

Cardiac Rhythm Disease Management Product Performance Report

Important Patient Management Information for Physicians

This report is available online at www.CRDMPPR.medtronic.com

A Message from the Vice President

Dear Customer,

At Medtronic, product quality and reliability have been and will continue to be a priority. For over 27 years, Medtronic has compiled and produced product performance reports with one primary goal, to provide you with the product information you need to best care for your patients.

Our commitment to you is best expressed in Medtronic's mission: "To strive without reserve for the greatest possible reliability and quality in our products; to be the unsurpassed standard of comparison and to be recognized as a company of dedication, honesty, integrity, and service." To this end, we continually explore new ways to expand, improve, and learn from our product performance systems and measures.

Our quality goals cannot be reached alone. We welcome your collaboration, insight, and recommendations. Please contact our Technical Services Department at 1 (800) 723-4636 with your feedback comments and any questions.

Your participation and assistance in returning explanted products are also critical. Returned products are tested and evaluated so that we can fully measure the performance of our devices. Please refer to the instructions on the next page for assistance in returning products to the Medtronic CRDM Returned Product Analysis Laboratory.

As we constantly strive to exceed your expectations, we thank you for your dedication to improving and saving the lives of those suffering from cardiac rhythm disorders.

With appreciation and warm regards,

1

Tim Samsel Vice President, Quality and Regulatory Medtronic Cardiac Rhythm Disease Management Medtronic, Inc.

Contact Information

We invite our customers to use these telephone numbers to call with suggestions, inquiries, or specific problems related to our products.

US Technical Services Department

Phone: 1 (800) 723-4636 (Tachy) 1 (800) 505-4636 (Brady) Fax: 1 (800) 824-2362 www.medtronic.com/corporate/contact.jsp

For questions related to this CRDM Product

Performance Report, please call US Technical Services at the number above, or write to:

Timothy Smith Medtronic, Inc. 8200 Coral Sea Street NE MS MVN61 Mounds View, MN 55112 USA

Email: tim.smith@medtronic.com

International Technical Centers

Europe (Heerlen NL) Japan (Tokyo) +31-45-566-8844 +81-3-5753-4116

For questions related to returning explanted product or returning product that shows signs of malfunction, please contact:

Outside the United States:

Your Medtronic representative or international technical center at the number above.

Within the United States: Your Medtronic representative or

CRDM Returned Product Analysis Laboratory

Phone:	1 (800) 328-2518, ext. 44800
Email:	crdm.returnedproduct@medtronic.com

Editorial Staff

Independent Physician Quality Panel

Angelo Auricchio, MD, Lugano, Switzerland Hugh Calkins, MD, Baltimore, MD Steven J. Compton, MD, Anchorage, AK John P. DiMarco, MD, PhD, Charlottesville, VA Kevin Hackett, MD, Columbus, OH Mariell Jessup, MD, Philadelphia, PA R. Hardwin Mead, MD, Palo Alto, CA

Editor

Tim Samsel, Vice President, CRDM Quality and Regulatory

Trademarks of Medtronic, Inc.

Adapta® AT500®	InSync III Protect™ InSunc Sontru®
Attain® CapSure® CapSure Sense® CapSureFix® Capture	InSync Sentry® Intrinsic® Jewel® Kappa® Legend® Macronic®
Management® CareLink® Concerto® Consulta® EnPulse® EnRhythm® EnTrust® GEM® InSync® InSync ICD® InSync ICD® InSync Marquis™ InSync II Marquis™	Marquis® Maximo® Medtronic CareAlert® Medtronic CareLink® Micro Jewel Micro Jewel Micro Minix Minix Minix Minuet MVP® Onyx® Patient Alert™
InSync III Warquis InSync II Protect™	Preva Prevail® Prodigy

Quick Look™ Relia™ Secura® SelectSecure® Sensia® Sensing Assurance Sigma® Spectraflex Sprint[™] Sprint Fidelis® Sprint Quattro® Sprint Quattro Secure® SureFix® Target Tip® Tenax Thera®-i Transvene Versa® Virtuoso®

CRDM Product Performance Report

Introduction 1 Method for Estimating CRT, ICD, and IPG Device Performance 6

CRT Cardiac Resynchronization Therapy 10 CRT Survival Summary 17 CRT Reference Chart 20

ICD Implantable Cardioverter Defibrillators 21 ICD Survival Summary 32 ICD Reference Chart 36 ICD Connector Styles 38

IPG Implantable Pulse Generators 39 IPG Survival Summary 65 IPG Reference Chart 72

Leads

Method for Estimating Lead Performance 75

Left-Heart Leads 80

Lead Survival Summary 83 US Returned Product Analysis Summary 83 US Reports of Acute Lead Observations 83 Reference Chart 84

Defibrillation Leads 85

Lead Survival Summary 93 US Returned Product Analysis Summary 94 US Reports of Acute Lead Observations 94 Reference Chart 95

Pacing Leads 96

Lead Survival Summary 118 US Returned Product Analysis Summary 121 US Reports of Acute Lead Observations 122 Reference Chart 123

ICD and CRT-D Charge Time Performance 131

Advisories 137

(in order of communication date, from most recent to oldest)

Performance Notes 146

Potential Malfunction of CRT, ICD, and IPG Products due to Anomalies in MOSFET Integrated Circuit Technology 146 Clinical Management of VCM near Elective Replacement 147 Ensuring the Accuracy of Battery Longevity Estimates 148 Interactions between Cardiac Pacing and Ventricular Arrhythmia Initiation 149 AT500 Pacing System Follow-Up Protocol 150 Insertion of the Lead into the Device 151 GEM II DR/VR and GEM III DR/VR/AT ICD Battery Discharge Behavior 152 General Follow-Up and Replacement of ICD Leads 153 Clinical Management of High Voltage Lead System Oversensing 154 Tests and Observations for Clinical Assessment of Chronic Pacing Leads 155 2010 First Edition Issue 62

Date cutoff for this edition is January 31, 2010

This report is available online at www.CRDMPPR.medtronic.com

E

Da Jai

Epi/Myocardial Pacing Leads 125

VDD Single Pass Pacing Leads 129

US Returned Product Analysis Summary 128

US Reports of Acute Lead Observations 128

US Returned Product Analysis Summary 130

US Reports of Acute Lead Observations 130

Lead Survival Summary 127

Lead Survival Summary 130

Reference Chart 128

Reference Chart 130

Introduction

All product performance reports are not created equal. For 27 years, Medtronic has monitored performance via both returned product analysis and multicenter clinical studies.

This Product Performance Report (PPR) presents device survival estimates, advisory summaries, performance notes, and other information pertinent to assessing the performance of Medtronic implantable pulse generators (IPGs), implantable cardioverter defibrillators (ICDs), cardiac resynchronization therapy (CRT) devices, and implantable pacing and defibrillation leads.

This Product Performance Report has been prepared in accordance with International Standard ISO 5841- 2:2000(E).

The survival estimates provided in this report are considered to be representative of worldwide performance.

Survival Estimates

Medtronic Cardiac Rhythm Disease Management (CRDM) uses both returned product analysis and multicenter clinical studies to monitor performance.

Medtronic, like other companies, monitors CRT, ICD, and IPG device performance using returned product analysis. We also monitor CRT, ICD, and IPG device performance using an active multicenter clinical study. Medtronic CRDM is unique in the industry in that we track CRT, ICD, and IPG device survival using both methods.

Returned product analysis is a passive approach to assessing product performance. This approach provides a suitable measure of product performance only when a significant number of explanted products are returned to the manufacturer. Returned product analysis provides a measure of hardware performance, but not necessarily the total clinical performance (e.g., the incidence of complications such as infection, erosion, muscle stimulation, etc. are not estimated).

The survival estimates provided in this report for CRT, ICD, and IPG devices are based on returned product analysis. This approach is suitable because a significant number of explanted generators are returned for analysis.

Lead performance is monitored differently. In contrast to CRT, ICD, and IPG devices, a very small percentage of leads are returned to the manufacturer due to the difficulty of explanting them. For leads, an active clinical study provides more accurate survival estimates compared to estimates based solely on returned product analysis.

Survival estimates for leads are based on clinical observations recorded via Medtronic CRDM's System Longevity Study. This multicenter clinical study is designed to record clinical observations representative of the total clinical experience. Therefore, the lead survival estimates include both lead hardware failure and lead-related medical complications, and do not differentiate a lead hardware failure from other clinical events such as exit block, perforation, dislodgement, or concurrent pulse generator failure.

The actuarial life table method is applied to the data collected for CRT, ICD, and IPG devices and leads to provide the survival estimates included in this report. A general introduction to understanding this method of survival analysis is given later in this introduction.

ICD Charge Times

Since May 2000, Medtronic has provided important information on charge time performance of ICDs. The information provided in this report shows how ICD charge time can vary during the time a device is implanted. The information is presented in graphical format showing charge time as a function of implant time. The data for charge times are collected from devices enrolled in the System Longevity Study.

Advisory Summaries

This Product Performance Report includes summaries of all advisories applicable to the performance of the products included in the report. An advisory is added to the report when any product affected by the advisory remains in service and at risk of experiencing the behavior described in the advisory. The advisory will remain in the report until Medtronic estimates no product affected by the advisory remains active, or the risk of experiencing the behavior described in the advisory has passed.

For most advisories, the products subject to the advisory retain essentially the same survival probability as the products of the same model(s) not affected by the advisory. For those advisories where the survival probabilities of the affected and non-affected populations do differ significantly, Medtronic will provide separate survival data for each population. The separate survival data will remain in the report until Medtronic estimates no affected product remains in active service.

Performance Notes

This report concludes with a number of Performance Notes developed by Medtronic to provide additional product performance information relevant to follow-up practice and patient management.

Medtronic urges all physicians to return explanted products and to notify Medtronic when a product is no longer in use, regardless of reason for explant or removal from use.

How You Can Help

Medtronic urges all physicians to return explanted products and to notify Medtronic when a product is no longer in use, regardless of the reason for explant or removal from use. The procedures for returning products vary by geographic location.

Mailer kits with prepaid US postage are available for use within the United States to send CRTs, ICDs, IPGs, and leads to Medtronic's CRDM Returned Product Analysis Lab. These mailers are sized to accommodate the devices and leads from a single patient or clinical event and are designed to meet US postal regulations for mailing biohazard materials.

If the product being returned is located outside the United States, please contact your local Medtronic representative for instructions.

