |
| 4592            | CapSure SP Novus | Transvenous<br>Atrial-J Tines    | Polyurethane/Silicone<br>(55D/4719)  | MP35N<br>6/3 Filars      | Porous Platinized/<br>Steroid              | IS-1 BI                                      |
| 5023, 5023M     | CapSure SP       | Transvenous<br>Ventricular Tines | Silicone                             | MP35N<br>4 Filars        | Porous Platinized/<br>Steroid              | 5 mm (5023)<br>IS-1 UNI (5023M)              |
| 5024, 5024M     | CapSure SP       | Transvenous<br>Ventricular Tines | Silicone                             | MP35N<br>4/5 Filars      | Porous Platinized/<br>Steroid              | 3.2 mm Low Profile (5024)<br>IS-1 BI (5024M) |
| 5033            | CapSure Z        | Transvenous<br>Ventricular Tines | Silicone                             | MP35N<br>4 Filars        | CapSure Z<br>Platinized/Steroid            | IS-1 UNI                                     |
| 5034            | CapSure Z        | Transvenous<br>Ventricular Tines | Silicone                             | MP35N<br>4/5 Filars      | CapSure Z<br>Platinized/Steroid            | IS-1 BI                                      |
| 5054            | CapSure Z Novus  | Transvenous<br>Ventricular Tines | Silicone<br>(4719)                   | MP35N<br>5/5 Filars      | CapSure Z<br>Porous/Platinized/<br>Steroid | IS-1 BI                                      |
| 5068            | CapSureFix       | Transvenous V or A<br>Screw-In   | Silicone                             | MP35N<br>4/3 Filars      | 1.8 mm Helix/Steroid                       | IS-1 BI                                      |
| 5072            | SureFix          | Transvenous V or A<br>Screw-In   | Silicone                             | MP35N<br>4/5 Filars      | 1.8 mm Helix/Steroid                       | IS-1 BI                                      |
| 5076            | CapSureFix Novus | Transvenous V or A<br>Screw-In   | Silicone<br>(4719)                   | MP35N<br>4/6 Filars      | Porous Platinized/<br>Steroid              | IS-1 BI                                      |
| 5092            | CapSure SP Novus | Transvenous<br>Ventricular Tines | Silicone<br>(4719)                   | MP35N<br>5/5 Filars      | Porous Platinized/<br>Steroid              | IS-1 BI                                      |
| 5524, 5524M     | CapSure SP       | Transvenous<br>Atrial-J Tines    | Silicone                             | MP35N<br>6/5 Filars      | Porous Platinized/<br>Steroid              | 3.2 mm Low Profile (5524)<br>IS-1 Bl (5524M) |
| 5534            | CapSure Z        | Transvenous                      | Silicone                             | MP35N                    | CapSure Z                                  | IS-1 BI                                      |

continued

### Reference Chart continued

| Model<br>Number | Family           | Туре                             | Insulation         | Conductor<br>Material | Tip<br>Electrode                           | Connector<br>Type |
|-----------------|------------------|----------------------------------|--------------------|-----------------------|--------------------------------------------|-------------------|
| 5554            | CapSure Z Novus  | Transvenous<br>Atrial-J Tines    | Silicone<br>(4719) | MP35N<br>6/5 Filars   | CapSure Z<br>Porous Platinized/<br>Steroid | IS-1 BI           |
| 5568            | CapSureFix       | Transvenous<br>Atrial-J Screw-In | Silicone           | MP35N<br>6/3 Filars   | 1.8 mm Helix/Steroid                       | IS-1 BI           |
| 5592            | CapSure SP Novus | Transvenous<br>Atrial-J Tines    | Silicone<br>(4719) | MP35N<br>6/5 Filars   | Porous Platinized/<br>Steroid              | IS-1 BI           |
| 5594            | CapSure SP Novus | Transvenous<br>Atrial-J Tines    | Silicone<br>(4719) | MP35N<br>6/5 Filars   | Platinized Platinum/<br>Steroid            | IS-1 BI           |
| 6940            | CapSureFix       | Transvenous<br>A or V Screw-In   | Silicone           | MP35N<br>3/6 Filars   | Platinum Alloy                             | IS-1 BI           |

# **Epi/Myocardial Pacing Leads**

### 4951, 4951M Spectraflex

| 51, | 4951M S          | pectrafie         | K      | Produc    | t Characteris | stics       |               |            |     |               |                           |          |
|-----|------------------|-------------------|--------|-----------|---------------|-------------|---------------|------------|-----|---------------|---------------------------|----------|
|     | US Market Releas | se                | Oct-81 | Serial Nu | mber Prefix   | TF or LBJ   |               |            |     | US Retu       | rned Product An           | alysis   |
|     | Registered US Im | plants            | 23,200 | Type and  | l/or Fixation | Myocardia   | al Stab-in, V | or A, Peds | 5   | Co            | nductor Fracture          | 57       |
|     | Estimated Active | US Implants       | 3,000  | Polarity  |               | Unipolar    |               |            |     |               | imp/Weld/Bond             | 0        |
|     | Advisories       |                   | None   | Steroid   |               | No          |               |            |     | I             | nsulation Breach<br>Other | 39<br>29 |
| em  | Longevity St     | udy Results       |        |           | Quali         | fying Compl | ications      | 14 To      | tal |               |                           |          |
|     | Number of Lead   | s Enrolled in Stu | dy 1   | 179       |               | Failure t   | o Capture     | 7          |     | Insulation (n | ot further defined)       | 1        |
|     | Cumulative Mon   | ths of Follow-U   | p 4,5  | 557       |               | Conducto    | r Fracture    | 1          |     |               | Insulation (ESC)          | 1        |
|     | Number of Lead   | s Active in Study | /      | 4         |               | Failur      | e to Sense    | 3          |     | Impec         | lance Out of Range        | 1        |
| 100 | )                | 1                 |        |           |               | 1           |               |            |     |               |                           |          |
| 90  |                  |                   |        |           |               |             |               |            |     |               |                           |          |
| 80  |                  |                   |        |           |               |             |               |            |     |               |                           |          |
| 0(  |                  |                   |        |           |               |             | -             |            |     |               |                           |          |
|     | 0<br>Years After | l Implant         | 2 3    |           | 4             | 5 6         | )             | 7          | 8   | (             | 9 10                      |          |
|     |                  |                   |        |           | 1             | 1           |               |            | I   |               |                           |          |
|     |                  | 1 yr              | 2 yr   |           |               |             |               |            |     |               |                           |          |
| %   |                  | 97.7              | 96.5   |           |               |             |               |            |     |               |                           |          |
| 1   | #                | 89                | 50     |           |               | l           |               |            |     |               |                           |          |
|     | Effective Sam    | Die Size          |        |           |               |             |               |            |     |               |                           |          |

|                   | US Market Release | e             | Se   | p-96  | Serial Num | ber Prefix  | LBT                |                  |       | US Return | ned Product An          | alysis  |
|-------------------|-------------------|---------------|------|-------|------------|-------------|--------------------|------------------|-------|-----------|-------------------------|---------|
|                   | Registered US Imp | olants        | 20   | ,300  | Type and/o | or Fixation | Epicardial Suture- | On V or A        | Ą     | Conc      | ductor Fracture         | 127     |
|                   | Estimated Active  | US Implants   | 9    | ,700  | Polarity   |             | Unipolar           |                  |       |           | np/Weld/Bond            | 1       |
|                   | Advisories        |               | Ν    | lone  | Steroid    |             | Yes                |                  |       | Ins       | ulation Breach<br>Other | 31<br>2 |
| stem              | n Longevity Stu   | idy Results   | 5    |       |            | Quali       | fying Complication | <mark>s</mark> 8 | Total |           |                         |         |
|                   | Number of Leads   | Enrolled in S | tudy | 218   |            |             | Failure to Captur  | e 2              |       |           | Oversensing             | 2       |
|                   | Cumulative Month  | hs of Follow- | Up   | 6,504 |            |             | Conductor Fractu   | e 3              |       |           |                         |         |
|                   |                   |               |      |       |            |             |                    |                  |       |           |                         |         |
|                   | Number of Leads   | Active in Stu | dy   | 35    |            |             | Failure to Sens    | e 1              |       |           |                         |         |
| 10                | Number of Leads   | Active in Stu | dy   | 35    |            |             | Failure to Sens    | e 1              |       |           |                         |         |
| 10                | 0                 | Active in Stu | dy   | 35    | 4          |             | Failure to Sens    | e 1              |       |           |                         |         |
|                   | 0                 | Active in Stu | dy   | 35    | 7          |             | Failure to Sens    | e 1              |       |           |                         |         |
| 100<br>90<br>80   | 0 0 0             | Active in Stu |      |       | 7          |             |                    | e 1              |       |           | 10                      |         |
|                   | 0                 |               | dy   | 35    | 4          |             |                    | e 1              | 8     | 9         | 10                      |         |
| 10<br>9<br>8      |                   |               |      |       | 4          | 1           |                    | e 1              | 8     | 9         | 10                      |         |
| 10<br>9<br>8<br>9 |                   | Implant       | 2    | 3     |            | -           |                    | e 1              | 8     | 9         | 10                      |         |

# Epi/Myocardial Pacing Leads continued

|      | CapSure                         | Ері                  |      |        | Product Charac       | teristics     |                 |          |           |                            |       |
|------|---------------------------------|----------------------|------|--------|----------------------|---------------|-----------------|----------|-----------|----------------------------|-------|
| ι    | JS Market Relea                 | se                   | S    | ep-99  | Serial Number Prefix | < LEN         |                 |          | US R      | eturned Product Ana        | alysi |
| F    | Registered US In                | nplants              | :    | 21,800 | Type and/or Fixation | n Epica       | rdial Suture-On | V or A   |           | Conductor Fracture         | 1     |
| E    | stimated Active                 | e US Implants        |      | 13,900 | Polarity             | Bipola        | ar              |          |           | Crimp/Weld/Bond            |       |
| A    | Advisories                      |                      |      | None   | Steroid              | Yes           |                 |          |           | Insulation Breach<br>Other |       |
| em l | Longevity St                    | udy Result           | S    |        | Q                    | ualifying Cor | nplications     | 32 Total |           |                            |       |
| Ν    | Number of Lead                  | s Enrolled in S      | tudy | 703    |                      | Fail          | ure to Capture  | 13       | Insulatio | on (not further defined)   |       |
| C    | Cumulative Mor                  | ths of Follow-       | Up   | 33,274 |                      | Cond          | uctor Fracture  | 6        | Im        | pedance Out of Range       |       |
| Ν    | Number of Leads Active in Study |                      |      | 395    |                      | Fa            | ailure to Sense | 3        |           | Oversensing                |       |
| 100  |                                 |                      |      |        |                      |               |                 |          |           |                            |       |
|      | Number of Leads Active in Study |                      |      |        |                      |               |                 |          |           |                            |       |
| 90   |                                 |                      |      |        |                      |               |                 |          |           |                            |       |
| 80   |                                 |                      |      |        |                      |               |                 |          |           |                            |       |
|      | 0                               | 1                    | 2    | 3      | 4                    | 5             | 6               | 7        | 8         | 9 10                       |       |
|      | Years After                     | <sup>-</sup> Implant |      |        |                      |               |                 |          |           |                            |       |
|      | 1                               | 1 yr                 | 2 yr | З у    | r 4 yr               | 5 yr          | 6 yr            | 7 yr     | 8 yr      | 9 yr                       |       |
|      |                                 |                      |      |        |                      | 05.0          | 94.5            | 93.7     | 93.7      | 01.2                       |       |
| %    |                                 | 99.8                 | 98.1 | 97.    | 1 96.2               | 95.0          | 94.5            | 95.7     | 95./      | 91.3                       |       |

|                   |                                                                                                                                         |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                        | Product Charac                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .teristies                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| US Market Release | 2                                                                                                                                       | Dec                                                                                                                                                             | -92                                                                                                                                                                                                                                                                                                                                                                                    | Serial Number Prefi                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ix LAQ                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | US Retu                                                                                                                                                                                                                                                                                                                                                                                                                                                       | rned Product Ana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | alysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Registered US Imp | olants                                                                                                                                  | 40,1                                                                                                                                                            | 100                                                                                                                                                                                                                                                                                                                                                                                    | Type and/or Fixatio                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n Myo                                                                                                                                                                                                                                                                                                   | ardial Screw-in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Vent.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Estimated Active  | US Implants                                                                                                                             | 15,0                                                                                                                                                            | 000                                                                                                                                                                                                                                                                                                                                                                                    | Polarity                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Unip                                                                                                                                                                                                                                                                                                    | olar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Advisories        |                                                                                                                                         | No                                                                                                                                                              | one S                                                                                                                                                                                                                                                                                                                                                                                  | Steroid                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | No                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Insulation Breach<br>Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Longevity Stu     | idy Results                                                                                                                             |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                        | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Qualifying Co                                                                                                                                                                                                                                                                                           | mplications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Number of Leads   | Enrolled in Stud                                                                                                                        | ly                                                                                                                                                              | 259                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Fai                                                                                                                                                                                                                                                                                                     | lure to Capture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Cumulative Mont   | hs of Follow-Up                                                                                                                         |                                                                                                                                                                 | 6,000                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                         | Oversensing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Number of Leads   | Active in Study                                                                                                                         |                                                                                                                                                                 | 49                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   |                                                                                                                                         |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   |                                                                                                                                         | -                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   |                                                                                                                                         |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   |                                                                                                                                         |                                                                                                                                                                 | 2                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                         | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <br>0 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Years After       |                                                                                                                                         |                                                                                                                                                                 | J                                                                                                                                                                                                                                                                                                                                                                                      | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   | 1 yr                                                                                                                                    | 2 yr                                                                                                                                                            | at 27                                                                                                                                                                                                                                                                                                                                                                                  | mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   | 97.4                                                                                                                                    | 94.6                                                                                                                                                            | 94.6                                                                                                                                                                                                                                                                                                                                                                                   | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   | 132                                                                                                                                     | 52                                                                                                                                                              | 49                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   | Registered US Imp<br>Estimated Active I<br>Advisories  Longevity Stu Number of Leads Cumulative Monti Number of Leads 0 1 Years After I | Longevity Study Results Number of Leads Enrolled in Stud Cumulative Months of Follow-Up Number of Leads Active in Study 0 1 2 Years After Implant 1 yr 97.4 132 | Registered US Implants       40,7         Estimated Active US Implants       15,0         Advisories       Nor         Longevity Study Results       Nor         Number of Leads Enrolled in Study       Cumulative Months of Follow-Up         Number of Leads Active in Study       1         0       1       2         Years After Implant       1       yr         97,4       94,6 | Registered US Implants       40,100       1         Estimated Active US Implants       15,000       1         Advisories       None       1         Longevity Study Results       259         Number of Leads Enrolled in Study       259         Cumulative Months of Follow-Up       6,000         Number of Leads Active in Study       49         0       1       2       3         Years After Implant       1       yr       2       3         132       52       49 | Registered US Implants 40,100 Type and/or Fixation   Estimated Active US Implants 15,000 Polarity   Advisories None Steroid   Longevity Study Results Cumulative Months of Follow-Up 6,000 Number of Leads Active in Study 49 O 1 2 3 4 Years After Implant 1 yr 2 yr at 27 mo 97.4 94.6 94.6 132 52 49 | Registered US Implants       40,100       Type and/or Fixation       Myod         Estimated Active US Implants       15,000       Polarity       Unip         Advisories       None       Steroid       No         Longevity Study Results       Qualifying Co         Number of Leads Enrolled in Study       259       Fai         Cumulative Months of Follow-Up       6,000         Number of Leads Active in Study       49         0       1       2       3       4       5         Years After Implant       1 yr       2 yr       at 27 mo | Registered US Implants       40,100       Type and/or Fixation       Myocardial Screw-in         Estimated Active US Implants       15,000       Polarity       Unipolar         Advisories       None       Steroid       No         Longevity Study Results       Qualifying Complications         Number of Leads Enrolled in Study       259       Failure to Capture         Cumulative Months of Follow-Up       6,000       Oversensing         Number of Leads Active in Study       49       49         0       1       2       3       4       5       6         Years After Implant       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <td< td=""><td>Registered US Implants 40,100 Type and/or Fixation Myocardial Screw-in Vent.   Estimated Active US Implants 15,000 Polarity Unipolar   Advisories None Steroid No     Longevity Study Results Qualifying Complications 11   Number of Leads Enrolled in Study 259 Failure to Capture 9   Cumulative Months of Follow-Up 6,000 Oversensing 2   Number of Leads Active in Study 49 49 49     0 1 2 3 4 5 6 7   Years After Implant 1 yr 2 yr at 27 mo 1 1   132 52 49 0 1 0 1 0</td><td>Registered US Implants 40,100 Type and/or Fixation Myocardial Screw-in Vent.   Estimated Active US Implants 15,000 Polarity Unipolar   Advisories None Steroid No     Longevity Study Results Qualifying Complications 11   Number of Leads Enrolled in Study 259 Failure to Capture 9   Cumulative Months of Follow-Up 6,000 Oversensing 2   Number of Leads Active in Study 49 0 0     0 1 2 3 4 5 6 7 8   Years After Implant 1 yr 2 yr at 27 mo 1 1 1 1 1</td><td>Registered US Implants 40,100 Type and/or Fixation Myocardial Screw-in Vent.   Estimated Active US Implants 15,000 Polarity Unipolar   Advisories None Steroid No     Longevity Study Results Qualifying Complications 11   Total     Number of Leads Enrolled in Study 259   Failure to Capture 9     Cumulative Months of Follow-Up 6,000   Oversensing 2   Number of Leads Active in Study 49     O 1   2 3   44 5   6 7   8   Years After Implant   1 yr 2 yr   1 yr 2 yr   1 yr 2 yr   1 32 52</td><td>Registered US Implants     40,100     Type and/or Fixation     Myocardial Screw-in Vent.     Conductor Fracture Crimp/Weld/Bond Insulation Breach Other       Stimated Active US Implants     15,000     Polarity     Unipolar     Conductor Fracture Crimp/Weld/Bond Insulation Breach Other       Advisories     None     Steroid     No     No     Conductor Fracture Crimp/Weld/Bond Insulation Breach Other       Longevity Study Results     259     Failure to Capture     9       Cumulative Months of Follow-Up     6,000     Oversensing     2       Number of Leads Enrolled in Study     259     Failure to Capture     9       Cumulative Months of Follow-Up     6,000     Oversensing     2       Number of Leads Active in Study     49     49     10       Oracle Active in Study     49     49     10       Image: Active in Study     49     40     10</td></td<> | Registered US Implants 40,100 Type and/or Fixation Myocardial Screw-in Vent.   Estimated Active US Implants 15,000 Polarity Unipolar   Advisories None Steroid No     Longevity Study Results Qualifying Complications 11   Number of Leads Enrolled in Study 259 Failure to Capture 9   Cumulative Months of Follow-Up 6,000 Oversensing 2   Number of Leads Active in Study 49 49 49     0 1 2 3 4 5 6 7   Years After Implant 1 yr 2 yr at 27 mo 1 1   132 52 49 0 1 0 1 0 | Registered US Implants 40,100 Type and/or Fixation Myocardial Screw-in Vent.   Estimated Active US Implants 15,000 Polarity Unipolar   Advisories None Steroid No     Longevity Study Results Qualifying Complications 11   Number of Leads Enrolled in Study 259 Failure to Capture 9   Cumulative Months of Follow-Up 6,000 Oversensing 2   Number of Leads Active in Study 49 0 0     0 1 2 3 4 5 6 7 8   Years After Implant 1 yr 2 yr at 27 mo 1 1 1 1 1 | Registered US Implants 40,100 Type and/or Fixation Myocardial Screw-in Vent.   Estimated Active US Implants 15,000 Polarity Unipolar   Advisories None Steroid No     Longevity Study Results Qualifying Complications 11   Total     Number of Leads Enrolled in Study 259   Failure to Capture 9     Cumulative Months of Follow-Up 6,000   Oversensing 2   Number of Leads Active in Study 49     O 1   2 3   44 5   6 7   8   Years After Implant   1 yr 2 yr   1 yr 2 yr   1 yr 2 yr   1 32 52 | Registered US Implants     40,100     Type and/or Fixation     Myocardial Screw-in Vent.     Conductor Fracture Crimp/Weld/Bond Insulation Breach Other       Stimated Active US Implants     15,000     Polarity     Unipolar     Conductor Fracture Crimp/Weld/Bond Insulation Breach Other       Advisories     None     Steroid     No     No     Conductor Fracture Crimp/Weld/Bond Insulation Breach Other       Longevity Study Results     259     Failure to Capture     9       Cumulative Months of Follow-Up     6,000     Oversensing     2       Number of Leads Enrolled in Study     259     Failure to Capture     9       Cumulative Months of Follow-Up     6,000     Oversensing     2       Number of Leads Active in Study     49     49     10       Oracle Active in Study     49     49     10       Image: Active in Study     49     40     10 |

Leads

# Epi/Myocardial Pacing Leads continued

| (95% Confidence Interval) |
|---------------------------|
| Jary                      |
| mm                        |
| ร                         |
| val                       |
| Į,                        |
| l Su                      |
| Lead                      |
| _                         |

| Sep-<br>96     OC     US Market Rele       23     139     Leads Enrolled       23     179     Leads Active in       34     34     Market Rele                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | չքողչ<br>sղդս    |                          |                     |                                      |                                      |                   |                 |                   |                   |                                |       |       |       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------|---------------------|--------------------------------------|--------------------------------------|-------------------|-----------------|-------------------|-------------------|--------------------------------|-------|-------|-------|
| 20     Oct.     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | юW               | Device S                 | urvival P           | Device Survival Probability (%)      | ty (%)                               |                   |                 |                   |                   |                                |       |       |       |
| Sep-96 Ct-81 Leads Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualification Ct-81 Cualifi | oiteoil<br>evite | Years Aft                | ears After Implant/ | nt                                   |                                      |                   |                 |                   |                   |                                |       |       |       |
| Oct-81 179 4<br>Sep-96 218 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | וחשחכ<br>וdwoכ   | 1 yr                     | 2 yr                | 3 yr                                 | 4 yr                                 | 5 yr              | 6 yr            | 7 yr              | 8 yr              | 10 yr                          | 12 yr | 14 yr | 16 yr |
| Sep-96 218 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14 4,557         | 97.7<br>+1.6/-4.8        | 96.5<br>+2.2/-5.8   |                                      |                                      |                   |                 |                   |                   |                                |       |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8 6,504          | 99.0<br>+0.7/-3.1        | 98.0<br>+1.4/-4.3   | 96.8<br>+2.1/-5.9                    | <b>92.3</b><br>+4.1/-8.6 at<br>45 mo |                   |                 |                   |                   |                                |       |       |       |
| CapSure Epi Sep-99 703 395                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 32 30,274        | <b>99.8</b><br>+0.2/-0.9 | 98.1<br>+0.9/-1.7   | 97.1<br>+1.2/-2                      | 96.2<br>+1.4/-2.3                    | 95.0<br>+1.8/-2.7 | 94.5<br>+2/-3.1 | 93.7<br>+2.3/-3.6 | 93.7<br>+2.3/-3.6 | 91.3<br>+3.4/-5.6<br>at 108 mo |       |       |       |
| (No brand Dec-92 259 49<br>name)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11 6,000         | 97.4<br>+1.5/-3.6        | 94.6<br>+2.8/-5.6   | <b>94.6</b><br>+2.8/-5.6<br>at 27 mo |                                      |                   |                 |                   |                   |                                |       |       |       |

# Epi/Myocardial Pacing Leads continued

### **US Returned Product Analysis Summary**

| Model<br>Number | Family      | US Market<br>Release | Estimated<br>US Implants | Estimated<br>US Active | Conductor<br>Fracture | Crimp/Weld/<br>Bond | Insulation<br>Breach | Other |
|-----------------|-------------|----------------------|--------------------------|------------------------|-----------------------|---------------------|----------------------|-------|
| 4951, 4951M     | Spectraflex | Oct-81               | 23,200                   | 3,000                  | 57                    | 0                   | 39                   | 29    |
| 4965            | CapSure Epi | Sep-96               | 20,300                   | 9,700                  | 127                   | 1                   | 31                   | 2     |
| 4968            | CapSure Epi | Sep-99               | 21,800                   | 13,900                 | 17                    | 0                   | 6                    | 1     |
| 5071            | Screw-in    | Dec-92               | 40,100                   | 15,000                 | 10                    | 0                   | 2                    | 5     |

Source: Returned Product Analysis Data as of January 31, 2011

### **US Reports of Acute Lead Observations**

| Model<br>Number | Family      | Estimated<br>US Implants | Cardiac<br>Perforation | Conductor<br>Fracture | Lead<br>Dislodgement | Failure<br>to Capture | Oversensing | Extracardiac<br>Stimulation | Impedance<br>Abnormal | Extracardiac<br>Stimulation | Unspecified |
|-----------------|-------------|--------------------------|------------------------|-----------------------|----------------------|-----------------------|-------------|-----------------------------|-----------------------|-----------------------------|-------------|
| 4951, 4951M     | Spectraflex | 23,200                   | 1                      | 1                     | 0                    | 13                    | 0           | 0                           | 0                     | 0                           | 2           |
| 4965            | CapSure Epi | 20,300                   | 0                      | 1                     | 1                    | 4                     | 0           | 1                           | 3                     | 0                           | 0           |
| 4968            | CapSure Epi | 21,800                   | 1                      | 0                     | 3                    | 8                     | 1           | 0                           | 2                     | 0                           | 0           |
| 5071            | Screw-in    | 40,100                   | 1                      | 0                     | 0                    | 25                    | 0           | 1                           | 3                     | 1                           | 1           |

Report Cutoff Date: January 31, 2011

#### **Reference Chart**

| Model<br>Number | Family          | Туре                               | Insulation            | Conductor<br>Material | Tip<br>Electrode              | Connector<br>Type               |
|-----------------|-----------------|------------------------------------|-----------------------|-----------------------|-------------------------------|---------------------------------|
| 4951, 4951M     | Spectraflex     | Myocardial Stab-In<br>V or A/Peds  | Polyurethane<br>(80A) | MP35N<br>4 Filars     | Barb                          | 5 mm (4951)<br>IS-1 UNI (4951M) |
| 4965            | CapSure Epi     | Epicardial Suture-On<br>V or A     | Silicone              | MP35N<br>5 Filars     | Porous Platinized/<br>Steroid | IS-1 UNI                        |
| 4968            | CapSure Epi     | Epicardial Suture<br>V or A        | Silicone              | MP35N<br>5 Filars     | Porous Platinized/<br>Steroid | IS-1 B1                         |
| 5069            | (No brand name) | Myocardial Screw-In                | Silicone              | MP35N<br>Multifilars  | 3-Turn Helix                  | IS-1 UNI                        |
| 5071            | (No brand name) | Myocardial Screw-In<br>Ventricular | Silicone              | MP35N<br>Multifilars  | 2-Turn Helix                  | IS-1 UNI                        |