Medtronic also requests the return of explanted products from non-clinical sources, such as funeral homes, and will assume responsibility for storage and disposal of the product once received.

Mailer kits can be obtained by contacting the Returned Product Lab. For information on how to contact the Lab, refer to Contact Information of this report.

We continually strive to improve this CRDM Product Performance Report. In keeping with this philosophy, we ask for your suggestions on the content and format of this report, as well as any information you have regarding the performance of Medtronic products. For information on how to comment on this report, see Contact Information of this report.

Overview of Survival Analysis

Medtronic uses the Cutler-Ederer actuarial life table method to estimate the length of time over which devices and leads will perform within performance limits established by Medtronic. This probability to perform within performance limits over time is called the *survival probability*.

Devices and leads are followed until an *event* occurs where the device or lead ceases to operate within performance limits. The length of time from implant to the event is recorded for individual device and lead in the *population sample*. The population sample for CRT, ICD, and IPG devices is made up of patients whose devices are registered as implanted in the United States. For leads, the population sample is the patients enrolled in our multicenter, international prospective System Longevity Study.

For IPGs and ICDs, the events can be normal battery depletion or a device malfunction. For leads, the events are complications as defined in the study protocol.

The actuarial life table method allows Medtronic to account for devices and leads removed from service for reasons unrelated to performance. Devices and leads removed for these reasons are said to be *suspended*. Examples include devices and leads:

- still in service at the time the analysis is performed
- removed to upgrade the device or lead
- no longer in service due to the death of the patient for reasons unrelated to the device or leads
- implanted in patients who are lost to follow-up

For each suspension, the device or lead has performed within performance limits for a period of time, after which its performance is unknown.

An Example

The following example describes the survival analysis method used to establish the survival probability estimates for Medtronic CRDM devices and leads. The example is intended to provide an overview of the analysis process. The definitions of malfunctions and complications, and other details specific to calculating device and lead survival estimates, are provided in the articles *Method for Estimating CRT, ICD, and IPG Device Performance (page 6)* and *Method for Estimating Lead Performance (page 75)*.

Introduction continued

This simple example describes the survival analysis method used to establish the survival probability estimates for Medtronic CRDM devices and leads.

Figure 1

Implant times for devices of 16 patients. Gray bars with an orange X indicate devices removed from service due to an event. Blue bars indicate suspended devices.

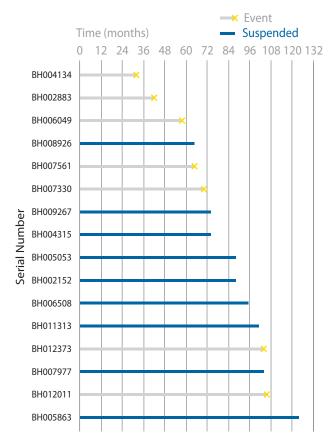


Figure 1 illustrates 16 patients who have implanted devices. The first patient's device (serial number BH004134) operated within performance limits for 32 months. At that time an event occurred. The fourth patient's device (serial number BH008926) did not have an event but is suspended, perhaps because it was still in service at the time of the analysis. This patient had 66 months of implant experience. In this example, Figure 1 shows that seven of the 16 devices suffered events, and nine are suspended.

The first step in the life table method is to divide the implant time into intervals of a specific length. This example will use 12-month intervals. The number of devices entered, suspended, and removed due to an event are counted and summarized, as shown in Table 1. For the first two intervals, all 16 devices survived and none were removed. In the interval (24-36 months), device BH004134 was removed due to an event. Therefore the table entries show that 16 entered the interval, none were suspended, and one was removed due to an event.

For the interval from 36-48 months, only 15 devices entered the interval and one was removed for an event. The remaining intervals are examined and the data entered in columns A, B, and C in like manner. The rest of the columns are filled in using calculations on the data in columns A, B, and C.

The *Effective Sample Size* (**D**) is the number of devices with full opportunity to experience a qualifying event in the interval. This is computed by subtracting one half the number suspended in the interval from the number that entered the interval. This calculation more accurately reflects the number of devices that could have experienced a qualifying event than simply using the number that entered the interval. Using the number of devices that enter an interval overestimates the sample size because the suspended devices do not complete the interval. Ignoring the suspended devices underestimates the sample size because suspended devices are not credited with their full service time. Using one half the number of suspended devices effectively splits the difference.

The next column in the table is the *Proportion with Event* (E). This is the proportion of devices that had an event in the interval. It is calculated by dividing the *Number of Events* (C) by the *Effective Sample Size* (D). The number can be interpreted as the estimated rate at which events occur in the time interval.

The *Interval Survival Probability* (**F**) is the estimate of probability of surviving to the end of the interval assuming the device was working at the beginning of the interval. It is calculated as 1 minus the *Proportion with Event* (**E**). This number can be interpreted as the estimated rate at which events **do not** occur in the time interval.

Introduction continued

The Cumulative Survival Probabilities (G) from the last column of the life table can be plotted versus time intervals in the first column to give a survival curve. Figure 2 shows the survival curve for the data shown in Table 1.

	А	В	с	D	E	F	G
Interval in Months	Number Entered	Number Suspended	Number of Events	Effective Sample Size	Proportion with Event	Interval Survival Probability	Cumulative Survival Probability
0	16	0	0	16	0.000	1.000	1.000
0-12	16	0	0	16	0.000	1.000	1.000
12-24	16	0	0	16	0.000	1.000	1.000
24-36	16	0	1	16	0.063	0.938	0.938
36-48	15	0	1	15	0.067	0.933	0.875
48-60	14	0	1	14	0.071	0.929	0.813
60-72	13	1	2	12.5	0.160	0.840	0.683
72-84	10	2	0	9	0.000	1.000	0.683
84-96	8	3	0	6.5	0.000	1.000	0.683
96-108	5	2	2	4	0.500	0.500	0.341
108-120	1	0	0	1	0.000	1.000	0.341
120-132	1	1	0	0.5	0.000	1.000	0.341

Table 1Life Table for Figure 1

Definitions:

Α	В	С	D	E	F	G
Number Entered	Number Suspended	Number of Events	Effective Sample Size	Proportion with Event	Interval Survival Probability	Cumulative Survival Probability
Number of devices active at the start of the interval	Number of devices removed from service for reasons other than an event	Number of units removed from service due to an event	Number of units with full opportunity to experience a qualifying event in the interval. Computed by subtracting one half the Number Suspended from the Number Entered.	Proportion of devices that had an event in the interval. Computed by dividing the Number of Events by the Effective Sample Size.	The probability of surviving to the end of the interval, assuming the device was working at the beginning of the interval. Computed as 1 minus the Proportion With Event.	The overall probability of surviving to the end of the interval. Computed by multiplying the Interval Survival Probability by the previous interval's Cumulative Survival Probability.

Cumulative Survival Probability (G) is the estimate of the unconditional probability of surviving to the end of the interval. It is computed by multiplying the *Interval Survival Probability* (F) by the previous interval's Cumulative Survival Probability. The probability of surviving to 132 months in the example is estimated for the table to be 0.341, or 34.1%. The *Cumulative Survival Probabilities* (G) of the life table can be plotted versus time intervals in the first column to give a survival curve. Figure 2 shows the survival curve for the data in Table 1.

Figure 2 Survival Curve for Data Given in Table 1

Confidence Intervals

Since survival curves are based on a sample of the device and lead population, they are only estimates of survival. The larger the effective sample size, the more confident the estimate. A confidence interval can be calculated to assess the confidence in an estimate. In the Product Performance Report, Medtronic provides a 95% confidence interval. This can be interpreted as meaning that 95% of the time, the true survival of the device will fall somewhere in the interval.

Survival Curves in the Product Performance Report

Since the survival estimate can become very imprecise with small effective sample sizes, Medtronic truncates the survival curve when the effective sample size is less than 100 for CRTs, ICDs, and IPGs, and when the number entered is less than 50 for leads. The survival charts in the Product Performance Report show the effective sample size for each year interval where Medtronic has experience. When the effective sample size reaches 100 for CRTs, ICDs, and IPGs or when the number entered reaches 50 for leads, the next data point is added to the survival curve.

Although the report provides tabular data in one-year intervals, the curves are actually computed and plotted using 1-month intervals (for CRT, ICD, and IPG devices) or 3-month intervals (for leads).

A number of references are available for additional information on survival analysis using the Cutler-Ederer life table method.¹

¹ Lee, Elisa T.(2003) Statistical Methods for Survival Data Analysis – 3rd Edition (Wiley Series in Probability and Statistics).

Method for Estimating CRT, ICD, and IPG Device Performance

Medtronic urges all physicians to return explanted products and to notify Medtronic when a product is no longer in use, regardless of reason for explant or removal from use.

The performance of CRT, ICD, and IPG devices is expressed in terms of device survival estimates, where "survival" refers to the function of the device, not the survival of the patient. These survival estimates are intended to illustrate the probability that a device will survive for a given number of years with neither malfunction nor battery depletion.

The survival estimates are determined from the analysis of Medtronic CRDM's United States device registration data and US returned product analysis data. These data are presented graphically and numerically.

Because this analysis is based on returned product analysis, the performance data does not reflect any device-related medical complications such as erosion, infection, muscle stimulation, or muscle inhibition.

Categorization of Depleted and Malfunctioning Devices for Survival Analysis

For survival estimation, every device returned to Medtronic CRDM and analyzed in the CRDM Returned Product Analysis laboratory is assigned to one of three categories. The device 1) has functioned normally, 2) has reached normal battery depletion, or 3) has malfunctioned. This categorization is combined with data from our device registry for the total number of implants and the implant durations to create the survival curves presented on the following pages.

Definition of Malfunction

Medtronic CRDM considers a device as having malfunctioned whenever the analysis shows that any parameter was outside the performance limits established by Medtronic while implanted and in service. To be considered a malfunction or battery depletion, the device must have been returned to Medtronic and analyzed.

Devices damaged after explant, damaged due to failure to heed warnings or contraindications in the labeling, or damaged due to interaction with other implanted devices (including leads) are not considered device malfunctions.

A device subject to a safety advisory is not considered to have malfunctioned unless it has been returned to Medtronic CRDM and found, through analysis, to actually have performed outside the performance limits established by Medtronic. Not all malfunctions expose the patient to a loss of pacing or defibrillation therapy. Some malfunctions included in the following survival estimates may not have been detected at all by the physician or the patient. These malfunctions, however, are included in the survival estimates and provide important feedback to our product development organization.