# **VDD Single Pass Pacing Leads**

| US Marke                                   | et Release                                          | Mar-96                       | Serial Number Prefix | LCL, LCN,      | ICM              |         | LIS Rotu | rned Product A            | nalv  |
|--------------------------------------------|-----------------------------------------------------|------------------------------|----------------------|----------------|------------------|---------|----------|---------------------------|-------|
|                                            | ed US Implants                                      | 5,400                        | Type and/or Fixation |                | ous, Atr-Vent.,T | ines    |          | nductor Fracture          | anary |
| -                                          | d Active US Implants                                | 1,400                        | Polarity             | Quadripo       | lar              |         | Cr       | rimp/Weld/Bond            |       |
| Advisorie                                  | 25                                                  | None                         | Steroid              | Yes            |                  |         | lı       | nsulation Breach<br>Other |       |
| tem Longe                                  | vity Study Results                                  |                              | Q                    | ualifying Comp | lications        | 1 Total |          |                           |       |
| Number                                     | of Leads Enrolled in Study                          | 38                           | 8                    | Failur         | re to Sense      | 1       |          |                           |       |
| Number                                     | or Leads Enroned in Stady                           | 50                           |                      |                |                  |         |          |                           |       |
|                                            | ive Months of Follow-Up                             | 751                          |                      |                |                  |         |          |                           |       |
| Cumulati                                   | -                                                   |                              |                      |                |                  |         |          |                           |       |
| Cumulati<br>Number                         | ive Months of Follow-Up                             | 751                          |                      |                |                  |         |          |                           |       |
| Cumulati<br>Number<br>100 Survi            | ive Months of Follow-Up                             | 751                          | )                    |                |                  |         |          |                           |       |
| Cumulati<br>Number<br>100<br>90            | ive Months of Follow-Up<br>of Leads Active in Study | 751                          | )                    |                |                  |         |          |                           |       |
| Cumulati<br>Number<br>100<br>90<br>80      | ive Months of Follow-Up<br>of Leads Active in Study | 751<br>0<br>ue to insufficie | )<br>ent sample size |                |                  |         |          |                           |       |
| Cumulati<br>Number<br>100<br>90<br>80<br>0 | val estimate not available du                       | 751                          | )                    | 5              | 6                | 7       | 8        | 9                         | 10    |
| Cumulati<br>Number<br>100<br>90<br>80<br>0 | ive Months of Follow-Up<br>of Leads Active in Study | 751<br>0<br>ue to insufficie | )<br>ent sample size | 5              | 6                | 7       | 8        | 9                         | 10    |
| Cumulati<br>Number<br>100<br>90<br>80<br>0 | val estimate not available du                       | 751<br>0<br>ue to insufficie | )<br>ent sample size | 5              | 6                | 7       | 8        | 9                         | 10    |
| Cumulati<br>Number<br>100<br>90<br>80<br>0 | val estimate not available du                       | 751<br>0<br>ue to insufficie | )<br>ent sample size | 5              | 6                | 7       | 8        | 9                         | 10    |

| 5038                          | <b>B</b> CapSure | VDD-2           |         | Product    | t Characte  | ristics      |                   |         |    |         |                        |            |
|-------------------------------|------------------|-----------------|---------|------------|-------------|--------------|-------------------|---------|----|---------|------------------------|------------|
|                               | US Market Relea  | se              | Sep-98  | Serial Nur | nber Prefix | LEE, LI      | EG, or LEF        |         |    | US Retu | ned Product            | t Analysis |
|                               | Registered US In | nplants         | 8,700   | Type and   | or Fixation | Transv       | venous, Atr-Vent. | "Tines  |    | Cor     | ductor Fractu          | re 3       |
|                               | Estimated Active | e US Implants   | 3,700   | Polarity   |             | Quadı        | ipolar            |         |    |         | imp/Weld/Bor           |            |
|                               | Advisories       |                 | None    | Steroid    |             | Yes          |                   |         |    | Ir      | nsulation Bread<br>Oth |            |
| Syster                        | m Longevity St   | udy Results     | ;       |            | Qu          | alifying Cor | nplications       | 5 Tota  | I  |         |                        |            |
|                               | Number of Lead   | s Enrolled in S | tudy 5  | 53         |             | Failu        | ire to Capture    | 1       |    |         |                        |            |
|                               | Cumulative Mon   | ths of Follow-  | Up 17,4 | 98         |             | Cond         | uctor Fracture    | 2       |    |         |                        |            |
|                               | Number of Lead   | s Active in Stu | dy      | 54         |             | Fa           | ilure to Sense    | 2       |    |         |                        |            |
| 8 10                          | 00               |                 |         |            |             |              |                   |         |    |         |                        |            |
| lity                          | 90               |                 |         |            |             |              |                   |         |    |         |                        |            |
| obabi                         | 30               |                 |         |            |             |              |                   |         |    |         |                        |            |
| Lead Survival Probability (%) | 0<br>Years After | 1<br>Implant    | 2 3     | 2          | 1           | 5            | 6                 | 7       | 8  | ç       | 10                     | )          |
| d Su                          |                  | 1 yr            | 2 yr 3  | 8 yr       | 4 yr        | 5 yr         | бyr               | at 78 r | no |         |                        |            |
| Lea                           | %                | 99.8            | 99.8    | 9.8        | 98.4        | 97.5         | 97.5              | 95.7    |    |         |                        |            |
|                               | #                | 419             | 172 1   | 50         | 121         | 99           | 63                | 51      |    |         |                        |            |
|                               | Effective Sam    | ple Size        |         |            |             |              |                   |         |    |         |                        |            |

### VDD Single Pass Pacing Leads continued

Lead Survival Summary (95% Confidence Interval)



Source: System Longevity Study

Data as of January 31, 2011

#### **US Returned Product Analysis Summary**

| Model<br>Number | Family        | US Market<br>Release | Estimated<br>US Implants | Estimated<br>US Active | Conductor<br>Fracture | Crimp/Weld/<br>Bond | Insulation<br>Breach | Other |
|-----------------|---------------|----------------------|--------------------------|------------------------|-----------------------|---------------------|----------------------|-------|
| 5032            | CapSure VDD   | Mar-96               | 5,400                    | 1,400                  | 6                     | 0                   | 7                    | 0     |
| 5038            | CapSure VDD-2 | Sep-98               | 8,700                    | 3,700                  | 3                     | 1                   | 1                    | 1     |

Source: Returned Product Analysis Data as of January 31, 2011

### **US Reports of Acute Lead Observations**

| Model<br>Number | Family        | Estimated<br>US Implants | Lead<br>Dislodgement | Failure<br>to Capture | Failure<br>to Sense | Extracardiac<br>Stimulation |
|-----------------|---------------|--------------------------|----------------------|-----------------------|---------------------|-----------------------------|
| 5032            | CapSure VDD   | 5,400                    | 1                    | 4                     | 1                   | 0                           |
| 5038            | CapSure VDD-2 | 8,700                    | 1                    | 1                     | 0                   | 1                           |

Report Cutoff Date: January 31, 2011

### **Reference Chart**

| Model<br>Number | Family        | Туре                             | Insulation | Conductor<br>Material | Tip<br>Electrode              | Connector<br>Type           |
|-----------------|---------------|----------------------------------|------------|-----------------------|-------------------------------|-----------------------------|
| 5032            | CapSure VDD   | Transvenous<br>V and A Tines     | Silicone   | MP35N<br>5/6/1 Filars | Porous Platinized/<br>Steroid | Atr. IS-1 BI, Vent. IS-1 BI |
| 5038            | CapSure VDD-2 | Transvenous<br>Ventricular Tines | Silicone   | MP35N                 | Porous Platinized/<br>Steroid | Atr. IS-1 Bl, Vent. IS-1 Bl |

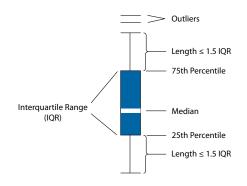
### ICD and CRT-D Charge Time Performance

# Medtronic continues its commitment to providing updated information on charge time performance.

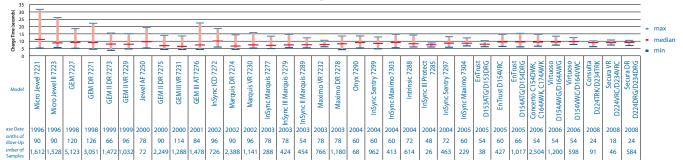
#### Introduction

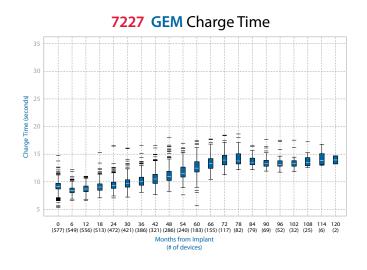
Information on charge time performance of Medtronic products is presented in this section of the CRDM Product Performance Report. Medtronic implemented the collection of charge time data on July 1, 1999. The data are collected via our ongoing active clinical study of long-term system performance called the System Longevity Study. The study protocol requests device data be routinely taken and sent to Medtronic at no more than 6-month intervals.

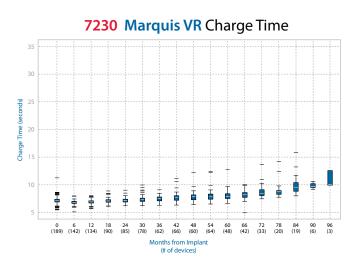
In our analysis performed for this report, only charge times resulting from full energy charges are considered. To ensure consistent reporting across devices, the charge time reported at implant represents the last charge time available from date of implant. When more than one charge time is available in a 6-month interval, a conservative approach has been adopted whereby only the maximum charge time in each 6-month interval is reported. As charge time is directly proportional to the time elapsed since the last capacitor reformation, charges occurring within 15 days of a previous charge are excluded. This precludes the reporting of overly optimistic results.


Data from over 20,000 devices contribute to the charge time data in this report. By tracking and reporting this charge time data, Medtronic is able to ascertain the actual performance of its charging circuitry. The insight gained through this information is applied to Medtronic's ongoing efforts to provide charge times that are short and consistent over the life of the product.

#### **Data Presentation**

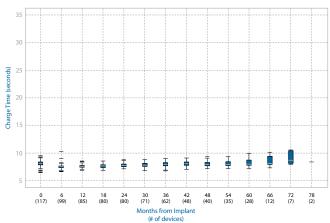

Charge time data for ICD and CRT-D models are presented using boxplots at 6-month intervals. The shaded box on the plots represents the middle half of the data – the Interquartile Range (IQR). The white line in the middle of each box is the median charge time. The top of the box representing the IQR is the third quartile or the 75th percentile (i.e., 75% of all charge times fall below this line), whereas the bottom of the box represents the first quartile or the 25th percentile. Vertical lines are drawn from the quartiles to the farthest value not more than 1.5 times the interquartile range. Any values more extreme than the vertical lines are considered outliers.


#### Results

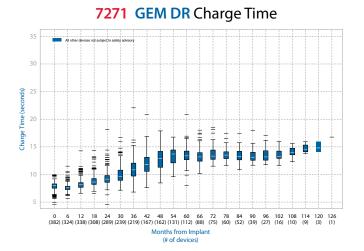

The graph below shows the overall maximums, minimums, and medians for Medtronic ICD and CRT-D products, beginning with the 7221 Micro Jewel.



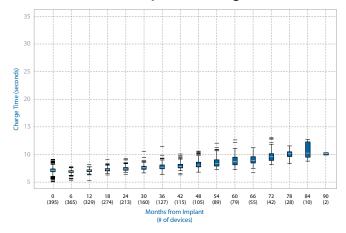
#### Medtronic CRT-D and ICD Charge Time Performance



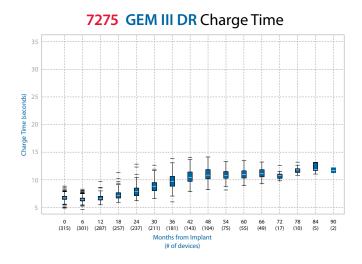


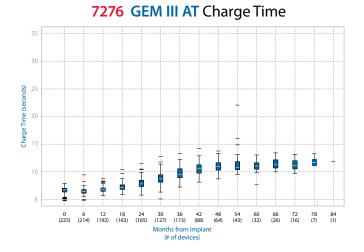




7231 GEM III VR Charge Time (spuc Charge Time (s İ İ ŧ Ì É Ī ţ Ē Ē İ Ē ¢ Months from Implant (# of devices)


7232 Maximo VR Charge Time

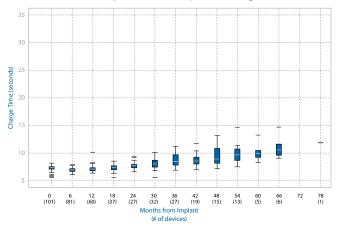


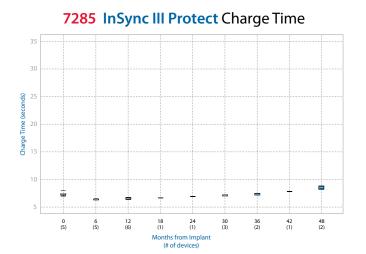

ICD Charge Times



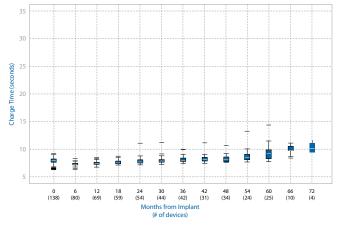

7274 Marquis DR Charge Time



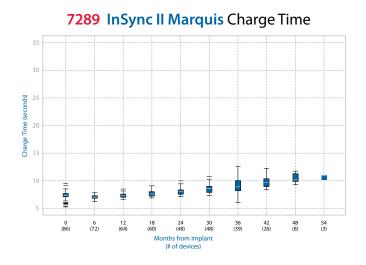

Source: System Longevity Study Data as of January 31, 2011

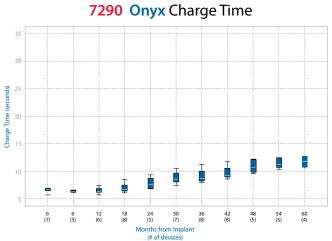






**7278 Maximo DR Charge Time** 

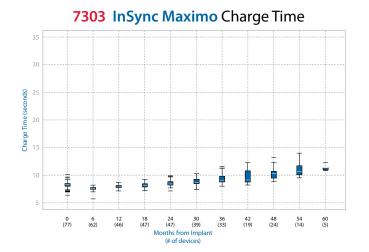
7279 InSync III Marquis Charge Time



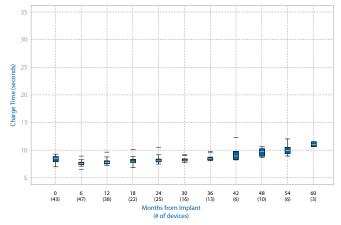




7288 Intrinsic Charge Time

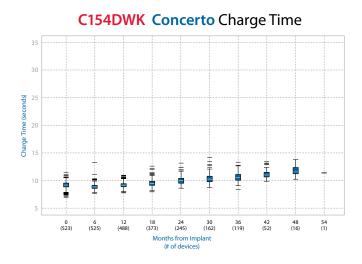


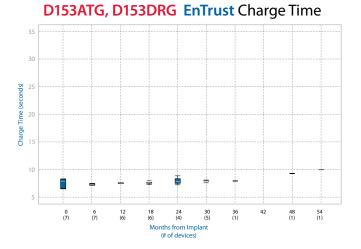

134 Medtronic CRDM Product Performance Report www.medtronic.com/CRDMProductPerformance Source: System Longevity Study Data as of January 31, 2011





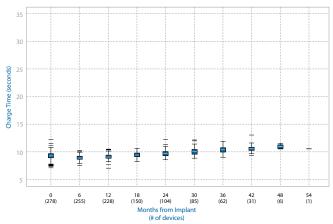

7297 InSync Sentry Charge Time 30 conds) Charge Time (see ₫ É 主 12 (48) 18 (46) 24 (55) 30 (35) 42 (36) 48 (31) 72 (1) 0 (84) 6 (61) 36 (37) 54 (16) 60 (9) 66 (4) Months from Implant (# of devices)

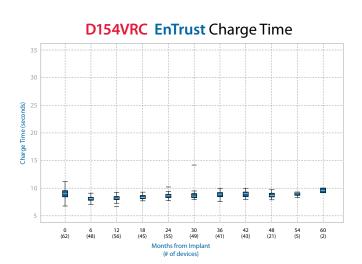

7299 InSync Sentry Charge Time (sp Charge Time ( Ę ≣ 18 42 (60) 0 (170) 6 (128) 12 (132) 24 (116) 30 36 (90) 48 (42) 54 (9) 60 (1) (122) (92) Months from Implant (# of devices)



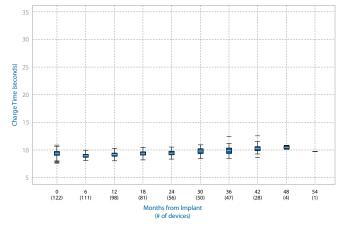

7304 InSync Maximo Charge Time



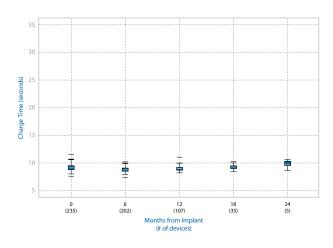

### 7200 Open Chame

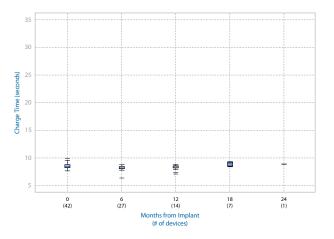






D154ATG, D154DRG EnTrust Charge Time Charge Time (seconds) 1 Ţ ŧ Ê Ŧ İ Ŧ ₹ ¢ ₫ 48 (49) 12 (132) 18 (125) 24 (101) 30 (99) 36 (95) 42 (76) 54 (30) 60 (6) 66 (3) 0 (175) 6 (126) Months from Implant (# of devices)

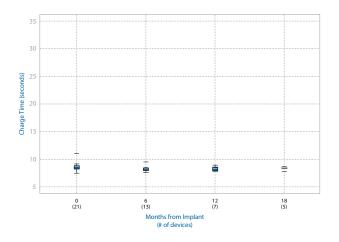
D154AWG Virtuoso Charge Time




D154VWC Virtuoso Charge Time




### D224DRG, D234DRG Secura DR Charge Time





D234TRK Consulta Charge Time

D234VRC Secura VR Charge Time



### **Advisories**

EnRhythm Pacemakers Original Date of Advisory: February 2010

#### Low Battery Voltage Displayed at Device Interrogation

#### Product

All EnRhythm pacemakers.

#### Advisory

Two specific battery issues with EnRhythm pacemakers have been identified and both are addressed by a Medtronic software update.

#### First Issue

As of February 2010, Medtronic had received 62 reports (out of approximately 110,000 devices worldwide) indicating that the battery voltage at device interrogation was lower than the battery voltage that is tracked by the device to provide data for the elective replacement indicator (ERI) notification. The lower voltage measurement has caused confusion and occasionally has resulted in unnecessary explants.

Medtronic's investigation has shown that none of these reports have resulted in loss of therapy. Importantly, the ERI notification, which uses the nightly battery measurement, is unaffected and accurate. Medtronic has identified the root cause as higher than expected battery resistance.

Medtronic's internal testing has shown that there is no current risk for compromised therapy delivery. If the software update referenced above is not implemented, there will be a potential risk of loss of device functionality in a small percent (less than 0.08% 6 years post-implant) of devices. The software update will eliminate this risk.

#### Patient Management Recommendations

Medtronic recommends physicians continue to use the ERI notification to determine time for device replacement. At this time, no other action, reprogramming, or change in the frequency of follow-up is recommended.

#### Second Issue

Through internal accelerated testing, Medtronic has identified a second issue that projects battery voltage could decrease sooner than expected due to a slightly increased rate of lithium depletion. This issue has not been clinically observed and is not expected to occur until approximately 9 years post-implant. If the software update referenced above is not implemented, there may be a potential risk for loss of therapy at or near ERI in a small number of devices. The software eliminate's this issue by changing ERI criteria.

#### Summary

The software update eliminate's any potential future risk of the two battery issues described above by changing the ERI criteria. This update will reduce longevity of these devices by approximately 10-15%, but the expected average longevity will still be 8.5 to 10.5 years depending on device settings.<sup>1</sup> At this time, no other action, reprogramming, or change in the frequency of patient follow-up is recommended.

#### Status Update

As of April 1, 2011, 326 devices out of approximately 140,000 devices worldwide have been confirmed as having exhibited an advisory related event. Approximately 107,000 remain implanted.

 $^1$  The 8.5 year estimate represents a high use scenario (DDD, 100% pacing in atrium and ventricle with 3.0 V output in both chambers). The 10.5 year estimate represents a typical use scenario for a sinus node dysfunction patient with the MVP function ON (AAI(R) <=> DDD(R), 50% pacing in atrium and 5% pacing in ventricle with 3.0 V output in both chambers).

| Initial Affected<br>Population                                | Number of<br>Confirmed Advisory<br>Related Events | Estimated<br>Remaining Active<br>Population | Current Malfunction Rate (Confirmed<br>Malfunctions over total population) | The software update eliminates any potential future risk of the two battery issues described above by changing the ERI criteria. |
|---------------------------------------------------------------|---------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| All EnRhythm<br>pacemakers<br>( <b>140,000</b><br>Worldwide). | 326 Worldwide                                     | <b>107,000</b><br>Worldwide                 | 0.23%                                                                      |                                                                                                                                  |

### Potential Reduced Device Longevity

### Product

A subset of Concerto CRT-D and Virtuoso ICD devices may not meet expected device longevity. Go to <u>www.medtronic.</u> <u>com/CRDMProductPerformance</u> to determine if a specific device is affected.

### Advisory

A subset of Concerto CRT-D and Virtuoso ICD devices may not meet expected device longevity due to gradually increasing current drain caused by low voltage capacitor degradation. This issue may present in the affected devices as reaching the Recommended Replacement Time (RRT) earlier than projected. This issue does not compromise device functionality or affect therapy delivery.

Based on information from returned devices, Medtronic expects that affected devices will continue to provide at least 3 months of normal device function between RRT and End of Service (EOS) as described in device labeling.

A total of 8,900 devices worldwide are affected by this advisory. An estimated 6,300 of these devices were active at the time of the original advisory communication.

Concerto and Virtuoso devices in the affected subset were manufactured primarily in 2006 and can be traced to a specific subset of low voltage capacitors.

### **Patient Management Recommendations**

After consultation with Medtronic's Independent Physician Quality Panel, Medtronic offers the following recommendations for patients with devices in the affected subset:

Physicians should continue routine follow-up sessions at least every 3 months in accordance with product labeling. Physicians should verify that the Low Battery Voltage RRT alert is programmed to "On-High." This provides an audible, alternating tone when the device reaches RRT. These devices are shipped with this alert programmed nominally to "On-High."

Physicians may consider monitoring patients through CareLink. The CareLink home monitor can be used to automatically notify the clinician when the device reaches RRT.

#### Status Update

As of April 1, 2011, 3,352 devices out of approximately 8,900 devices in this subset worldwide have been confirmed as having exhibited this capacitor degradation. Out of the initial advisory population of 8,900 worldwide, approximately 300 remain implanted. Approximately 200 of these are in the United States.

| Initial Affected<br>Population                                      | Number of<br>Confirmed<br>Advisory<br>Related Events | Estimated<br>Remaining Active<br>Population               | Current<br>Malfunction<br>Rate (Confirmed<br>Malfunctions<br>over total<br>population) |
|---------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------|
| 8,900<br>Implanted<br>Worldwide<br>( <b>7,000</b><br>United States) | 3,352<br>Worldwide<br>(2,880<br>United States)       | <b>300</b><br>Worldwide<br>( <b>200</b><br>United States) | 38%<br>Worldwide<br>(40%<br>United States)                                             |

Concerto CRT-D and Virtuoso ICD Original Date of Advisory: September 2009

Kappa 600/700/900 Pacemakers Sigma 100/200/300 Pacemakers Original Date of Advisory: May 2009

### Potential Separation of Interconnect Wires

### Product

A specific subset of Kappa and Sigma series pacemakers may fail due to separation of interconnect wires from the hybrid circuit. Go to <u>www.medtronic.com/CRDMProductPerformance</u> to determine if a specific device is affected.

### **Advisory Population**

Specific subsets of Kappa and Sigma series pacemakers may fail at a higher than expected rate due to separation of wires that connect the electronic circuit to other pacemaker components (e.g., battery, connector). This may present clinically as loss of rate response, premature battery depletion, loss of telemetry, or no output.

Some patients, whose devices experience a wire separation resulting in a loss of pacing output, will experience a return of bradycardia symptoms (e.g., fainting or lightheadedness). In rare cases involving pacemaker dependent patients, loss of pacing output may result in death or serious injury.

Since 1997, there have been over 1.7 million Kappa and Sigma devices implanted worldwide. . At the time of the original advisory communication, an estimated 15,200 Kappa and 6,100 Sigma devices affected by the advisory remained implanted and active. These devices were manufactured primarily between November 2000 and November 2002. Most of these devices have been implanted in patients for five years or longer and may be nearing normal elective replacement time.

There is no provocative testing that can predict which specific devices may fail, and no device programming can mitigate this issue if it occurs.

### Patient Management Recommendations

We realize that each patient requires unique clinical consideration and we support your judgment in caring for your patients. After consultation with Medtronic's Independent Physician Quality Panel, Medtronic offers the following recommendations for patients:

- Physicians should advise their patients to seek medical attention immediately if they experience symptoms (e.g., fainting or lightheadedness).
- Physicians should consider device replacement for patients who are both pacemaker dependent and who have been implanted with a device in the affected subsets. Medtronic will offer a supplemental device warranty if the device is not already at elective replacement time.
- Physicians should continue routine follow-up in accordance with standard practice for those patients who are not pacemaker dependent.

### Status Update

### Advisory Population

#### Patient management recommendations remain

**unchanged.** As of April 1, 2011, Medtronic has observed 454 Kappa devices and 261 Sigma devices with this failure mechanism from the Kappa and new Sigma device subsets. This represents 0.78% (Kappa) and 1.75% (Sigma) of the original affected implant population.

Four hundred seventeen (417) of the Kappa devices (0.72%) and 199 of the Sigma devices (1.34%) were returned with information indicating a problem with the patient's pacing system prior to explant. The remaining 37 Kappa devices (0.06%) and 62 Sigma devices (0.42%) were returned with no information indicating a potential malfunction while implanted or with insufficient information to determine the state of the device at explant. Lacking definite information indicating proper operation until explant, these remaining devices are conservatively categorized as having experienced interconnect wire separation while implanted.

As of May 2009, our modeling predicts failure rates due to this issue of 1.1% (Kappa) and 4.8% (Sigma) over the remaining lifetime of those pacemakers still in service at that time.

Out of the initial advisory population of 58,300 Kappa devices and 14,900 Sigma devices worldwide, approximately 4,700 Kappa devices and 3,200 Sigma devices remain implanted. Of these, approximately 1,400 Kappa and 800 Sigma devices are in the United States.

### **Continued Vigilance**

Included in the advisory communication was information about an additional subset of Kappa devices where we have observed a much lower rate of occurrence of this issue. Approximately 44,000 devices of this subset remain active. We have observed a failure rate of approximately 0.085% in this subset and our May 2009 modeling predicts a failure rate of 0.12% over the remaining device life of those pacemakers still in service at that time. After review with our Independent Physician Quality Panel, we do not recommend any specific actions for this group of devices. We will continue to monitor performance and inform you if any specific patient management recommendations are warranted.

continued

# Kappa 600/700/900 Pacemakers

Sigma 100/200/300 Pacemakers Original Date of Advisory: May 2009

# Potential Separation of Interconnect Wires, continued

| Initial Affected<br>Population                                 | Number of Confirmed Advisory Related<br>Events                                                                                                                                                                                                                                                   | Estimated Remaining<br>Active Population | Current Malfunction Rate<br>(Confirmed Malfunctions<br>over total population) | Predicted Malfunction Rate<br>Over the Remaining Life of<br>the Devices Still Implanted<br>Population |
|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Kappa Pacemakers                                               |                                                                                                                                                                                                                                                                                                  |                                          |                                                                               |                                                                                                       |
| 58,300 Implanted<br>Worldwide (est.)<br>(17,600 United States) | <b>417</b> Worldwide ( <b>220</b> United States) with information indicating a clinical presentation. An additional <b>37</b> worldwide ( <b>25</b> US) without information indicating a clinical presentation or with insufficient information to determine the state of the device at explant. | 4,700 Worldwide<br>(1,400 United States) | 0.78% Worldwide<br>1.39% (United States)                                      | 1.1%                                                                                                  |
| Sigma Pacemakers                                               |                                                                                                                                                                                                                                                                                                  |                                          |                                                                               |                                                                                                       |
| 14,900 Implanted<br>Worldwide (est.)<br>(3,700 United States)  | <b>199</b> Worldwide ( <b>41</b> United States) with information indicating a clinical presentation. An additional <b>62</b> worldwide ( <b>15</b> US) without information indicating a clinical presentation or with insufficient information to determine the state of the device at explant.  | 3,200 Worldwide<br>(800 United States)   | 1.75% Worldwide<br>1.51% (United States)                                      | 4.8%                                                                                                  |

# 6930, 6931, 6948, 6949 Sprint Fidelis Defibrillation Leads

Original Date of Advisory: October 2007

### **Potential Conductor Wire Fracture**

### Product

All Model 6930, 6931, 6948, and 6949 implantable defibrillation leads

### Advisory

There are two primary locations where chronic conductor fractures have occurred on Sprint Fidelis leads: 1) the distal portion of the lead, affecting the anode (ring electrode) and 2) near the anchoring sleeve tie-down, predominantly affecting the cathode (helix tip electrode), and occasionally the high voltage conductor. These two locations account for approximately 90% of the chronic fractures identified in Returned Product Analysis (RPA). The remaining 10% of chronic fractures occurred in the DF-1 connector leg and the proximal portion of the RV coil. High voltage conductor fractures could result in the inability to deliver defibrillation therapy. Anode or cathode conductor fractures (at either location) may present clinically as increased impedance, oversensing, increased interval counts, multiple inappropriate shocks, and/or loss of pacing output.