To provide insight into the nature of malfunctions, each malfunction is categorized as Malfunction with Compromised Therapy Function or Malfunction without Compromised Therapy Function. A summary of these malfunctions is presented for the most recently market-released models.

For this report, Normal Battery Depletion, Malfunction with Compromised Therapy Function, and Malfunction without Compromised Therapy Function are defined as follows:

Normal Battery Depletion – The condition when:

- (a) a device is returned with no associated complaint and the device has reached its elective replacement indicator(s) with implant time that meets or exceeds the nominal (50 percentile) predicted longevity at default (labeled) settings, or
- (b) a device is returned and the device has reached its elective replacement indicator(s) with implant time exceeding 80% of the expected longevity calculated using the available device setting information.

Medtronic CRDM establishes expected longevity by statistically characterizing the power consumed by the device and the power available from the device battery. This characterization is applied to a number of parameter configurations to derive a statistical mean longevity value and standard deviation for each parameter configuration. The statistical mean value minus three standard deviations is used as the expected longevity for determining if a battery depleted normally.

Method for Estimating CRT, ICD, and IPG Device Performance, continued

The Standard Actuarial Method is used to estimate IPG and ICD survival. This product performance report has been prepared in accordance with International Standard ISO 5841-2:2000(E).

For reference purposes, the following pages include estimated longevities for each model. The actual longevity achieved for any device while implanted will depend on the actual programmed parameters and patient factors, and may differ significantly from these estimates.

Malfunction with Compromised Therapy Function

The condition when a device is found to have malfunctioned in a manner that compromised pacing or defibrillation therapy (including complete loss or partial degradation), while implanted and in service, as confirmed by returned product analysis.

Examples: Sudden loss of battery voltage; accelerated current drain such that low battery was not detected before loss of therapy; sudden malfunction during defibrillation therapy resulting in aborted delivery of therapy, intermittent malfunction where therapy is compromised while in the malfunction state.

Malfunction without Compromised Therapy Function

The condition when a device is found to have malfunctioned in a manner that *did not* compromise pacing or defibrillation therapy, while implanted and in service, as confirmed by returned product analysis.

Examples: Error affecting diagnostic functions, telemetry function, data storage; malfunction of a component that causes battery to lose power quickly enough to cause premature battery depletion, but slowly enough that the condition is detected through normal follow-up before therapy is lost; mechanical problems with connector header that do not affect therapy.

Expanded Malfunction Detail

The malfunctions are further divided into categories that identify the subject area of the malfunction. The malfunctions are divided into the following subject areas:

Electrical Component – Findings linked to electrical components such as integrated circuits, resistors, capacitors, diodes, etc.

Electrical Interconnect – Findings linked to the connections between electrical components such as wires, solder joints, wire bonds, etc.

Battery – Findings linked to the battery and its components

Software/Firmware – Findings linked to software or firmware function

Possible Early Battery Depletion – Findings where the actual reported implant time is less than 80% of the expected longevity calculated using the available device setting information with no device malfunction observed. There may not be sufficient device setting information to determine conclusively if battery depletion was normal or premature in the absence of a specific root cause finding. However, returned devices meeting the above criteria are conservatively classified as Possible Early Battery Depletion malfunctions.

Other – Findings related to other components such as insulators, grommets, setscrews, and packaging, and findings where analysis is inconclusive

Returned Product Analysis Process

Analysis of returned product is performed according to written procedures. These procedures determine the minimum analysis required. The analysis required varies depending on the type of device, age of the device, the associated information received with the device, actual experience with models of similar design, and other factors. Additional analysis is performed as necessary to investigate a performance concern from a customer, or to collect specific reliability data.

When a device is returned with a performance concern from a customer, the general analysis process includes a preliminary analysis of the device in its as-received condition, followed by an automated functional test using test equipment equivalent to the equipment used in manufacturing.

When a malfunction is identified, failure analysis is performed to provide the detailed information necessary to investigate possible causes and actions. Medtronic CRDM maintains in-house expertise and performs its failure analysis using facilities it owns and supports. This capability permits detailed failure analysis.

Method for Estimating CRT, ICD, and IPG Device Performance, continued

Medtronic CRDM adjusts all-cause survival estimates to account for underreporting. While this lowers our all-cause survival estimates, we feel it gives a more accurate perspective on real performance.

Statistical Methods for Survival Analysis

Of the several different statistical methods available for survival analysis, the Standard Actuarial Method, with suspensions assumed distributed evenly within the intervals (Cutler-Ederer Method), is used to determine estimates of IPG and ICD survival. This method is commonly used by medical researchers and clinicians.

Implant times are calculated from the implant date to the earlier of the explant date or the cutoff date of the report. From this data an estimate of the probability of device survival is calculated at each monthly interval.

On the following pages, each graph includes a survival curve where events include malfunctions and normal battery depletions. This survival curve is a good representation of the probability a device will survive a period of time without malfunction and without battery depletion. For example, if a device survival probability is 95% after 5 years of service, then the device has a 5%chance of being removed due to battery depletion or malfunction in the first 5 years following implant.

In addition, a second curve is included to show survival excluding normal battery depletion. This curve is a good representation of the probability for a device to survive without malfunction. This curve includes only malfunctions as events and excludes normal battery depletion.

Since the survival estimate can become very imprecise with small effective sample sizes, Medtronic truncates the survival curve when the effective sample size is less than 100 for CRT, ICD, and IPG devices. The survival charts in the Product Performance Report show the effective sample size for each year interval where we have experience. When the effective sample size reaches 100, the next data point is added to the survival curve.

Although the report provides tabular data in one-year intervals, the curves are actually computed and plotted using one-month intervals.

The data in the tables are rounded to the nearest tenth of one percent. Occasionally, a graph may show 100% survival, but have one or more malfunctions or battery depletions. This occurs because, even with the malfunctions or battery depletions, the data rounds to 100%.

The survival curves are statistical estimates. As performance experience accumulates, the estimation improves. Confidence intervals are provided as a way to indicate the degree of certainty of the estimates.

Greenwood's formula is used to calculate corresponding 95% confidence intervals for the standard errors, and the complementary log-log method is used to produce the confidence bounds.

Sample Size and How the Population and **Population Samples Are Defined**

The population sample from which the survival estimates are derived is comprised of the devices registered as implanted in the United States as of the report cutoff date. The number of registered implants, as well as an estimate of the number that remain in active service, is listed for each model. To be included in the population, the device must have been registered with Medtronic's registration system and implanted for at least one day.

This sample based on US implants is considered to be representative of the worldwide population, and therefore the survival estimates shown in this report should be representative of the performance worldwide of these models.

A CRT, ICD, or IPG model or model family will be included in this report when it has accumulated at least 10,000 implant months and will remain in the report as long as at least 500 devices remain active.

Methods Used to Adjust for Underreporting of **Malfunction and Battery Depletion**

The tables on the following pages show the actual number of malfunctions and battery depletions recorded by the analysis lab for US registered devices. Since not all devices are returned to Medtronic CRDM for analysis, these numbers underestimate the true number of malfunctions and battery depletions. To more accurately estimate the all-cause device survival probabilities, the number of malfunctions and battery depletions used to plot each interval of the all-cause survival curves is adjusted (multiplied) by a factor that is based on an estimate of the magnitude of underreporting. The magnitude of underreporting is estimated by analyzing experience in Medtronic's Device And Registrant Tracking (DART) system.

The DART system is an important element of Medtronic's Quality System. The DART system is designed to meet or exceed the US FDA's device tracking requirements set forth by the Safe Medical Devices Act. In the United States, over 98% of Medtronic's CRT, ICD, and IPG implants become registered in the DART system.

Because pacemakers do not cure the patient's underlying health problem, when a pacemaker stops functioning (due to either normal battery replacement or malfunction) it is replaced with a new pacemaker. Therefore, the replacement recorded in the DART system is a good indication that the previous pacemaker experienced either battery depletion or malfunction. The fraction of replaced devices that are subsequently returned can be used to estimate the correction factor for the under reporting of the combination of battery depletion and malfunction.

Note that devices of patients who have expired do not factor into the calculation of the correction. It is possible some proportion of these device experienced battery depletion or malfunction. Since these are not counted into the correction factor based on the return rate of replaced devices, a correction factor based only on the return rate of replaced devices may still underestimate the true rate of battery depletion and malfunction. However, devices that are replaced because the patient is receiving a system upgrade or are removed because the patient no longer needs it (e.g., due to heart transplant) do contribute to the calculation of the correction factor and therefore impart an opposite bias.

Also note that this method of calculating the correction factor cannot distinguish between devices that are removed due to malfunction and those due to normal battery depletion. It might seem intuitive that devices that unexpectedly malfunction should be much more likely to be returned to the manufacturer than a device with ordinary normal battery depletion. But this has not been conclusively demonstrated. Therefore, this method only provides a correction factor reflecting the combination of battery depletion and malfunction.

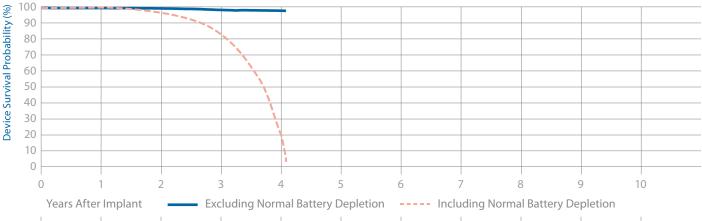
No adjustment for underreporting is applied to the malfunction-free survival curve because a method for estimating malfunction-only underreporting has not been developed.

Adjustments to Registered Implants to Compensate for Unreported Devices Removed from Service

Devices are at times removed from service for reasons other than device malfunction or battery depletion. Examples are devices removed from service due to nondevice related patient mortality and devices removed due to changes in the patient's medical condition. Because an accurate estimate of device survival depends on an accurate estimate of the number of devices in service, it is important not to overstate the number of devices in service.

To ensure the number of devices in service is not overstated, Medtronic addresses this underreporting in two ways. Regular updates obtained from the Social Security Administration about deceased persons is used to update Medtronic's DART data about patients who have died but whose deaths had not been reported to Medtronic. In addition, the patient mortality rate derived from our DART system is monitored and compared to published mortality rates for comparable patient populations. If, during calculation of the survival curves, the patient mortality indicated by the data in DART is significantly different from published rates, an adjustment is applied to correct the difference.

7289 InSync II Marquis


US Market Release	Jul-03
Registered US Implants	28,000
Estimated Active US Implants	300
Normal Battery Depletions (US)	6,237
Advisories: See page 143 – 2005 Poten Premature Battery Depletion Due to Batt	

Malfunctions (US)
Therapy Function Not Compromised
Electrical Component
Software/Firmware
Possible Early Battery Depletion
Therapy Function Compromised
Battery (9 malfunctions related to advisory)
Electrical Component

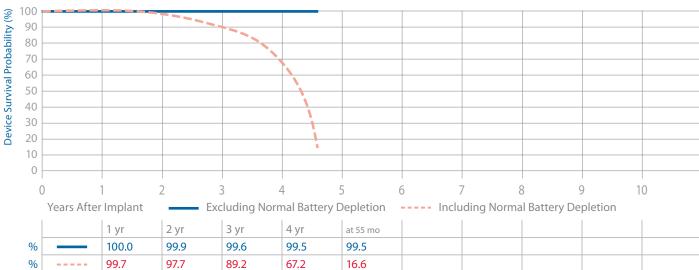
Product Characteristics

> 31 10 21

NBD Code	VVED
Serial Number Prefix	PRJ
Max Delivered Energy	30 J
Estimated Longevity	See page 20

		1 yr	2 yr	3 yr	4 yr	at 49 mo			
%		99.9	99.7	98.7	98.0	97.9			
%		99.7	96.7	82.5	18.9	4.8			
#		24,000	17,000	12,000	2,000	1,000			
	Effective Sam	ole Size							

7297 InSync Sentry


US Market Release	Nov-04	Malf
Registered US Implants	9,000	The
Estimated Active US Implants	1,000	
Normal Battery Depletions (US)	1,459	
Advisories	None	
	Registered US Implants Estimated Active US Implants Normal Battery Depletions (US)	Registered US Implants9,000Estimated Active US Implants1,000Normal Battery Depletions (US)1,459

Malfunctions (US)
Therapy Function Not Compromised
Battery
Electrical Component
Software/Firmware
Possible Early Battery Depletion
Therapy Function Compromised
Electrical Component

Product Characteristics

1

NBD Code	VVED
Serial Number Prefix	PRK
Max Delivered Energy	35 J
Estimated Longevity	See page 20

300

3,000

7299 InSync Sentry

- -

Effective Sample Size

#

8,000

6,000

5,000

Product Characteristics

199 Insynd	Sentry							Product C	haracteris	tics	
US Market Relea	ase	Apr-0	5 Malfur	nctions (US)		6	7	NBD Code			VVED
Registered US I	mplants	31,000) Thera	apy Function N	lot Compromised	d 6	0	Serial Numbe	er Prefix		PRK
Estimated Activ	e US Implants	11,000) E	lectrical Comp	onent	1	1	Max Delivere	ed Energy		35 J
Normal Battery	Depletions (US)	2,410) S	oftware/Firmw	vare		2	Estimated Lo	ongevity		See page 2
Advisories		None	e P	ossible Early Ba	attery Depletion	4	7				
			Thera	apy Function C	Compromised		7				
			E	lectrical Comp	onent		7				
100											
90							_				
80							_				
70											
60							_				
50											
100 90 90 80 70 60 50 40 30 20							-				
30							_				
20				-							
0	1	2 3	3	4	5	6	7	8		9	10
Years	After Implant	Exc	luding Nor	mal Battery	Depletion	Inclu	ıdin	g Normal Ba	attery Dep	letion	
	1 yr	2 yr	3 yr	4 yr	at 53 mo						
%	100.0	99.9	99.7	99.6	99.6						
%	99.8	97.9	89.7	64.7	27.5						
#	27,000	22,000	15,000	3,000	100						
Effectiv	e Sample Size										

Source: Medtronic Device Registration and Returned Product Analysis Data as of January 31, 2010

7303 InSync Maximo

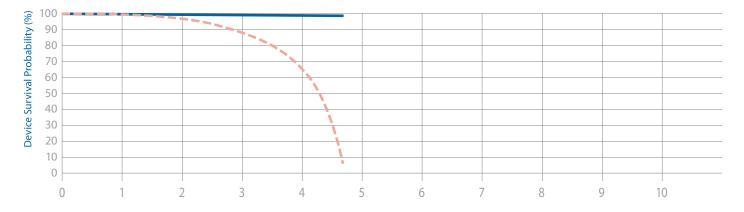
Jun-04	Malfunctions (US)
17,000	Therapy Function Not Compromised
1,000	Electrical Component
3,501	Software/Firmware
None	Possible Early Battery Depletion
	17,000 1,000 3,501

re ttery Depletion Therapy Function Compromised **Electrical Component**

Product Characteristics

66

60 12

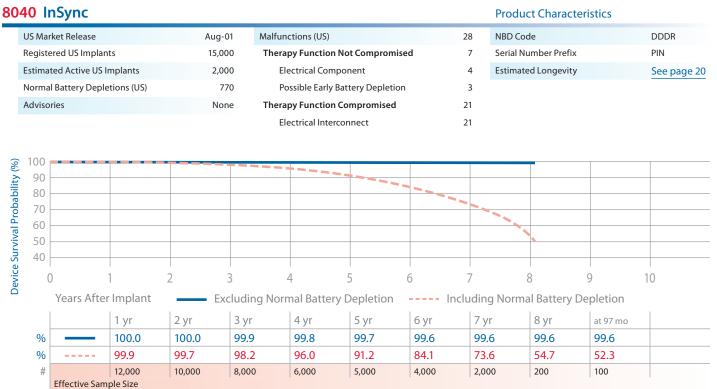

2

46

6

6

NBD Code	VVED
Serial Number Prefix	PRL
Max Delivered Energy	35 J
Estimated Longevity	See page 20



Years After Implant Excluding Normal Battery Depletion ----- Including Normal Battery Depletion

		1 yr	2 yr	3 yr	4 yr	at 56 mo			
%		100.0	99.8	99.6	99.4	99.4			
%		99.8	97.6	88.8	64.3	6.6			
#		15,000	12,000	9,000	5,000	400			
	Effective Sam	ole Size							

7304 InSync Maximo

7304	InSync Ma	aximo						Product Characte	ristics
US M	larket Release		Apr-0	5 Malfur	nctions (US)		36	NBD Code	VVED
Regi	stered US Implar	its	19,000	D Thera	apy Function	Not Compromised	34	Serial Number Prefix	PRL
Estin	nated Active US I	mplants	8,00	D B	attery		1	Max Delivered Energy	35 J
Norn	nal Battery Deple	etions (US)	1,202	2 E	lectrical Comp	oonent	7	Estimated Longevity	See page 2
Advi	sories		None	e P	ossible Early B	Battery Depletion	26		
				Thera	apy Function	Compromised	2		
				E	lectrical Comp	oonent	2		
8 100									
<u>1</u>									
ide 80									
do 70									
al F 60									
.50									
ns a					•				
Device Survival Probability (%) 0.0 2.0 2.0 2.0 3.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 0.0 0.0 0									
De	0	1	2 3	3	4	5 6	7	8	9 10
	Years Afte	r Implant	Exc	luding Nor	mal Battery	/ Depletion 🛛 🗕	Includir	ng Normal Battery D	epletion
		1 yr	2 yr	3 yr	4 yr	at 53 mo			
%	6	100.0	99.9	99.7	99.6	99.6			
%		99.8	97.9	90.6	69.2	45.2			
;	-	16,000	12,000	8,000	2,000	300			
1	Effective Sam	· ·	12,000	0,000	2,000	300	1		

8042 InSync III

US Mai	rket Release		Feb	-03	Malfunctions (US)			9	NBD Code		DDDR
Registe	ered US Implan	its	34,0	000	Therapy Functio	n Not Compror	nised	3	Serial Number	Prefix	PKF
Estima	ited Active US I	mplants	17,0	000	Electrical Cor	nponent		2	Estimated Lon	gevity	See page 2
Norma	al Battery Deple	etions (US)		414	Possible Early	Battery Deple	tion	1			
Adviso	ories		No	one	Therapy Functio	n Compromise	d	6			
					Electrical Cor	nponent		2			
					Electrical Inte	erconnect		4			
90 80 70 () Years After	1 r Implant	2 E	3 xcludin	4 g Normal Batte	5	6	7 cluding	8 9 Normal Batt	9 ery Depletio	10 n
		1 yr	2 yr	3 yr	4 yr	5 yr	бyr	at 81	l mo		
%		100.0	100.0	100.	0 100.0	99.9	99.9	99.9	9		
%		100.0	99.9	99.2	97.4	94.2	88.0	79.9	9		
#		24,000	18,000	12,00	0 8,000	5,000	2,000	100			
	Effective Sam	ple Size									

CRT

C154DWK, C164AWK, C174AWK Concerto

US Market Release	May-06
Registered US Implants	84,000
Estimated Active US Implants	60,000
Normal Battery Depletions (US)	860
Advisories: See page 138 – 2009 Potential Reduced Device Longevity	

Performance Note: See page 146 – Anomalies in MOSFET Integrated Circuit Technology

Malfunctions (US)
Therapy Function Not Compromised
Electrical Component
Possible Early Battery Depletion
Therapy Function Compromised
Electrical Component
Electrical Interconnect

(N) | (A) Product Characteristics

130

110

10

100 20 19

1

724	NBD Code	VVED
721	Serial Number Prefix	PVU, PVT, PVR
718	Max Delivered Energy	35 J
3	Estimated Longevity	See page 20
3		
3		

(N) = Non-advisory population(A) = Advisory population

90										
				154DWK, C164A	WK, C174AWK (A	Advisory populati	on) 62.3%			
70										
60										
50										
40										
30			1							
20			l l							
10										
10										
0										
0	1	2	3	4	5	6	7	8	9	10
~	rs After Impl		-		attery Deplet		Including	-	-	

	Non-Adv	1 yr	2 yr	3 yr	at 39 mo				
%		100.0	99.8	99.3	99.0				
%		99.8	97.6	88.8	86.1				
#		56,000	24,000	2,000	300				
	Effective Sam	ple Size							
						1	1		

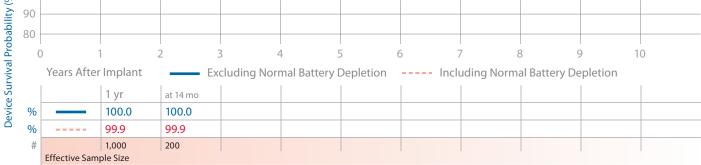
	Adv Pop	1 yr	2 yr	3 yr	at 38 mo	 	 	 	
%		99.9	99.5	76.4	62.3				
%		99.7	97.1	44.2	10.5				
#		3,000	3,000	1,000	300				
	Effective Sam	ole Size							