### Patient Management Recommendations (Updated April 2011)

The Lead Integrity Alert (LIA) provides three days advance notice prior to inappropriate therapy to 76% of patients with lead fractures.<sup>1</sup> As a result, we strongly recommend that all Sprint Fidelis patients who have the ability to upgrade to Lead Integrity Alert do so promptly. Also ensure that high voltage lead impedance alerts (maximum of 100 ohms) are programmed. When a lead fracture is suspected or confirmed, immediate patient attention is strongly recommended. Physicians should inform their patients to seek medical attention without delay if they experience unexpected shocks.

- If a Fidelis lead fracture of any type has occurred, we recommend implanting a new high voltage lead with or without extraction of the Fidelis lead.
- In patients with normal device function and no manifestation of lead fracture, no action is recommended. The risk of prophylactic intervention appears to be greater than serious injury resulting from lead fracture even for pacemaker dependent patients, except in select individual patient circumstances as determined by the physician.
- In the event of a device change-out or upgrade procedure, with no manifestation of lead fracture, consider the patient age and lead model data above, as well as patient life expectancy, comorbidities, ease of extraction related to implant time, patient preference, etc., for the following options:
  - Leave a properly performing lead intact
  - Implant a new ICD lead without extraction of the existing lead

- Carefully consider all factors before prophylactic placement of a pace-sense lead. Data shows an increased risk of high voltage conductor fracture if a pace-sense conductor fracture has previously occurred. This data is available at www.medtronic.com/fidelis.
- Individual patient circumstances may warrant extracting and implanting a new ICD lead. If warranted, Medtronic's Independent Physician Quality Panel recommends the lead extraction procedure be performed by a physician with extensive lead extraction experience.<sup>2</sup>

### Status Update

As of April 1, 2011, of the initial implant population of 205,600 in the United States, approximately 114,000 remain implanted. According to System Longevity Study results, Model 6949 lead survival is estimated to be 91.3% (+2.7/-3.8%) at 66 months. As the implanted population ages and the sample size increases for each time interval, the accuracy of the estimated survival probability will increase as shown by tighter confidence intervals.

- <sup>1</sup> Swerdlow CD, Gunderson, BD, Ousdigian KT, et al. Downloadable algorithm to reduce inappropriate shocks caused by fractures of implantable cardioverter-defibrillator leads. *Circulation*. November 18, 2008;118(21):2122-2129.
- <sup>2</sup> Wilkoff BL, Love CJ, Byrd CL, et al. Transvenous lead extraction: Heart Rhythm Society expert consensus on facilities, training, indications, and patient management. *Heart Rhythm*. July 2009;6(7):1085-1104.

continued

# Advisories continued

6930, 6931, 6948, 6949 Sprint Fidelis Defibrillation Leads Original Date of Advisory: October 2007

### Potential Conductor Wire Fracture, continued

### **Keeping Physicians Informed**

The most recent Sprint Fidelis lead performance information, including survival curves, physician letters, and subpopulation data, can be found at www. medtronic.com/fidelis and will be updated semi-annually. Medtronic's website also has a selected list of peerreviewed publications related to Fidelis lead performance and extraction. Medtronic is committed to answering your questions and keeping you informed. If you have any questions or concerns, please contact your Medtronic Representative or Medtronic Technical Services at 1 (800) 723-4636 (US).

| Initial Affected<br>Population | Number of<br>Confirmed Advisory<br>Related Events | Estimated<br>Remaining Active<br>Population | Additional information about the Sprint Fidelis<br>lead is available at: www.medtronic.com/fidelis. |
|--------------------------------|---------------------------------------------------|---------------------------------------------|-----------------------------------------------------------------------------------------------------|
| <b>205,600</b>                 | <b>4,293</b> (United                              | <b>114,000</b> (United                      |                                                                                                     |
| (United States)                | States)                                           | States)                                     |                                                                                                     |

### Sigma Implantable Pulse Generators

Original Date of Advisory: November 2005

### Potential Separation of Interconnect Wires

### Product

A specific subset of Sigma series pacemakers may fail due to separation of interconnect wires from the hybrid circuit. Go to <u>www.medtronic.com/CRDMProductPerformance</u> to determine if a specific device is affected.

### Advisory

This subset of Sigma series pacemakers that may fail due to separation of interconnect wires from the hybrid circuit may present clinically as loss of rate response, premature battery depletion, intermittent or total loss of telemetry, or no output.

Separation of redundant interconnect wires has been observed on hybrid terminal blocks. Device failure occurs only where both interconnect wires separate from a hybrid terminal block. In October 2005, testing and analysis identified the root cause of these failures and the affected population. Hybrid circuits used in this subset of devices were cleaned during manufacturing with a particular cleaning solvent that could potentially reduce the strength of the interconnect wire bond over time.

No provocative testing can predict which devices may fail.

### **Patient Management Recommendations**

Recommendation for the management of patients who have pacemakers affected by this advisory were changed in May 2009. Current recommendations are:

We realize that each patient requires unique clinical consideration and we support your judgment in caring for your patients. After consultation with Medtronic's Independent Physician Quality Panel, Medtronic offers the following recommendations for patients in the 2005 Sigma advisory:

• Physicians should advise their patients to seek medical attention immediately if they experience symptoms (e.g., fainting or lightheadedness).

- Physicians should consider device replacement for patients who are both pacemaker dependent and who have been implanted with a device in the affected subsets. Medtronic will offer a supplemental device warranty if the device is not already at elective replacement time.
- Physicians should continue routine follow-up in accordance with standard practice for those patients who are not pacemaker dependent.

### Status Update

**Patient management recommendations remain unchanged.** As of April 1, 2011, 670 devices out of approximately 40,000 devices worldwide have been confirmed as having experienced interconnect wire separation.

Three hundred twenty-four (324) of the Sigma devices (0.81%) were returned with information indicating a problem with the patient's pacing system prior to explant. The remaining 346 Sigma devices (0.87%) were returned with no information indicating a potential malfunction while implanted or with insufficient information to determine the state of the device at explant. Lacking definite information indicating proper operation until explant, these remaining devices are conservatively categorized as having experienced interconnect wire separation while implanted.

Our original modeling predicted a failure rate from 0.17% to 0.30% over the remaining lifetime of these pacemakers. However, as of May 2009 updated updated modeling now predicts a failure rate of 3.9% over the remaining device life of those devices still in service at that time.

Out of the initial advisory population of 40,000 worldwide, approximately 9,600 remain implanted. Approximately 2,200 of these are in the United States.

| fainting or lighthea                                          | dedness).                                                                                                                                                                                                                                                                                          |                                                         |                                                                               |                                                                                                         |
|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Initial Affected Population                                   | Number of Confirmed<br>Advisory Related Events                                                                                                                                                                                                                                                     | Estimated Remaining<br>Active Population                | Current Malfunction Rate<br>(Confirmed Malfunctions<br>over total population) | Predicted Malfunction Rate Over<br>the Remaining Life of the Devices<br>Still in Service as of May 2009 |
| 40,000 Implanted<br>Worldwide (est.)<br>(9,900 United States) | 324 Worldwide<br>(67 United States) with<br>information indicating a<br>clinical presentation.An<br>additional 346 Worldwide<br>(62 US) without<br>information indicating<br>a clinical presentation<br>or with insufficient<br>information to determine<br>the state of the device at<br>explant. | <b>9,600</b> Worldwide<br>( <b>2,200</b> United States) | 1.68% Worldwide<br>1.30% (United States)                                      | 3.9%                                                                                                    |

7274 Marguis DR 7278 Maximo DR 7230 Marguis VR

7232 Maximo VR

7277 InSync Marquis 7289 InSync II Marquis 7279 InSync III Marquis 7285 InSync III Protect

Original Date of Advisory: February 2005

## Potential Premature Battery Depletion Due to Battery Short

### Product

The specific subset of Marquis family ICD and CRT-D devices having batteries manufactured prior to December 2003 is affected. Devices manufactured with batteries produced after December 2003 are not affected. Go to www.medtronic.com/CRDMProductPerformance to determine if a specific device is affected.

### Advisory

Medtronic Marquis family of ICD and CRT-D devices having batteries manufactured prior to December 2003 may experience rapid battery depletion due to a specific internal battery short mechanism. Battery design changes were implemented in December 2003 that eliminate the possibility of this internal shorting mechanism.

Highly accelerated bench testing indicated the rate of this shorting mechanism may increase as the battery is depleted. As of February 2005, the rate of shorting was approximately 1 in 10,000 (0.01%); bench test data indicated the rate may increase to between 0.2% and 1.5% over the second half of device life.

No provocative testing can predict which of these devices will experience this issue. Once a short occurs, battery depletion can take place within a few hours to a few days. After depletion the device ceases to function. It is also possible that as the battery depletes quickly, patients may experience temporary warmth in the area surrounding the ICD.

### **Patient Management Recommendations**

We recommend you consider the following patient management options:

Conduct quarterly (i.e., every 3 months) follow-up procedures

- Inform patients that should they experience warmth in the area surrounding the ICD to seek follow-up care promptly
- Program Low Battery Voltage ERI Patient Alert to "On-High." This will result in an audible, alternating tone in the limited circumstances where a battery depletes slowly over a number of days. Data indicates most shorts will occur rapidly and will not be detected by this feature.
- · Provide a hand-held magnet to patients to check device status and program the Low Battery Voltage ERI Patient Alert to "On-High." Device operation may be monitored periodically (e.g., daily) by patients placing the magnet over the device for 1-2 seconds. If the device is functional, a steady tone will sound for approximately 20 seconds. If no tone is heard, follow-up care should be sought promptly.

### **Status Update**

The Marquis Family device performance related to the battery shorting mechanism continues to be within Medtronic's engineering projections. As of April 1, 2011, 187 Marquis Family devices have been confirmed as having this internal battery shorting mechanism. One hundred ten (113) of these devices were returned from the United States.

Out of the initial advisory population of 87,000 worldwide, approximately 11,000 remain implanted. Approximately 9,600 of these are in the United States.

The Patient Management Recommendations set forth in the advisory remain unchanged.

| Initial Affected Population                                     | Number of Confirmed<br>Advisory Related Events | Estimated Remaining Active<br>Population                 | Current Malfunction Rate<br>(Confirmed Malfunctions<br>over total population) | Predicted Malfunction Rate<br>Over the Remaining Life of<br>the Devices Still Implanted<br>Population                                                                        |
|-----------------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 87,000 Implanted<br>Worldwide<br>( <b>76,000</b> United States) | 187 Worldwide<br>(113 United States)           | <b>11,000</b> Worldwide<br>( <b>9,600</b> United States) | 0.22% Worldwide<br>(0.15% United States)                                      | Consistent with Medtronic<br>projections, the observed<br>rate of shorting may<br>increase to between <b>0.2%</b><br>and <b>1.5%</b> over the second<br>half of device life. |

# Kappa 600, 700 Dual Chamber (D, DR, and VDD) IPGs

Original Date of Advisory: March 15, 2002

### Potential Fractured Power Supply Wires

### Product

A specific subset of Kappa 700/600 dual chamber (D, DR, and VDD) implantable pulse generators has been identified by serial numbers. Hospitals and Physicians were notified. Go to <u>www.medtronic.com/</u> <u>CRDMProductPerformance</u> to determine if a specific device is affected.

### Advisory

As of March 15, 2002, Medtronic observed 53 related failures (0.02%) in over 255,000 Kappa 700/600 dual chamber (D, DR, and VDD) series devices sold worldwide. Medtronic voluntarily communicated this information to physicians because these failures had been observed in patients having submuscular implants.

These devices have presented with an electrical reset, intermittent output, or no output. Our investigation identified the root cause as fractured wires supplying power to the pacemaker. This has been directly correlated to submuscular placement of these devices. Submuscular implant locations (e.g., subpectoral, abdominal, etc.) can result in additional stress and repetitive flexing on the implanted device causing excessive fatigue on these wires. Of the estimated 4,000 devices implanted submuscular, approximately 200 (5%) may experience this failure. These stresses on the implanted device are unique to submuscular implant sites and do not exist with subcutaneous implants.

### **Patient Management Recommendations**

While there is no provocative testing or time dependency that will predict which submuscular placed device will fail, certain electrical resets may be an indicator that a wire fracture has occurred. Normal electrical resets can occur as a result of electrosurgical procedures such as cautery and ablation or from defibrillation therapy. If none of the normal causes of electrical reset can be confirmed, or if a device serial number presents as "000000" following an electrical reset, this may be an indicator of a wire fracture.

For patients who have submuscular implants of devices within the designated serial number range and who are pacemaker dependent with no underlying rhythm, replacement of the device should be considered. Medtronic will provide the replacement device free of charge under the terms of its warranty program if a device is replaced in these patients.

For patients having subcutaneous implants, no change to your current patient care and follow-up is advised.

### Status Update

### Patient management recommendations remain

**unchanged.** As of April 1, 2011, 321 out of approximately 180,000 distributed (0.18% incidence) Kappa family devices worldwide have been confirmed as having fractured power supply wires. One hundred sixty-nine (169) of these devices were returned from the United States. Out of the initial implant population of 121,000 in the United States, less than 500 remain implanted.

| Initial Affected Population                                                               | Number of Confirmed<br>Advisory Related Events | Estimated Remaining Active<br>Population               | Current Malfunction Rate<br>(Confirmed Malfunctions<br>over total population) | Predicted Malfunction<br>Rate Over the Remaining<br>Life of the Devices Still<br>Implanted Population |
|-------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| <b>180,000</b> Active Worldwide<br>at time of advisory<br>( <b>121,000</b> United States) | 321 Worldwide<br>(169 United States)           | < <b>500</b> Worldwide<br>(< <b>500</b> United States) | <b>0.18%</b> Worldwide<br>( <b>0.14%</b> United States)                       | 0.03%                                                                                                 |

### **Minix and Minix ST IPGs**

Original Date of Advisory: May 6, 1991

### Potential Delayed Restoration of Permanent Settings

### Product

All Models of the Minix and Minix ST families of implantable pulse generators

### Advisory

Possibility of delayed restoration of permanent pacing mode and parameters, after the magnet or programming head is removed under certain conditions.

### **Patient Management Recommendations**

To eliminate any potential risk associated with temporary programming, depress the INTERROGATE key and verify successful interrogation before moving the programming head away from the pulse generator. The delay condition can also be terminated by repositioning the programming head and depressing the EMERGENCY VVI key.

### **Status Update**

Device performance related to this advisory continues to be within Medtronic's engineering projections. Patient management recommendations remain unchanged. Out of the initial implant population of 65,000 in the United States, approximately 3,000 remain implanted. The devices affected by this advisory are nearing the end of their expected longevity.

| Initial Affected Population                         | Estimated Remaining<br>Active Population | To eliminate any potential risk associated with temporary programming, depress the INTERROGATE key and verify successful interrogation before moving the programming head |
|-----------------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| All Minix and Minix ST implantable pulse generators | 3,000                                    | away from the pulse generator.                                                                                                                                            |

# **Performance Notes**

Dual Chamber Pacemakers with Measurement Lock-up ERI Kappa 600, 700, 800, 900, EnPulse, Adapta, Versa, Sensia, Relia, and Vitatron Models E50A1, E60A1, and G70A1

### Purpose of this Information

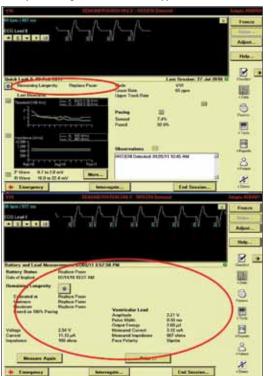
This Performance Note describes a rare measurement lock-up issue that impacts the Medtronic Dual Chamber pacemakers listed above. If this measurement lock-up occurs, the device will trigger a false Elective Replacement Indicator (ERI). A reset is available to clear this condition and there is no need to explant the device. This issue does not impact battery longevity.

### Background

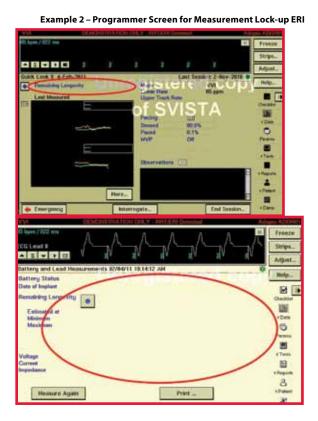
If this rare measurement lock-up occurs in the pacemaker, it causes the device to read a value of zero for battery voltage. After four measurements of zero, the device will trigger ERI and revert to a VVI pacing mode at 65 bpm. There is no loss of ventricular pacing and the output voltage will remain the same.

The issue can be uniquely identified using the programmer or via CareLink transmission; the battery voltage measurements and remaining longevity will appear as blank values. Medtronic has developed a method for clearing the ERI condition through the use of a specially configured programmer. There is no impact to the device functionality or longevity after this reset is complete.

### Example


Two examples of images from the Medtronic 2090 Programmer are shown below. Example 1 shows what a normal ERI condition looks like. Example 2 shows what will be displayed if the ERI is triggered due to the measurement lock-up condition.

A device that has experienced a measurement lock-up ERI will present ALL of the following symptoms:


- Device declaring ERI/RRT
- Remaining Longevity = <Blank> on the programmer (and CareLink where available)
- Battery Voltage = <Blank> on the programmer (and CareLink where available)
- If the user attempts to take a Battery and Lead Measurement, a pop-up window will indicate that it cannot estimate remaining battery life.

### Recommendation

This condition can be reset and does not require device explant. If this measurement lock-up occurs, obtain a saveto-disk file and contact Medtronic Brady Technical Services at 1 (800) 505-4636 for assistance. Reset devices are no more likely to experience a recurrence of this issue.



Example 1 – Programmer Screen for Typical Pacemaker at ERI



# Helix Retraction of the Sprint Quattro Secure S 6935 and **Sprint Quattro Secure 6947**

### **Purpose of this Information**

This performance note is intended to provide guidance regarding retraction of the helix of Sprint Quattro Model 6935 or 6947 leads.

### Background

In certain cases, over-retraction of the helix, during initial implant or subsequent repositioning, may result in the inability to extend the helix. This does not impact acute or chronic performance of successfully implanted leads.

The root cause is over-retraction of the helix mechanism beyond the retraction stop, resulting in the inability to extend the helix in a subsequent attempt.

### Recommendations

Consistent with the Technical Manual, the following steps can be used to mitigate this issue.

- Fluoroscopy should be used to confirm when the helix is fully retracted.
- Rotation of fixation tool should be stopped once full helix retraction is visually verified.
- If helix is unable to extend, replace with a new lead and report the issue to Medtronic.

### **Fully Retracted – Stop Rotation**





# Potential Malfunction of CRT, ICD, and IPG Products due to Anomalies in MOSFET Integrated Circuit Technology

Medtronic has detected a specific pattern of MOSFET IC malfunctions in its Concerto, Virtuoso and EnRhythm family of devices. As of July 2009, Medtronic has confirmed twenty-eight (28) malfunctions related to this pattern out of 115,000 EnRhythm and 233,000 Concerto/Virtuoso products distributed worldwide. Reliability analysis of this pattern shows the probability of occurrence decreases with time and, to date over 90% of the malfunctions related to the pattern have occurred within the first twelve months after implant. With process improvements in place, Medtronic expects few, if any, additional malfunctions related to this pattern.

The pattern involves metal-oxide-semiconductor fieldeffect transistors (MOSFET). A MOSFET is an electronic circuit used to amplify or switch electronic signals. MOSFETs have been used in the electronics industries for decades and MOSFET technology is the most widely used type of integrated circuit. Medtronic uses this technology in the circuitry of its CRT, ICD, and IPG products. Each product contains thousands of MOSFETs in its electronic circuitry.

Each MOSFET depends on a layer of insulating material to electrically isolate its components. The integrity of this insulating layer is important to the operation of the MOSFET. Variation in the thickness of the insulating layer can cause the MOSFET to operate in an undesirable manner. Process variations for electronic circuits can affect the integrity of the insulating material, and can lead to MOSFET malfunction. Medtronic's quality system strives to control process variation and detect undesired anomalies that are characteristic of all MOSFET manufacturing. In addition, Medtronic's post-market vigilance activities monitor malfunctions and may implement screening and testing improvements when a pattern of related malfunctions is identified. The pattern with the Concerto, Virtuoso and EnRhythm models has presented clinically as high lead impedance, sensing difficulty, loss of pacing therapy and/or early battery depletion due to higher than normal battery drain. The degree of battery drain varies case by case, such that the time from the onset to battery depletion has ranged from several days to several months. If not detected by normal patient follow-up procedures, the use of patient alerts or CareLink remote monitoring, the battery will fully deplete, leaving the patient without therapy.

As of March 2009, Medtronic has implemented additional electrical screening and stress tests to address this specific pattern for products being sold.

Since these rates of malfunction are low and the probability of occurrence decreases with time, Medtronic recommends physicians continue following patients in accordance with standard practice.

# **Clinical Management of VCM near Elective Replacement**

### Background

Medtronic Technical Services has received reports of devices going to ERI or end of life (EOL) sooner than expected after a normal follow-up in which the device longevity was projected to be approximately 18 months. It has been noted that these cases typically involve Kappa 700 devices where Ventricular Capture Management set the ventricular lead to high output (5 V, 1 ms), which occurs by device design when a high threshold is measured. It is important for physicians and allied professionals to understand VCM behavior as it relates to longevity so that they can, in turn, understand how this affects management of the device and follow-up visits as VCM equipped IPGs near the end of their expected longevity.

### **Device Longevity and VCM Behavior**

Ventricular Capture Management is a feature that uses evoked response sensing to determine the stimulation threshold needed to capture the ventricular chamber. Proper detection of the evoked response is crucial to the VCM algorithm determining an accurate capture threshold. There are rare conditions, however, during which the VCM algorithm will not be able to measure the evoked response accurately.<sup>1</sup> When this occurs, for safety reasons the VCM algorithm will reprogram the output to 5 V, 1 ms until the subsequent VCM measurement.

If the device has considerable remaining longevity, these occasional excursions to high output do not substantially affect remaining longevity. However, if the device has less than approximately 18 months remaining longevity, there is the possibility that the high output condition caused by the 5 V, 1 ms output will drain the battery and trigger ERI.

When ERI is declared by the device, VCM is disabled and the outputs are left at 5 V, 1 ms until the device is reprogrammed at an in-office follow-up. This increased current drain of a high output condition will speed depletion of the device, possibly resulting in the device getting to the EOL (battery voltage  $\leq 2.15$  V).

Please note that the following parameter changes occur when the device goes to ERI:

| Table: IPG T | herapy Paramete | er Changes at ERI |
|--------------|-----------------|-------------------|
|              |                 |                   |

| Parameter                      | Value  |
|--------------------------------|--------|
| Pacing Mode                    | VVI    |
| Lower Rate                     | 65 bpm |
| Single Chamber Hysteresis      | OFF    |
| Sleep Function                 | OFF    |
| Ventricular Capture Management | OFF    |
| Atrial Sensing Assurance       | OFF    |
| Ventricular Sensing Assurance  | OFF    |

Kappa 700 is Medtronic's first-generation VCM algorithm, which has a relatively higher incidence of evoked response undersensing compared to subsequent algorithms, resulting in more frequent high output conditions. Therefore, Kappa 700 products are the primary focus of this note. It should be noted that IPGs equipped with the second-generation VCM algorithm (Kappa 900, EnPulse, Adapta/Versa/Sensia, and Relia) have not been observed with evoked response undersensing in the general population, though the items listed in "Follow-Up Considerations" may also be used on these devices.

### **Follow-Up Considerations**

- Estimated longevity in the event the device goes to high output can be determined by the following steps. This allows the clinician to determine follow-up frequency if he or she is concerned the device may go to ERI due to high output.
  - Program the ventricular channel to 5 V, 1 ms
  - Navigate to Data/Battery and Lead Measurements
  - When the message stating "Warning Old Data" is displayed, select "Yes" to measure battery voltage and lead impedance at the new ventricular outputs
  - An updated remaining longevity estimate will be calculated on the elevated outputs. Note the "Minimum Remaining Longevity." Clinical decisions can be based on this value.
  - Program the Amplitude and Pulse Widths back to their original values before leaving the session
- If the capture trends and lead impedance trends are stable, VCM can be programmed to "Monitor Only" for the remaining device life. This should be considered only if remaining longevity is 18 months or less.
- Follow-up frequency can be increased for those patients who do not have stable capture or lead impedance trends. This can be done via a CareLink Home Monitor, or in-office.

<sup>1</sup> Medtronic, Inc. (2001). Medtronic Kappa 700/600 Series Pacemaker Reference Guide (Chapter 4, p. 27). Can be retrieved from http://manuals.medtronic.com.

# **Ensuring the Accuracy of Battery Longevity Estimates**

### **Purpose of This Information**

This article is intended to help the clinician understand how Medtronic estimates CRT-D, ICD, and IPG device longevity and Medtronic's performance against these estimates.

### **Device Longevity and Battery Depletion**

The device service life ends when the usable battery capacity is depleted. The time to battery depletion depends on three factors:

- The amount of electrical energy expended in providing therapy to the patient
- The amount of energy consumed by the electronic circuitry to perform the functions of the device (e.g., operating the microprocessor, telemetry, memory, and charging component)
- The energy capacity of the battery

Medtronic has developed a statistical model for device longevity that accounts for each of these factors, and has validated the model with real time clinical performance. During the development of its products, Medtronic engineers characterize device longevity using this model. Testing begins during development and continues after market release to ensure the accuracy of device longevity estimates.

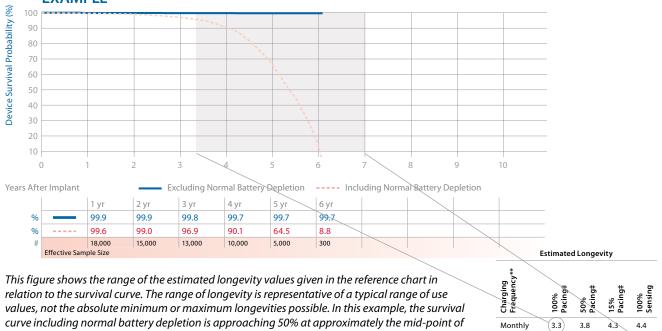
### Using Survival Curves to Assess Longevity

The survival curves in the Product Performance Report represent the composite experience of thousands of devices over a wide range of programming options and patient use conditions. While the curves are useful for understanding the overall performance of a population of devices, they cannot be used to accurately predict the longevity of a specific device in a specific patient. To get a longevity prediction for a specific device, the longevity model must be used. The model is available by contacting Medtronic's Technical Services Department.

Because the survival curves are an aggregate result, the Reference pages in the Product Performance Report include several longevity estimates for a range of use conditions. These longevity estimates are mean values calculated for the parameters given. This range of longevity estimates can be compared to the survival curve including normal battery depletion to assess the overall clinical performance of a device model against the original longevity estimates.

If most of a device model's population is being used at nominal parameters and conditions, the time at which the survival curve including normal battery depletion equals 50% should approximate the midpoint in the range of longevity estimates.

If devices tend to be used at conditions that consume more or less energy than nominal, then the time at which the survival curve equals 50% should tend toward the lower or higher end of the range of longevity estimates, respectively.


Quarterly

Semiannual

4.2

4.5

5.0



### EXAMPLE

the range of longevity values.

6.3 (7.0

5.8

6.5

## Interactions between Cardiac Pacing and Ventricular Arrhythmia Initiation

### **Purpose of This Information**

This article is intended to provide information for consideration when programming pacemaker operation in ICDs and pacemakers.

### Background

Right ventricular pacing has been associated with increased risk of appropriate therapy for ventricular tachycardia (VT) and ventricular fibrillation (VF) in ICD patients.<sup>1</sup> Abrupt changes in ventricular cycle lengths (short-long-short, S-L-S) may precede initiation of VT/VF in some instances. S-L-S sequences may be permitted in all forms of cardiac pacing. The pause lengths depend upon pacing mode and lower rate programming.<sup>2-4</sup> Because pauses may be associated with VT/VF initiation, pause suppression algorithms have been developed in ICDs. Although pause suppression may have utility in specific patients with repolarization abnormalities and pause dependent VT, it has not been shown to reduce arrhythmia incidence in the general ICD population.<sup>5</sup> Conversely, S-L-S sequences may occur with ventricular pacing in a variety of ways, including atrial tracking of premature atrial contractions (PACs) or by terminating pauses with ventricular paced beats.<sup>6</sup> In some patients, the ectopic depolarization pattern of a ventricular paced beat may be pro-arrhythmic, independent of pause timing. These observations have further enforced the desire to reduce unnecessary ventricular pacing.