400

24TRK Consulta CF	₹T-D					Product Cha	aracteristics	
US Market Release	Aug-08	Malfunctions (U	IS)		4	NBD Code		DDED
Registered US Implants	18,000	Therapy Funct	tion Not Compror	nised	3	Serial Number	Prefix	PUD
Estimated Active US Implants	17,000	Electrical C	Component		2	Max Delivered	Energy	35 J
Normal Battery Depletions (US)	2	Software/F	irmware		1	Estimated Long	gevity	See page 20
Advisories	None	Therapy Funct	tion Compromise	d	1			
		Electrical C	Component		1			
90								
80								
80 0 1	2 3	4	5	6	7	8	9	10
80 0 1 Years After Implan		4 uding Normal Bat	-	-	1	8 ng Normal Batt	-	
80 0 1 Years After Implan			-	-	1	-	-	
0 1 Years After Implan	t — Exclu		-	-	1	-	-	

D274TRK Concerto II CRT-D

Effective Sample Size


Effective Sample Size

2,000

#

US Market Release	Aug-09	Malfunctions (US)	0	NBD Code	DDED
Registered US Implants	2,000	Therapy Function Not Compromised	0	Serial Number Prefix	PUE, PZB
Estimated Active US Implants	2,000	Therapy Function Compromised	0	Max Delivered Energy	35 J
		merupy runction compromised	0		
Normal Battery Depletions (US)	0			Estimated Longevity	See page 20
Advisories	None				
100					
90					
80					
0 1 2	3	4 5 6	7	8 9	10
Years After Implant	Exclud	ing Normal Battery Depletion	Includi	ng Normal Battery Depletion	
90 80 0 1 2 Years After Implant - % 100.0					
% 100.0					
% <u> </u>					

Estimated Active US Implants 5,000 Thera	py Function Not Compromised	0	Serial Number Prefix	PZP
	ov Function Compromised			121
	by runction compromised	0	Max Delivered Energy	35 J
Normal Battery Depletions (US) 3			Estimated Longevity	See page 2
Advisories None				

Device Survival Summary (95% Confidence Interval)

		10 yr										
		8 yr										
		7 yr										
		6 yr										
		5 yr	97.9 +.2/3 at 49 mo	4.8 +.6/6 at 49 mo	99.5 +.2/2 at 55 mo	16.6 +2.0/-1.9 at 55 mo	99.6 +.1/1 at 53 mo	27.5 +3.5/-3.4 at 53 mo	99.4 +.1/2 at 56 mo	6.6 +1.0/9 at 56 mo	99.6 +.1/2 at 53 mo	45.2 +2.7/-2.7 at 53 mo
y (%)		4 yr	98.0 +.2/3	18.9 +.9/9	99.5 +.2/2	67.2 +1.3/-1.4	99.6 +.1/1	64.7 +1.0/-1.0	99.4 +.1/2	64.3 +1.0/-1.0	99.6 +.1/2	69.2 +1.2/-1.3
Device Survival Probability (%)	nt	3 yr	98.7 +.2/2	82.5 +.6/6	99.6 +.1/2	89.2 +.8/8	99.7 +.1/-1	89.7 +.4/4	99.6 +.1/1	88.8 +.6/6	99.7 +.1/-1	90.6 +.5/6
survival P	Years After Implant	2 yr	99.7 +.1/1	96.7 +.2/3	99.9 +.1/1	97.7 +.3/4	9.99 +.0/0	97.9 +.2/2	99.8 +.1/1	97.6 +.2/3	99.9 +.0/-1	97.9 +.2/3
Device 9	Years Af	1 yr	9.99 +.0/	99.7 +.1/.+	100.0 +.0/1	99.7 +.1/1	100.0 +.0/0	99.8 +.0/-1	100.0 +.0/0	99.8 +.1/1	100.0 +.0/0	99.8 +.1/1
			Excluding Normal Battery Depletion	Including Normal Battery Depletion	Excluding Normal Battery Depletion	Including Normal Battery Depletion	Excluding Normal Battery Depletion	Including Normal Battery Depletion	Excluding Normal Battery Depletion	Including Normal Battery Depletion	Excluding Normal Battery Depletion	Including Normal Battery Depletion
	le	τoτ	286	9 set)	32		67		66		36	
IS (US)			5 = 286	= 9 ed subset)	= 32		Ш		Ш		II	
nctions (US)	yapy Jor Not Desimorqu Ja	ruf Cor	255 =	- 0 = 9 ry-related subset)	31 =		60 =		60 =		34 =	
Malfunctions (US)	ton Not besimorqn	Cor The TuT Cor	Ш	= ed subs	П		Ш		Ш		II	
Malfunctions (US)	npromised srapy ortion Not basimorqu	l9 I M I M I M I M I M I M I M	+ 255 =		31 =		+ 60		+ 60		+ 34 =	
Malfunctions (US)	oletions (US) stapy Function promised sotion Not npromised	Act Imp Jog Dep Dep The The Fur Fur Cor	31 + 255 =	ntial Premature	1 + 31 =		-		= 09 + 9		2 + 34 =	
Malfunctions (US)	ive US solants mail Battery srapy Function mpromised notion Not mpromised	US Est Act Inp Del Del Del The Con The Con	6,237 31 + 255 =	ntial Premature	1,459 1 + 31 =		2,410 7 + 60 =		3,501 6 + 60 =		1,202 2 + 34 =	
Malfunctions (US)	Implants ive US solants plants plattery poletions (US) pletions (US) ple	Red US Est Imp Imp Imp Imp Imp Imp Imp Imp Imp Imp	300 6,237 31 + 255 =	ntial Premature	1,000 1,459 1 + 31 =		11,000 2,410 7 + 60 =		1,000 3,501 6 + 60 =		8,000 1,202 2 + 34 =	
Malfunctions (US)	easee jistered implants plants plattery pletions (US) pletions (US) pletions (US) pletions (US) pletions (US) pletions (US)	Red US Est Imp Imp Imp Imp Imp Imp Imp Imp Imp Imp	28,000 300 6,237 31 + 255 =	Advisories: See page 143 – 2005 Potential Premature(9) + 0 = 9Battery Depletion Due to Battery Short(advisory-related subset)	9,000 1,000 1,459 1 + 31 =		31,000 11,000 2,410 7 + 60 =		17,000 1,000 3,501 6 + 60 =		19,000 8,000 1,202 2 + 34 =	

CRT Cardiac Resynchronization Therapy, continued

		10 yr	99.6 +.1/2 at 97 mo	52.3 +3.1/-3.2 at 97 mo							
		8 yr 10	99.6 99.4 +: 1/2 +: at	54.7 52 +3 +3 +3 +3 +3 +3 +3 +3 +3 +3 +3 +3 +3							
		7 yr 8	99.6 +.1/2 +.	73.6 5.	99.9 +.1/3 at 81 mo	79.9 +2.0/-2.2 at 81 mo					
		6 yr 7	99.6 +.1/2 +	84.1 7 +.9/-1.0 +	99.9 +.0/1 +	88.0 +.9/-1.0 a					
		5 yr 6	99.7 +.1/2	91.2 +.7/7	99.9 +.0/-1	94.2 +.5/5					
(%)		4 yr	99.8 +.1/1	96.0 +.4/5	100.0 +.0/1	97.4 +.3/3	99.0 +.3/5 at 39 mo	86.1 +1.4/-1.6 at 39 mo	62.3 +2.4/-2.5 at 38 mo	10.5 +1.9/-1.7 at 38 mo	
Device Survival Probability (%)	t	3 yr	99.9 +.0/1	98.2 +.2/3	100.0 +.0/0	99.2 +.1/2	99.3 +.2/2	88.8 +.7/8	76.4 +1.9/-2.0	44.2 +2.2/-2.3	
urvival Pr	Years After Implant	2 yr	100.0 +.0/1	99.7 +.1/-1	100.0 +.0/0	9.99 +.0/1	99.8 +.0/1	97.6 +.2/2	99.5 +.2/3	97.1 +.6/7	
Device S	Years Afi	1 yr	100.0 +.0/0	9.99 +.0/1	100.0 +.0/0	100.0 +.0/0	100.0 +.0/0	99.8 +.0/0	99.9 +.1/2	99.7 +.1/3	
Ľ			Excluding Normal Battery Depletion	Including Normal Battery Depletion	Excluding Normal Battery Depletion	Including Normal Battery Depletion	Excluding Normal Battery Depletion	Including Normal Battery Depletion	Excluding Normal Battery Depletion	Including Normal Battery Depletion	
()	le	toT	28		6		130		724		
lalfunctions (US)	rapy ction Not npromised	unj	7 =		н С		110 =		721 =		
Malfun	rapy Function npromised	uoj	21 +		+ 9		-+ 50		+ M		
ł	Vađtes Battery (2U) znoitelu		770		414		727	MOSFET	133	ed MOSFET	
	bətem SU əvi stnsle	foA	2,000		17,000		60,000	romalies in	400	ntial Reduc	
	istered applants	I SN ნəუ	15,000		34,000		80,000	e note on Ai gy	4,000	- 2009 Pote	gy
	tek esse	Nele NS N	Aug-01		Feb-03		May-06	Performanc it Technolo	May-06	ty Performance	uit Technolo
		Family	InSync		InSync III		Concerto	<u>See page 146</u> – Performance note on Anomalies in MOSFET Integrated Circuit Technology	Concerto	Advisories: See page 138 – 2009 Potential Reduced Device Longevity See page 146 – Performance note on Anomalies in MOSFET	Integrated Circuit Technology
	177	Number	8040		8042		C154DWK, C164AWK, C174AWK (Non- advisory population)		C154DWK, C164AWK, C174AWK (Advisory population)		