### **Clinical Trial Observations**

Medtronic-sponsored clinical trials were retrospectively analyzed to further understand pause-mediated (i.e., S-L-S) scenarios prior to VT/VF. S-L-S onset scenarios were observed in a minority of patients in all pacing modes. Pacemaker interactions prior to VT/VF are dependent on patient conditions, as well as the technical aspects of pacing operation (i.e., pacing mode, lower rate, and AV interval). Because a very low frequency of ventricular pacing is observed during Managed Ventricular Pacing (MVP)<sup>7-9</sup> or VVI 40 pacing modes,<sup>10</sup> the long interval tended to terminate with a ventricular sense. In DDD mode, the long interval tended to be terminated by a ventricular pace. Long intervals of > 1,000 ms prior to VT/VF were rare in MVP mode. In these analyses, only an association between cardiac pacing and VT/VF initiation can be observed, causality cannot be established. The ongoing MVP (Managed Ventricular Pacing vs. VVI 40 Pacing) Trial, a 2-year, 1,000-patient prospective, randomized trial in ICD patients may offer more insight into the frequency of VT/ VF across pacing modes.<sup>11</sup>

### **Pacemaker Patients**

In pacemaker patients, ventricular pacing has been associated with higher incidence of AT/AF and heart failure hospitalization.<sup>12,13</sup> MVP provides atrial rate support while dramatically reducing ventricular pacing in patients with sinus node dysfunction and transient AV block.<sup>9</sup> However, as stated in Medtronic reference manuals, depending upon the patient's intrinsic rhythm and conduction, MVP may allow ventricular cycle variation and occasional pauses of up to twice the lower rate. DDD pacing with long AV intervals may reduce ventricular pacing and may decrease the potential length of pauses compared to MVP. However, DDD with long AV interval programming does not appear to be as effective as AAI-based pacing modes at reducing ventricular pacing,<sup>13,14</sup> may lead to endless loop tachycardia,<sup>14,15</sup> and does not completely eliminate pauses. Also, in DDD mode, a higher programmed lower rate or activation of rate response can lead to an increase in AV conduction times and a higher percentage of ventricular pacing. The potential benefits of reducing ventricular pacing must be weighed against the potential for longer ventricular pacemaker mode and lower rate programming, particularly in the setting of frequent AV block and repolarization abnormalities due to congenital Long QT, electrolyte imbalances, and some medications that prolong QT.

### Conclusion

Pacemaker operation may interact with VT/VF initiation in a variety of ways. The patient's heart failure status, arrhythmia substrate, medications, and the relative importance of maintaining ventricular synchrony versus ensuring ventricular rate support must be weighed when choosing optimal hardware (ICD vs. pacemaker) and pacemaker programming (pacing mode, lower rate, etc.).

#### References

- <sup>1</sup> Steinberg JS, Fischer A, Wang P, et al. The clinical implications of cumulative right ventricular pacing in the multicenter automatic defibrillator trial II. J Cardiovasc Electrophysiol. April 2005;16(4):359-365.
- <sup>2</sup> Pinski SL, Eguia LE, Trohman RG. What is the minimal pacing rate that prevents torsades de pointes? Insights from patients with permanent pacemakers. *PACE*. November 2002; 25(11):1612–1615.
- <sup>3</sup> Goldman DS, Levine PA. Pacemaker-mediated polymorphic ventricular tachycardia. PACE. October 1998; 21(10):1993-1995.
- <sup>4</sup> Gray CJ, Basta M, Sapp JL, Parkash R, Gardner MJ. Inappropriate application of managed ventricular pacing in a patient with Brugada syndrome leading to polymorphic ventricular tachycardia, ventricular fibrillation and implantable cardioverter debrillator shocks. *Heart Rhythm.* 2006, Abstract P1-89.
- <sup>5</sup> Friedman PA, Jalal S, Kaufman S, et al. Effects of a rate smoothing algorithm for prevention of ventricular arrhythmias: results of the Ventricular Arrhythmia Suppression Trial (VAST). *Heart Rhythm.* May 2006;3(5):573-580.
- <sup>6</sup> Himmrich E, Przibille O, Zellerhoff C, et al. Proarrhythmic effect of pacemaker stimulation in patients with implanted cardioverter-defibrillators. *Circulation*. July 15, 2003;108(2):192-197.
- <sup>7</sup> Sweeney MO, Ellenbogen KA, Casavant D, et al. Multicenter, prospective, randomized trial of a new atrial-based Managed Ventricular Pacing Mode (MVP) in dual chamber ICDs. J Cardiovasc Electrophysiol. 2005:16:1-7.
- <sup>8</sup> Sweeney MO, Shea JB, Fox V, et al. Randomized pilot study of a new atrial-based minimal ventricular pacing mode in dual-chamber implantable cardioverter-defibrillators. *Heart Rhythm.* July 2004;1(2):160-167.
- <sup>9</sup> Gillis AM, Pürerfellner H, Israel CW, et al. Reducing unnecessary right ventricular pacing with the managed ventricular pacing mode in patients with sinus node disease and AV block. PACE. July 2006; 29(7):697-705.
- <sup>10</sup> Dual-chamber pacing or ventricular backup pacing in patients with an implantable defibrillator: the Dual Chamber and VVI Implantable Defibrillator (DAVID) Trial. JAMA. December 25, 2002;288(24):3115-3123.
- <sup>11</sup> Sweeney MO, Ellenbogen KA, Miller EH, Serfesee L, Sheldon T, Whellan D. The Managed ventricular pacing versus VVI 40 Pacing (MVP) Trial: clinical background, rationale, design, and implementation. J Cardiovasc Electrophysiol. December 2006;17(12):1295-1298.
- <sup>12</sup> Sweeney MO, Ellenbogen KA, et al. Adverse effect of ventricular pacing on heart failure and atrial fibrillation among patients with normal baseline QRS duration in a clinical trial of pacemaker therapy for sinus node dysfunction. *Circulation*. June 17, 2003;107(23):2932-2937.
- <sup>13</sup> Nielsen JC, Kristensen L, Andersen HR, Mortensen PT, Pedersen OL, Pedersen AK. A randomized comparison of atrial and dual-chamber pacing in 177 consecutive patients with sick sinus syndrome: echocardiographic and clinical outcome. JAm Coll Cardiol. August 20, 2003;42(4):614-623.
- <sup>14</sup> Nielsen JC, Pedersen AK, Mortensen PT, Andersen HR. Programming a fixed long atrioventricular delay is not effective in preventing ventricular pacing in patients with sick sinus syndrome. *Europace*. April 1999; 1(2):113-120.
- <sup>15</sup> Dennis MJ, Sparks PB. Pacemaker mediated tachycardia as a complication of the autointrinsic conduction search function. PACE. June 2004;27(6 Pt 1):824-826.

## AT500 Pacing System Follow-Up Protocol

### **Purpose of This Information**

This article is intended to provide clinical guidance regarding follow-up practice and patient management when the AT500 battery voltage approaches the Elective Replacement Indicator (ERI) level of 2.6 volts.

### Background

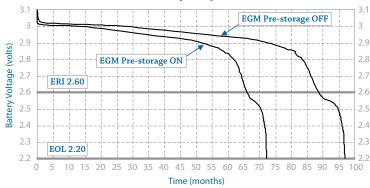
Many AT500 pacing systems are now reaching their ERI voltage level (2.6 volts). This is expected since the battery used has an approximate longevity of 5-6 years under normal conditions (100% DDD pacing, 3 volts, 0.4 ms).

Technical Services has received reports of battery voltage levels below end of life (EOL of 2.2 volts) where EGM prestorage is programmed ON, or higher outputs and/or pacing rates are necessary. It is important for physicians and allied professionals to understand battery depletion characteristics between ERI and EOL so that they, in turn, can understand how this affects management of follow-up visits for the AT500 as this device nears the end of its expected longevity.

### AT500 Battery and Longevity Information

In contrast to other IPGs, the AT500 does not change its mode, stimulation rate, or any other parameter when the battery voltage drops below the ERI level of 2.6 volts (with or without magnet applied). The Threshold Margin Test (TMT) is also not available.

Therefore, it is not possible to perform transtelephonic assessment of AT500 battery status. This must be done during an in-clinic follow-up session. A warning will be displayed on the Quick Look screen at the beginning of a programmer (follow-up) session when the ERI battery level occurs. The measured battery voltage will also appear on the programmer display and on printouts.


Battery depletion curves are shown in Figure 1, with special focus on device longevity when programming EGM prestorage ON or OFF.

Medtronic's review of ongoing AT500 battery life test data matches our original longevity modeling and so meets our expectations. However, when using longer durations between follow-up periods (> 3 months), clinicians should consider the following in setting their remaining longevity expectations.

- Enabling the "EGM Pre-storage On" capability will increase current and reduce device longevity by approximately
   9 days for each month pre-storage is ON
- Longevity decreases with an increase in pacing rate, an increase in pacing amplitude or pulse width, a decrease in pacing impedance, a higher ratio of paced to sensed events, or extended use of the Atrial Preference Pacing, EGM prestorage, or Holter Telemetry features

### Recommendations

Follow-up frequency should always be accelerated as devices reach ERI voltage levels to ensure device explant/replacement occurs prior to end of life voltage levels. With the wide variety of follow-up schedules being used, Medtronic recommends a 3-month follow-up frequency for the AT500 pacing systems. This is particularly important for patients in whom EGM prestorage is programmed ON, or higher outputs and/or pacing rates are necessary.



### AT500 Battery Depletion Curve

### Figure 1

AT500 battery depletion curve for common parameter settings of DDDR, LR 70 ppm, UR 120 ppm, 100% pacing, Atrial – 2 V, 0.4 ms, 600 ohms, Ventricle – 2 V, 0.6 ms, 900 ohms, and EGM Pre-storage ON versus OFF.

## Insertion of the Lead into the Device

The implantable system consists of a pulse generator and at least one lead. The system operation depends on proper electrical and mechanical operation. With the advent of internationally recognized connector standards, the challenge of ensuring proper mechanical fit between the lead and device connectors has been simplified, although the international connector standard does not address all aspects of the procedure for connecting a lead to the device.

If the lead connector is not fully installed, oversensing may result as described in the connector problems section of the performance note, "Clinical Management of High Voltage Lead System Oversensing."

Performing the following steps can be used for each lead connection during the implant procedure:

1 Insert the torque wrench into the appropriate setscrew. For easier lead insertion, insert the lead closest to the device first.

- 2 Look down the connector port to verify that the port is not obstructed. If the port is obstructed, retract the setscrew to clear the bore. Take care not to disengage the setscrew from the connector block.
- **3** Push the lead into the connector port until the lead pin is clearly visible beyond the setscrew block.
- 4 Hold the lead in position while tightening the setscrew until the torque wrench clicks.
- 5 Tug gently on the lead to confirm a secure fit.

Current publications may provide additional information on implant procedures used by others, e.g., radiographic evaluation of the terminal pin beyond the terminal post.<sup>1</sup>

<sup>1</sup> Pickett RA III, Saavedra P, Ali MF, Darbar D, Rottman JN. Implantable cardioverter-defibrillator malfunction due to mechanical failure of the header connection. *J Cardiovasc Electrophysiol*. September 2004;15(9):1095-1099.

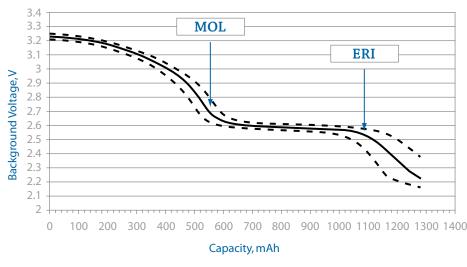


### GEM II DR/VR and GEM III DR/VR/AT ICD Battery Discharge Behavior

Medtronic manufactured and utilized a unique lithium/ silver vanadium oxide battery in the GEM II/III family of ICDs. This battery has a distinctive voltage discharge with two regions of constant voltage at 3.2 volts and 2.6 volts.

The battery discharge curve (see curve below) is characterized by a significant decrease in the battery voltage approaching middle of life (MOL), followed by a plateau (MOL to ERI) where the battery voltage remains around 2.6 volts. The transition to the plateau could be easily misinterpreted as the battery rapidly approaches ERI, which occurs at 2.55 volts, when the battery may in fact have several years remaining

until ERI.


It is important to understand that this battery voltage decrease in the GEM II/III family of ICDs is a normal

characteristic of the battery function in these devices and should not create a need for additional follow-up or monitoring.

As a general rule of thumb, the longevity from implant to MOL = MOL to ERI.

The design of the battery in subsequently released models has been modified to present a more linear battery discharge curve.

If you are concerned about early ERI in your patient's device, you can utilize the battery trend measurements stored in the save-to-disk file, which can be accessed and interpreted through the Medtronic Technical Services at 1 (800) 723-4636.



### **GEM II/III Battery Discharge Curve**

# General Follow-Up and Replacement of ICD Leads

Implanted leads operate in the challenging biochemical environment of the human body and the body's response to foreign objects. Implanted leads are also subject to mechanical stresses associated with heart motion, body motion, and patient anatomy.

In this environment, pacemaker and defibrillation leads cannot be expected to last forever. Unlike implantable cardioverter defibrillators (ICDs), a lead's longevity cannot be predicted nor are there simple indicators that a lead is approaching the end of its service life. The determination that a lead may be approaching end of service life requires follow-up of the chronically implanted lead and thorough evaluation of lead integrity at ICD replacement.

### Follow-Up of Chronically Implanted Leads

The frequency of follow-up for ICD patients will depend on a number of factors including the patient's medical condition, ICD system implant time, hospital/clinic follow-up practice, and Medicare guidelines. In all cases, it is important to assess the functionality of the ICD system and the integrity. For newly implanted leads, it is beneficial to establish a baseline of chronic performance parameters once the lead has stabilized, generally within 6 to 12 months after implant. These performance parameters should include pacing and sensing thresholds and impedance. During routine patient follow-up, these procedures can be used to evaluate lead integrity.

- Measure pacing and sensing threshold and compare to the chronic baseline. Significant increases or decreases may be indicative of lead failure, dislodgement, perforation, exit block, etc.
- Measure pacing impedance where possible and compare to the chronic baseline. Decreases of 30% or more or pacing impedances below 200-250 ohms may be indicative of insulation failure. Sudden and significant increases in pacing impedance may be indicative of conductor fracture.
- High voltage lead circuit impedance should be between 10-75 ohms at system implant. Chronic measurements below 10 and above 200 ohms may be indicative of high voltage lead circuit failure.
- Carefully review ECGs or the nonsustained detection log on Medtronic ICDs for indications of pacing and/or sensing abnormalities such as oversensing, undersensing, and loss of capture
- Elicit and investigate any patient complaints/symptoms that may be suggestive of potential lead failure

Where routine follow-up indicates, additional tools should be used to further evaluate performance. Tools include radiographic data, ICD electrograms, ICD Patient Alert and performance information from the System Longevity Study (SLS).