18 Medtronic CRDM Product Performance Report www.CRDMPPR.medtronic.com

Device Survival Summary continued

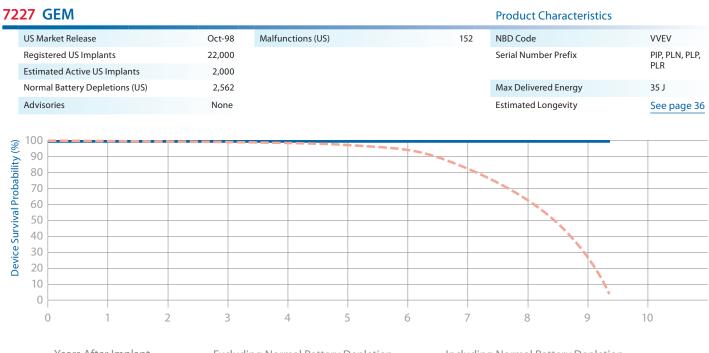
						Malfun	Malfunctions (US)	JS)		Device	Device Survival Probability (%)	robabili	ty (%)					
-		Narket 285e	istered mplants	bətem VU SV STRBI	nal Battery (SU) snoiteld)	rapy Function promised	rapy ction Not perimorqn	l le		Years A	Years After Implant	'nt						
Model Number	Family			itoA		uoj	unj	•••L	Tots	1 yr	2 yr	3 yr	4 yr	5 yr	6 yr	7 yr	8 yr	10 yr
D224TRK	Consulta CRT-D	Aug-08	18,000	17,000	7	+	ll M	4	t Excluding Normal Battery Depletion	100.0 +.0/1	100.0 +.0/1 at 14 mo							
									Including Normal Battery Depletion	99.8 +.1/2	99.8 +.1/2 at 14 mo							
D274TRK	Concerto II CRT-D	Aug-09	2,000	2,000	0	+ 0	0	0) Excluding Normal Battery Depletion	100.0 +.0/0 at 3 mo								
									Including Normal Battery Depletion	100.0 +.0/0 at 3 mo								
D284TRK	Maximo II CRT-D	Mar-08	5,000	5,000	m	+	0	0) Excluding Normal Battery Depletion	100.0 +.0/0	100.0 +.0/0 at 14 mo							
									Including Normal Battery Depletion	99.9 +.1/2	99.9 +.1/2 at 14 mo							

Reference Chart

The longevity estimates provided are mean values calculated for the parameters given. The actual longevity achieved for any device while implanted will depend on the actual programmed parameters and patient factors, and may differ significantly from these estimates.

Jintilese	estimates.				E	stimate	d Longe	vity		F 1	D	
					×**						Replacement ERI)***	End of
Model Number	Family	Connector Style	Volume/ Mass*	Delivered Energy	Charging Frequency [*]	100% Pacing‡	50% Pacing‡	15% Pacing‡	100% Sensing	Battery Voltage	Charge Time	Life (EOL) Battery Voltage
7289	InSync II Marquis	DR+LV true	38 cc 76 g	30 J	Monthly Quarterly Semiannual	3.3 4.2 4.5	3.6 4.9 5.4	4.0 5.5 6.1	4.2 5.8 6.6	≤ 2.62 V	> 16 second charge time	3 months after ERI
7297	InSync Sentry	DR+LV true	40 cc 78 g	35 J	Monthly Quarterly Semiannual	3.3 4.5 5.0	3.7 5.3 6.0	4.1 6.2 7.1	4.3 6.6 7.7	≤ 2.62 V	> 16 second charge time	3 months after ERI
7299	InSync Sentry	DR+LV true	40 cc 78 g	35 J	Monthly Quarterly Semiannual	3.3 4.5 5.0	3.7 5.3 6.0	4.1 6.2 7.1	4.3 6.6 7.7	≤ 2.62 V	> 16 second charge time	3 months after ERI
7303	InSync Maximo	DR+LV true	40 cc 78 g	35 J	Monthly Quarterly Semiannual	3.3 4.5 5.0	3.7 5.3 6.0	4.1 6.2 7.1	4.3 6.6 7.7	≤ 2.62 V	> 16 second charge time	3 months after ERI
7304	InSync Maximo	DR+LV true	40 cc 78 g	35 J	Monthly Quarterly Semiannual	3.3 4.5 5.0	3.7 5.3 6.0	4.1 6.2 7.1	4.3 6.6 7.7	≤ 2.62 V	> 16 second charge time	3 months after ERI
	WIAXITTO											

		Estimated Lo	ngevity		
Model Number	Family	Amplitude Setting	500 Lead Ω	1000 Lead Ω	Elective Replacement Time Indicators
8040	InSync	Low 2.5 V (A, RV) Nominal 3.5 V (A, RV) High 5.0 V (A, RV)	11.9 8.9 6.6	13.7 11.4 9.1	**
8042	InSync III	Low 2.5 V (A, RV, LV) Nominal 3.5 V (A, RV, LV) High 5.0 V (A, RV, LV)	8.3 5.9 4.1	9.9 7.8 6.0	**

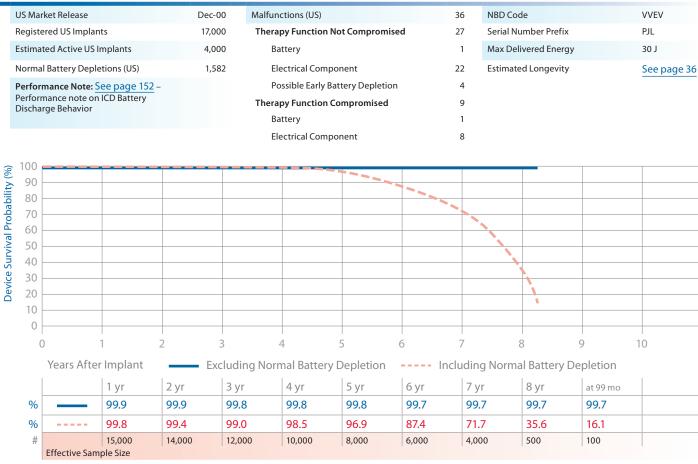

					Es	timated	Longe	vity			ommended	
					*					Replace	ment (RRT)***	-
Model Number	Family	Connector Style	Volume/ Mass*	Delivered Energy	Charging Frequency*	100% Pacing‡	50% Pacing‡	15% Pacing‡	100% Sensing	Battery Voltage	Charge Time	End of Service (EOS)
C154DWK, C164AWK, C174AWK	Concerto	DR+LV true	38 cc 68 g	35 J	Monthly Quarterly Semiannual	3.8 5.5 6.3	4.3 6.8 8.0	4.8 8.0 9.8	5.0 8.8 11.0	\leq 2.62 V	—	3 month after RRT or > 16-second charge time
D224TRK	Consulta CRT-D	DR+LV true	38 cc/ 68 g	35 J	Monthly Quarterly Semiannual	3.2 4.4 4.8	3.8 5.5 6.2	4.4 6.8 7.9	4.7 7.5 9.0	≤ 2.63 V		3 month after RRT or > 16-second charge time
D274TRK	Concerto II	DR+LV true	38 cc/ 68 g	text	Monthly Quarterly Semiannual	3.2 4.4 4.8	3.8 5.5 6.2	4.4 6.8 7.9	4.7 7.5 9.0	≤ 2.63 V	_	3 month after RRT or > 16-second charge time
D284TRK	Maximo II CRT-D	DR+LV true	38 cc/ 68 g	35 J	Monthly Quarterly Semiannual	3.2 4.4 4.8	3.8 5.5 6.2	4.4 6.8 7.9	4.7 7.5 9.0	≤ 2.63 V	_	3 month after RRT or > 16-second charge time

* Volume and mass differ by connector style.

** A full charge is a full energy therapeutic shock or capacitor reformation.

*** The minimum time between ERI and EOL (or RRT and EOS) is 3 months (100% pacing, two charges per month).

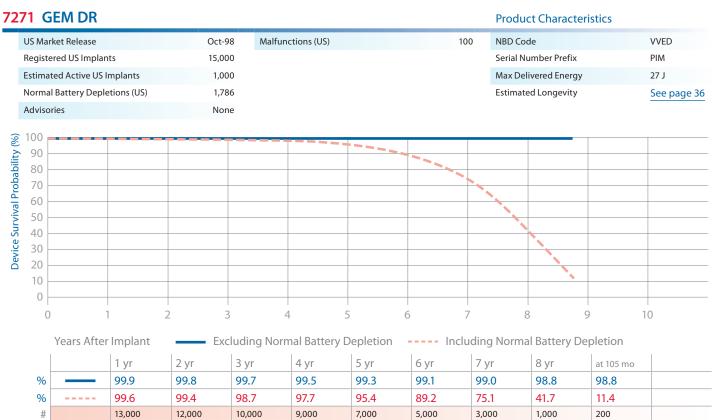
‡ Pacing mode is DDD for CRT models. Parameter settings; lower rate at 60 ppm, sensing rate at 70 bpm, (A, RV, LV) 3.0 V amplitude, 0.4 ms pulse width, and 510-ohm pace load per applicable channel. CRT models with shared biventricular pacing; InSync Marquis 7277 (LV impedance set to 510 ohms), InSync ICD 7272 (RV amplitude set to 4.0 V).



	Years After	Implant	Exc	luding Norn	nal Battery L	Depletion	Inclu	iding Norma	I Battery De	pletion	
		1 yr	2 yr	3 yr	4 yr	5 yr	6 yr	7 yr	8 yr	9 yr	at 112 mo
%		99.7	99.6	99.5	99.4	99.2	99.2	99.1	99.0	99.0	99.0
%		99.3	98.9	98.6	98.1	97.1	94.4	81.7	62.4	27.5	4.4
#		20,000	17,000	15,000	13,000	11,000	9,000	6,000	3,000	1,000	200
	Effective Sam	ple Size									

7230 Marquis VR

30 N	Aarquis VR	R							Product Characteristic	CS
US Mar	rket Release		Dec-0	02 Malf	unctions (US)			42	NBD Code	VVEV
Registe	ered US Implants		19,00	00 The	erapy Function	Not Comprom	nised	27	Serial Number Prefix	PKD, PLW, PLY
Estima	ted Active US Imp	olants	8,00	00	Electrical Com	ponent		12		
Norma	l Battery Depletic	ons (US)	21	16	Software/Firm	ware		1	Max Delivered Energy	30 J
	ories: See page 1		otential		Possible Early	Battery Depleti	ion	13	Estimated Longevity	See page 36
	ture Battery Depl / Short	etion Due to			Other			1		
Duttery				The	erapy Function	Compromised	ł	15		
					Battery (9 malf	unctions related	d to advisory)	10		
					Electrical Com	ponent		5		
100										
90 -										
80										
70										
0	1	2		3	4	5	6	7	8 9	10
	Years After Ir	nplant	Exc	luding No	ormal Battery	y Depletion	Ir	ncludir	ng Normal Battery Deple	tion
	1	l yr	2 yr	3 yr	4 yr	5 yr	6 yr	at	83 mo	
90 - 80 - 70 - 0	1	100.0	99.9	99.9	99.8	99.7	99.6	99	9.6	
%	Ç	99.8	99.6	99.4	99.1	98.3	94.9	86	5.8	
#	1	7,000	13,000	11,000	10,000	8,000	3,000	10	0	
	Effective Sample	e Size								


7231 GEM III VR

7232 Maximo VR

-												
US Ma	rket Release		Oct-03	3 Malfune	ctions (US)			45	NBD Coo	le		VVED
Registe	ered US Implants		43,000	D Theraj	py Function No	ot Compromis	ed	33	Serial Nu	ımber Prefix		PRN
Estima	ted Active US Imp	olants	27,000) Ele	ectrical Compo	nent		16	Max Del	vered Energy		35 J
Norma	l Battery Depletic	ons (US)	14	I Po	ssible Early Bat	ttery Depletior	ı	16	Estimate	d Longevity		See page 3
Advice	ories: See page 1	142 2005 Day	tantial	Ot	her			1				
Prema	ture Battery Depl		tential	Thera	py Function Co	ompromised		12				
Battery	Short			Ele	ectrical Compo	nent		10				
				Ele	ectrical Interco	nnect		1				
				Ро	ssible Early Bat	ttery Depletior	ı	1				
100												
90												
80												
() 1	2	. 3		4	5	6	7	8	3	9	10
90 80 (Years After Ir	mplant	Exc	luding Norn	nal Battery I	Depletion	Inc	udin	g Norma	l Battery De	epletion	
	1	l yr	2 yr	3 yr	4 yr	5 yr	бyr					
%	1	100.0	99.9	99.9	99.9	99.8	99.8					
%	9	99.9	99.8	99.5	99.2	97.9	91.3					
#	3	39,000	33,000	27,000	17,000	3,000	100					
	Effective Sample	e Size										

Product Characteristics

7274 Marquis DR

%

#

Effective Sample Size

Effective Sample Size

Product Characteristics

JS Market Release		Mar-0	2 Malfun	ctions (US)		1	79	NBD Coo	de		VVED
Registered US Implan	its	48,00	0 Thera	py Function No	ot Compromise	ed	79	Serial Nu	umber Prefix		РКС
stimated Active US I	mplants	8,00	iO Ba	attery (3 malfun	ctions related to	advisory)	5	Max Del	ivered Energy	/	30 J
Normal Battery Deple	etions (US)	3,83	O El	ectrical Compo	nent		26	Estimate	ed Longevity		See page
Advisories: See page	<mark>e 143</mark> – 2005 Po	otential	Pc	ossible Early Bat	tery Depletion		48				
Premature Battery De Battery Short	pletion Due to		Thera	py Function Co	ompromised	1	00				
Juccery Shore			Ba	ttery (69 malfui	nctions related t	o advisory)	75				
			Ele	ectrical Compo	nent		25				
100											
90											
80											
70											
60											
50											
40											
20							1				
10											
10											

90.6

16,000

Ð

Medtronic CRDM Product Performance Report 23 www.CRDMPPR.medtronic.com

4.0

200

65.9

6,000

98.5

26,000

97.0

22,000

99.5

34,000

99.8

42,000

Nov-00

20,000

1,000

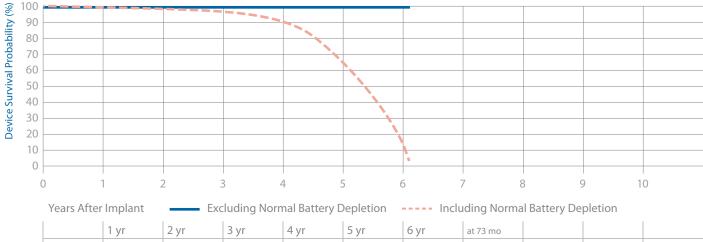
3,981

7275 GEM III DR US Market Release

Registered US Implants

Discharge Behavior

Estimated Active US Implants


Normal Battery Depletions (US)

Performance Note: See page 152 -

Performance note on ICD Battery

Product Characteristics

38	NBD Code	VVED
27	Serial Number Prefix	PJM
1	Max Delivered Energy	30 J
9	Estimated Longevity	See page 36
1		
16		
11		
2		
8		
1		

Malfunctions (US)

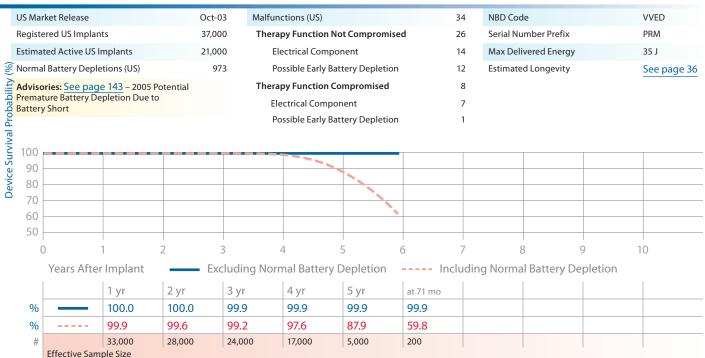
Battery

Battery

Therapy Function Not Compromised

Possible Early Battery Depletion

Therapy Function Compromised


Electrical Component Electrical Interconnect

Electrical Component

Software/Firmware

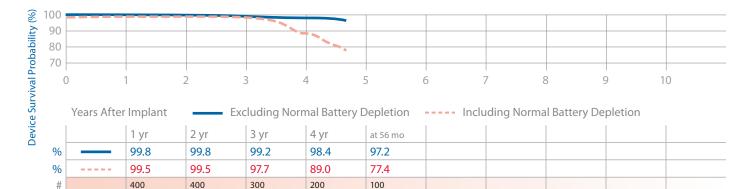
		1 yr	2 yr	3 yr	4 yr	5 yr	6 yr	at 73 mo		
%		99.9	99.9	99.8	99.8	99.7	99.7	99.7		
%		99.6	99.0	96.9	90.2	64.7	12.2	2.6		
#		18,000	15,000	13,000	10,000	5,000	1,000	300		
	Effective Sam	ole Size								

7278 Maximo DR

24 Medtronic CRDM Product Performance Report www.CRDMPPR.medtronic.com

7288 Intrinsic

Product Characteristics

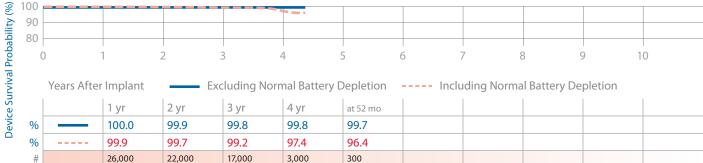

US Mar	rket Release		Aug-04	4 Malfun	ctions (US)		4	43	NBD Code		VVED
Registe	ered US Implan	ts	31,000	D Thera	py Function No	ot Compromise	d	36	Serial Number Prefix		PUB
Estimat	ted Active US li	mplants	19,000	D Ba	ittery			2	Max Delivered Energ	У	35 J
Norma	l Battery Deple	tions (US)	489	9 El	ectrical Compo	nent		12	Estimated Longevity	,	See page 3
Adviso	ries		None	e So	ftware/Firmwa	are		1			
				Po	ossible Early Bat	ttery Depletion	:	21			
				Thera	py Function Co	ompromised		7			
400				El	ectrical Compo	nent		7			
100											
90 80											
70						•					
,		1	2 3		4	5	6	7	8	9	10
	Years After	Implant	Exc	, Iuding Norr	nal Battery I	0	0	udin	g Normal Battery	-	10
100 90 80 70 0 %		1 yr	2 yr	3 yr	4 yr	5 yr	at 62 mo				
%		100.0	99.9	99.9	99.8	99.8	99.8				
%		99.9	99.6	99.2	98.1	85.3	78.7				
#		28,000	25,000	22,000	15,000	1,000	300				
	Effective Sam	ple Size									

7290 Onyx

JS Mai	rket Release		Ma	ar-04	Malfunctions (US	5)		4	NBD Cod	le		VVEV
Registe	ered US Implants	5	1	1,000	Therapy Functi	on Not Compr	omised	3	Serial Nu	mber Prefi	ĸ	PRP
Estima	ted Active US Im	plants	1	1,000	Electrical Co	omponent		2	Max Deli	vered Ener	ду	30 J
Norma	l Battery Deplet	ions (US)		13	Possible Ear	ly Battery Dep	etion	1	Estimate	d Longevit	у	See page 3
Adviso	ries		1	None	Therapy Functi	on Compromi	ed	1				
					Electrical Co	omponent		1				
100												
90												
80												
() 1		2	3	4	5	6	7	5	3	9	10
	Years After	lmplant 1 yr	2 yr	Excludin 3 yr	g Normal Batt 4 yr	ery Depletio	on	Includin	g Norma	l Battery	Depletion	
%		99.9	99.5	99.5	99.5	99.5						
%		99.8	99.1	98.2	96.8	94.0						
#		1,000	1,000	1,000	400	100						
	Effective Samp	le Size										

D153ATG, D153DRG EnTrust

US Market Release	Jun-05	Malfunctions (US)	7	NBD Code	DDED, VVED
Registered US Implants	500	Therapy Function Not Compromised	6	Serial Number Prefix	PNR
Estimated Active US Implants	200	Possible Early Battery Depletion	6	Max Delivered Energy	30 J
Normal Battery Depletions (US)	31	Therapy Function Compromised	1	Estimated Longevity	See page 37
Advisories	None	Electrical Component	1		


D154ATG, D154DRG EnTrust

Effective Sample Size

Product Characteristics

Product Characteristics

US Market Release	Jun-05	Malfunctions (US)	43	NBD Code	DDED, VVED
Registered US Implants	28,000	Therapy Function Not Compromised	37	Serial Number Prefix	PNR
Estimated Active US Implants	20,000	Electrical Component	10	Max Delivered Energy	35 J
Normal Battery Depletions (US)	107	Possible Early Battery Depletion	27	Estimated Longevity	See page 37
Advisories	None	Therapy Function Compromised	6		
		Electrical Component	6		
3 100					

26,000 **Effective Sample Size**

D154AWG, D164AWG Virtuoso DR

US Market Release	May-06
Registered US Implants	75,000
Estimated Active US Implants	62,000
Normal Battery Depletions (US)	62
Advisories: See page 138 – 2009 Potential Reduced Device Longevity	
Performance Note: See page 146 – Anomalies in MOSFET Integrated Circuit	