The final decision on the functional integrity and continued use of an implanted lead must be a matter of medical judgment based on these factors as well as specific patient conditions.

### **General Criteria for Lead Replacement**

The evaluation of a chronically implanted lead is an important part of the decision to continue to use the lead with a new ICD. However, these results alone do not necessarily predict the future integrity of that lead. With the expected longevity of today's ICDs varying between approximately 5 and 10 years, a physician replacing a device should consider a number of factors, including those listed below.

Factors that should be considered in a decision to replace or continue to use include:

- Pacing and sensing thresholds should be evaluated for the potential to maintain acceptable levels
- Pacing impedance should be measured. Bear in mind that pacing impedance below 250 ohms results in excessive battery current drain, which may seriously compromise ICD longevity, regardless of lead integrity.
- The physical appearance of the lead should be examined for insulation cracks, breaches, or other indications of lead wear or degradation
- Medtronic System Longevity Study data should be referenced. Actuarial survival of the lead and the observed lead failure mechanisms are specific factors to consider. Use of a new lead should be considered if failure mechanisms suggest an increased time dependency as suggested in the shape of performance curve for the specific lead model.
- Current publications may provide additional information on the clinical management of leads.<sup>1-3</sup> Ultimately, the decision to replace an implanted lead involves medical judgment.
- <sup>1</sup> Hauser RG, Cannom D, Hayes DL, et al. Long-term structural failure of coaxial polyurethane implantable cardioverter defibrillator leads. *PACE*. June 2002;25(6):879-882.
- <sup>2</sup> Ellenbogen KA, Wood MA, Shepard RK, et al. Detection and management of an implantable cardioverter defibrillator lead failure: incidence and clinical implications. *J Am Coll Cardiol.* January 1, 2003;41(1):73-80.
- <sup>3</sup> Hauser RG, Kallinen LM, Almquist AK, Gornick CC, Katsiyiannis WT. Early failure of a small-diameter high-voltage implantable cardioverter-defibrillator lead. *Heart Rhythm.* July 2007;4(7):892-896.

Performance Notes

# **Clinical Management of High-Voltage Lead System Oversensing**

Appropriate sensing by an ICD system refers to the sensing of cardiac events that may or may not require therapy delivery. ICD systems must sense relatively large QRS complexes while avoiding sensing of smaller T waves, yet continue to sense often small variable amplitude ventricular fibrillation. Thus, ICD systems attempt to dynamically adjust sensing of electrical events and discriminate between them based on detection algorithms and programmed settings.

Inappropriate sensing can occur when an ICD system classifies events of non-cardiac origin as QRS/VF events, or senses and counts T and far-field P waves as ventricular depolarizations. This is often referred to as "oversensing," and may result in delivery of inappropriate high-voltage therapies. This is due, in part, to the desire to err on the side of delivering lifesaving high voltage therapy rather than withholding it. Thus, an ICD system that is experiencing oversensing issues will continue to deliver therapeutic shocks as required, but may also subject the patient to unnecessary shocks.

Oversensing can be difficult to manage, in that the precipitating cause of the oversensing can be problematic to isolate. Oversensing can be caused by many factors, including myopotentials/farfield sensing, electromagnetic interference, T wave sensing, connector issues, incomplete or complete conductor fractures, and insulation breaches. While the individual physician must exercise medical judgment in determination of appropriate clinical management of ICD systems, the chart below may assist in the process of causal factor differentiation and possible intervention.

| Phenomenon                                                                                                                 | Causal Factors                                                                                                                                                                         | Characteristics                                                                                                                                   | Management/Comments                                                                                                                                                                                                                                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Myopotentials/<br>Far-field sensing                                                                                        | Diaphragmatic muscle potentials in breathing, wide tip-to-ring (coil on integrated bipolar leads) spacing                                                                              | Nonphysiological sensed event on EGM,<br>which may confuse detection potentially<br>resulting in false positive shocks                            | Check R waves for deterioration. Reprogram<br>sensitivity. Try repositioning lead. Consider<br>change-out to true bipolar lead, or if true bipolar<br>lead in use, one with closer tip-to-ring spacing<br>than current lead.                                                                                                                         |
| EMI<br>(Electro-Magnetic<br>Interference)                                                                                  | Arc welders, electrical generators, store<br>walk-through security<br>scanners, poorly insulated<br>electrical equipment                                                               | Multiple and consecutive short intervals<br>(< 140 ms) independent of underlying<br>sinus beats. Associated with proximity to<br>the EMI source.  | Avoid EMI areas. True bipolar leads less<br>susceptible.                                                                                                                                                                                                                                                                                             |
| T-wave sensing                                                                                                             | Drugs, ischemic tissue, exercise,<br>Long QT syndrome, electrolyte imbalance                                                                                                           | Sense markers seen on EGM related to T wave. False positive detection.                                                                            | Check for R wave deterioration and<br>characteristics. If R wave > 3.0 mV, reprogram<br>sensitivity. If R wave<br>< 3.0 mV, reposition/replace lead. Address causal<br>factor (e.g., drugs<br>[if appropriate/medically viable]).                                                                                                                    |
| Connector problems                                                                                                         | Loose setscrew, cross-threaded setscrew, incomplete lead insertion into header                                                                                                         | This is an acute phenomenon seen<br>within 6 months of implant (usually<br>sooner)                                                                | Requires invasive check of connections. May be reproducible with pocket manipulation.                                                                                                                                                                                                                                                                |
| Incomplete conductor fracture                                                                                              | One or more filars of a multifilar<br>conductor fracturing while leaving<br>enough filars intact to provide a<br>conduction circuit                                                    | Characterized by chaotic oversensing related to motion of the fracture site                                                                       | Check EGMs and x-rays. Manipulate lead<br>at suspected fracture site if possible as a<br>provocative test. If confirmed, replace lead.                                                                                                                                                                                                               |
| Lead insulation breach                                                                                                     | Cuts, tears, metal ion oxidization,<br>abrasion, cold flow, environmental stress<br>cracking                                                                                           | Characterized by cyclical and/or erratic,<br>intermittent, spontaneous oversensing;<br>often post-pace or post-shock can cause<br>false positives | Replace lead. If acute, usually secondary to<br>implant damage/replacement damage. If late,<br>material characteristic.                                                                                                                                                                                                                              |
| Oversensing during<br>interrogation with<br>programming head<br>(not wireless<br>telemetry) with<br>complete lead fracture | Interrogation with a programming<br>head in combination with complete lead<br>fracture that creates an open circuit can<br>induce noise on the<br>sensing circuitry inside the ICD can | Nonphysiologic sensed event on<br>EGM. If detection is enabled during<br>interrogation, oversensing may result in<br>inappropriate therapy.       | Quickly remove the programming head. CANCEL<br>the interrupted interrogation and manually<br>load the software for the specific device model.<br>Reposition the programmer head over the<br>device and immediately select SUSPEND. Device<br>will resume detection when programming<br>head is removed, or when RESUME is selected.<br>Replace lead. |

Technical Services is available at all times to advise clinicians in the troubleshooting and management of Medtronic products. For assistance in the United States, please call 1 (800) 723-4636. In other countries, please contact your local Medtronic representative.

# Tests and Observations for Clinical Assessment of Chronic Pacing Leads

| Test/Observation                                                                                              | Possible<br>Insulation Failure                                                                                  | Possible<br>Conductor Failure                                                                                     | Possible<br>Other System Failure                                                                                                                                | Effect on Test/<br>Observation                                                   |
|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Pacing Impedance<br>(Telemetered or<br>Measured Invasively)                                                   | Sudden and Significant<br>Decrease                                                                              | Sudden and Significant<br>Increase                                                                                | Dislodgement<br>Perforation<br>Electrolyte Imbalance<br>Improper IPG/Lead Connection                                                                            | Decrease<br>Increase or Decrease<br>Increase or Decrease<br>Increase or Decrease |
| Pacing Thresholds<br>(Telemetered/Programmed<br>or Measured Invasively)                                       | Sudden and Significant<br>Increase, Especially in<br>Bipolar System                                             | Sudden and Significant<br>Increase                                                                                | Dislodgement<br>Exit Block<br>Infarct at Electrode Site<br>Perforation<br>Improper IPG/Lead Connection                                                          | Increase<br>Increase<br>Increase<br>Increase<br>Increase                         |
| Electrograms<br>(Telemetered or<br>Measured Invasively)                                                       | Sudden and Significant<br>Decrease in Amplitudes and/<br>or Slew Rates for<br>P and/or R Waves                  | Sudden and Significant<br>Decrease or Disappearance<br>of Amplitudes and/or Slew<br>Rates for P and/or<br>R Waves | Dislodgement<br>Perforation<br>Infarct at Electrode Site<br>Electrolyte Imbalance<br>Improper IPG/Lead Connection                                               | Decrease<br>Decrease<br>Decrease<br>Decrease<br>Decrease                         |
| Waveform Analysis<br>(Oscillographs of Pacer<br>Artifact from ECG Electrodes)                                 | Sudden Increase in Ratios of<br>Leading-Edge Voltages to<br>Trailing-Edge Voltages (i.e.,<br>over 25% increase) | Intermittent or No<br>Pacer Artifacts (Even in<br>Asynchronous Mode)                                              | Improper IPG/Lead Connection                                                                                                                                    | Intermittent<br>or No Pacer Artifacts<br>(Even in Asynchronous<br>Mode)          |
| Radiographs<br>(Post-Implant,<br>Recent, Current)                                                             | Not Discernible                                                                                                 | Visual Observation of<br>Conductor/Connector/<br>Electrode Fracture<br>(Sometimes Discernible)                    | Dislodgement or Perforation.<br>Improper IPG/Lead Connection.                                                                                                   | Sometimes<br>Discernible                                                         |
| Visual Inspection<br>(Invasive)                                                                               | Insulation Breach and/or<br>Degradation, or Ligature<br>Cut-Through                                             | Not Easily Discernible                                                                                            | Connector Defect or Connector Pulled<br>Apart. Improper IPG/<br>Lead Connection.                                                                                | Sometimes<br>Discernible                                                         |
| Pectoral Muscle<br>Stimulation                                                                                | Sudden Onset, Especially in<br>Bipolar System                                                                   |                                                                                                                   | Connector Defect in Bipolar or<br>Unipolar. Hypersensitivity to Unipolar<br>Pulse Generator Can. Anti-Stim<br>Coating or Protection Deficient.                  |                                                                                  |
| Phrenic Nerve/<br>Diaphragmatic<br>Stimulation                                                                | Sudden Onset in Bipolar or<br>Unipolar Systems                                                                  |                                                                                                                   | Perforation or Displacement of Atrial<br>Lead (Phrenic Nerve)                                                                                                   |                                                                                  |
| Pacemaker ECG<br>Stimulus<br>Artifact Size and Morphology<br>Change (May Not Be Possible<br>with Digital ECG) | Sudden Onset and<br>Significant Change,<br>Especially in Bipolar System<br>(Increase in Size)                   | Sudden Changes, Usually a<br>Decrease in Size                                                                     | Perforation or Dislodgement.<br>Connector Defect. Improper IPG/Lead<br>Connection.                                                                              | Sometimes<br>Discernible                                                         |
| Oversensing<br>(Intermittent or<br>Continuous)                                                                | Sudden Onset, Especially in<br>Bipolar Systems                                                                  |                                                                                                                   | Physical Contact between the<br>Electrode(s) on the Lead and<br>that of Another Lead. Inappropriate<br>IPG Parameter Setting. Improper IPG/<br>Lead Connection. | Sometimes Discernible                                                            |
| Undersensing<br>(Intermittent or<br>Continuous)                                                               | Sudden Onset in Either<br>Unipolar or Bipolar Systems                                                           | Sudden Onset in Either<br>Unipolar or Bipolar Systems                                                             | Dislodgement or Perforation. Infarct at<br>Electrode Site. Electrolyte Imbalance.<br>Inappropriate IPG Parameter Setting.<br>Improper IPG/Lead Connection.      |                                                                                  |
| Loss of Capture                                                                                               | See "Pacing Thresholds"<br>Above                                                                                | See "Pacing Thresholds"<br>Above                                                                                  | See "Pacing Thresholds"<br>Above                                                                                                                                |                                                                                  |

# **Mailer Kits Available for Returning Product**

Medtronic urges all physicians to return explanted products and to notify Medtronic when a product is no longer in use, regardless of reason for explant or removal from use. The procedures for returning products vary by geographic location.

Mailer kits with prepaid US postage are available for use within the United States to send CRT, ICD, IPG, and leads to Medtronic's CRDM Returned Product Analysis Lab. These mailers are sized to accommodate the devices and leads from a single patient or clinical event and are designed to meet US postal regulations for mailing biohazard materials.

If the product being returned is located outside the United States, please contact your local Medtronic representative for instructions.

Medtronic also requests the return of devices from non-clinical sources, such as funeral homes, and will assume responsibility for storage and disposal of the product once received.

Mailer kits can be obtained by contacting the Returned Product Lab.

CRDM Returned Product Analysis Laboratory Phone: 1 (800) 328-2518, ext. 44800 Email: crdm.returnedproduct@medtronic.com



#### www.medtronic.com

#### **World Headquarters**

Medtronic, Inc. 710 Medtronic Parkway Minneapolis, MN 55432-5604 USA Tel: (763) 514-4000 Fax: (763) 514-4879

Medtronic USA, Inc. Toll-free: 1 (800) 328-2518 (24-hour technical support for physicians and medical professionals)

#### Europe

Medtronic International Trading Sàrl Route du Molliau 31 CH-1131 Tolochenaz Switzerland Tel: (41 21) 802 7000 Fax: (41 21) 802 7900

#### Canada

Medtronic of Canada Ltd. 6733 Kitimat Road Mississauga, Ontario L5N 1W3 Canada Tel: (905) 826-6020 Fax: (905) 826-6620 Toll-free: 1 (800) 268-5346

#### Asia Pacific

Medtronic International, Ltd. 16/F Manulife Plaza The Lee Gardens, 33 Hysan Avenue Causeway Bay Hong Kong Tel: (852) 2891 4456 Fax: (852) 2891 6830 enquiryap@medtronic.com

#### Latin America

Medtronic USA, Inc. Doral Corporate Center II 3750 NW 87th Avenue Suite 700 Miami, FL 33178 USA Tel: (305) 500-9328 Fax: (786) 709-4244