Malfunctions (US) 34 **Therapy Function Not Compromised** 15 Electrical Component 6 Electrical Interconnect 1 Possible Early Battery Depletion 8 Therapy Function Compromised 19 Electrical Component 19

Product Characteristics (N) (A)

492 490

490

92	NBD Code	VVED
90	Serial Number Prefix	PVV, PUL
90	Max Delivered Energy	35 J
	Estimated Longevity	See page 37
2		
2		

Technology

90					154AWG, D164AV 154AWG, D164AV						
80					IS4AVVG, DT64AV	vG (Advisory por	pulation) / 1.7%				
0											
50											
50											
10				1							
30											
(1	2	3	4	5	6	7	8	9	10
	Years After Non-Adv	1 yr	2 yr	3 yr	at 40 mo	Depletion					
	Non-Adv	1 yr 100.0	2 yr 99.9	3 yr 99.9	at 40 mo						
%		1 yr 100.0 99.9	2 yr 99.9 99.7	3 yr 99.9 99.3	at 40 mo 99.9 99.1						
% % #	Non-Adv	1 yr 100.0 99.9 54,000	2 yr 99.9	3 yr 99.9	at 40 mo						
%	Non-Adv	1 yr 100.0 99.9 54,000	2 yr 99.9 99.7	3 yr 99.9 99.3	at 40 mo 99.9 99.1						
% #	Non-Adv	1 yr 100.0 99.9 54,000 ple Size	2 yr 99.9 99.7 26,000	3 yr 99.9 99.3 2,000	at 40 mo 99.9 99.1 200						
% # %	Non-Adv	1 yr 100.0 99.9 54,000 ple Size 1 yr	2 yr 99.9 99.7 26,000	3 yr 99.9 99.3 2,000	at 40 mo 99.9 99.1 200 at 40 mo						
% # %	Non-Adv Effective Sam Advisory	1 yr 100.0 99.9 54,000 ple Size 1 yr 100.0	2 yr 99.9 99.7 26,000 2 yr 99.9	3 yr 99.9 99.3 2,000 3 yr 90.6	at 40 mo 99.9 99.1 200 at 40 mo 71.7						
% # %	Non-Adv	1 yr 100.0 99.9 54,000 ple Size 1 yr	2 yr 99.9 99.7 26,000	3 yr 99.9 99.3 2,000	at 40 mo 99.9 99.1 200 at 40 mo						

D154VRC EnTrust

D154V	RC EnTru	st							Produc	t Character	ristics	
US Ma	rket Release		Jun-0	5 Malfur	nctions (US)			26	NBD Coc	le		VVEV
Regist	ered US Implan	ts	14,00	0 Thera	py Function	Not Comprom	ised	21	Serial Nu	mber Prefix		PNT
Estima	ated Active US I	mplants	10,00	0 Ba	attery			2	Max Deli	vered Energy		35 J
Norma	al Battery Deple	tions (US)	3	0 El	ectrical Com	ponent		9	Estimate	d Longevity		See page 37
Adviso	ories		Non	e Po	ossible Early I	Battery Depleti	on	10				
				Thera	py Function	Compromised		5				
				El	lectrical Com	ponent		5				
Survival Probability (%) 06 00 06 00	0 Years After	1 Implant		} Iuding Nor	4 mal Batter	5 y Depletion	6	7 Includin		3 I Battery Do	9 epletion	10
ce Sun		1 yr	2 yr	3 yr	4 yr	at 51 mo						
Device		99.9	99.9	99.8	99.7	99.7						
70		99.9	99.6	99.3	98.3	98.3						
#	Effective Sam	13,000 ple Size	11,000	9,000	1,000	200						

<u> </u>

D154VWC, D164VWC Virtuoso VR

24,000

Effective Sample Size

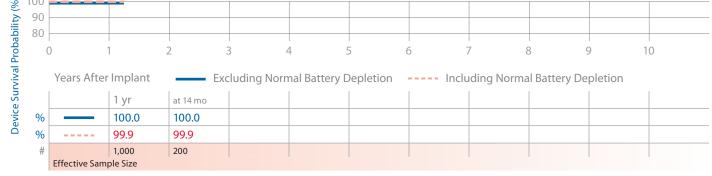
11,000

300


	May-06	Malfunctions (US)	13	NBD Code	VVEV
gistered US Implants	32,000	Therapy Function Not Compromised	4	Serial Number Prefix	PUN, PUP
timated Active US Implants	27,000	Electrical Component	3	Max Delivered Energy	35 J
ormal Battery Depletions (US)	16	Electrical Interconnect	1	Estimated Longevity	See page 37
<mark>lvisories:</mark> <u>See page 138</u> – 2009 tential Reduced Device Longevity		Therapy Function Compromised	9		
r formance Note: <u>See page 146</u> Anomalies in MOSFET Integrated Circuit chnology		Electrical Component	9		

ity	90											
abi	80											
Prob	C) .	1	2 3	3 4	4	5	6	7 ε	3) 1	0
evice Survival F		Years After	Implant	Exc	luding Norn	nal Battery I	Depletion	Inclu	iding Norma	l Battery De	pletion	
			1 yr	2 yr	3 yr							
	%	_	100.0	99.9	99.9							
Ō	%		99.9	99.7	99.7							

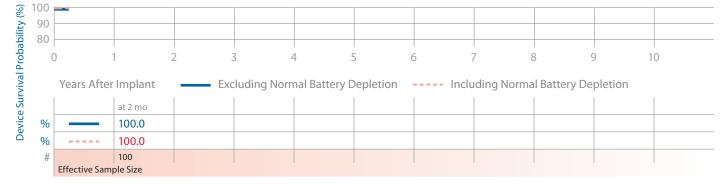
D224DRG Secura DR


#

US Market Release	Aug-08	Malfunctions (US)	0	NBD Code	DDED
Registered US Implants	14,000	Therapy Function Not Compromised	0	Serial Number Prefix	DUH, PZE
Estimated Active US Implants	13,000	Therapy Function Compromised	0	Max Delivered Energy	35 J
Normal Battery Depletions (US)	7			Estimated Longevity	See page 37
Advisories	None				

Product Characteristics

24VRC Secura VR				Product Characteristics	
US Market Release	Aug-08	Malfunctions (US)	0	NBD Code	VVEV
Registered US Implants	6,000	Therapy Function Not Compromised	0 0	Serial Number Prefix	PUX
Estimated Active US Implants	6,000	Therapy Function Compromised		Max Delivered Energy	35 J
Normal Battery Depletions (US)	2			Estimated Longevity	See page 37
Advisories	None				
1 00 					



D274DRG Virtuoso II DR

US Market Release	Aug-09	Malfunctions (US)	0	NBD Code	VVED
Registered US Implants	1,000	Therapy Function Not Compromised	0	Serial Number Prefix	DUH, PZE
Estimated Active US Implants	Active US Implants 1,000 Therapy Function		0	Max Delivered Energy	35 J
Normal Battery Depletions (US)	0			Estimated Longevity	See page 37
Advisories	None				

4VRC Virtuoso II VR				Product Characteristics	
JS Market Release	Aug-09	Malfunctions (US)	0	NBD Code	VVEV
legistered US Implants	400	Therapy Function Not Compromised	0 0	Serial Number Prefix	PUY, PZH
stimated Active US Implants	400	Therapy Function Compromised		Max Delivered Energy	35 J
lormal Battery Depletions (US)	0			Estimated Longevity	See page 37
dvisories	None				

D284DRG Maximo II DR

#

Effective Sample Size

1,000

200

D284DRG Maximo II DR				Product Characteris	stics
US Market Release	Mar-08	Malfunctions (US)	NBD Code	VVED	
Registered US Implants	7,000	Therapy Function Not Compromised	0	Serial Number Prefix	PZM
Estimated Active US Implants	7,000	0 Therapy Function Compromised		Max Delivered Energy	35 J
Normal Battery Depletions (US)	0	Electrical Component	1	Estimated Longevity	See page 37
Advisories	None				
§ 100 > 90					
00 pility					

bil	80											
roba	C) 1	1 :	2 3	3 4	4	5	6	7 8	3 9) 1	0
evice Survival F		Years After	Implant	Exc	luding Norn	nal Battery D	Depletion	Inclu	iding Norma	l Battery De	pletion	
			1 yr	at 14 mo								
	%		100.0	100.0								
ď	%		100.0	100.0								

84\	/RC Maxii	no II VR							Produc	t Charact	eristics	
US M	larket Release		Mar-08	8 Malfun	ctions (US)			1	NBD Cod	le		VVEV
Regis	stered US Implan	ts	4,000) Thera	py Function N	lot Comprom	ised	0	Serial Nu	ımber Prefix		PZN
Estim	nated Active US II	mplants	4,000) Thera	py Function C	Compromised		1	Max Deli	ivered Energ	y	35 J
Norm	nal Battery Deple	tions (US)	0) El	ectrical Comp	onent		1	Estimate	d Longevity		See page 3
Advis	sories		None	:								
		1	2 3		4	5	6	7	5	3	9	10
	Years After	Implant	Excl	uding Nori	mal Battery	Depletion	li	ncludin	ng Norma	al Battery [Depletion	I
Ś		1 yr	at 14 mo									
)		/										
%	6	100.0	100.0									
%		100.0 99.9	100.0 99.9									

500 Effective Sample Size

Imary (95% Confidence Interval)	
>	
Summary	
	ľ
2	
Surviva	
đ	
evice :	1
Ξ.	
Ð	
Δ	,

The following table shows ICD device survival estimates with 95% confidence intervals. Estimates are shown both with and without normal battery depletions included.

Device Survival Probability (%)

Malfunctions (US)

	10 yr	99.0 +.2/2 at 112 mo	4.4 +1.1/9 at 112 mo			99.7 +.1/1 at 99 mo	16.1 +2.5/-2.3 at 99 mo			98.8 +.2/3 at 105 mo	11.4 +1.5/-1.4 at 105 mo		
	8 yr	99.0 +.2/2	62.4 +1.1/-1.2			99.7 +.1/-1	35.6 +2.0/-2.0			98.8 +.2/3	41.7 +1.6/-1.6		
	7 yr	99.1 +.1/2	81.7 +.8/8	99.6 +.1/2 at 83 mo	86.8 +1.5/-1.7 at 83 mo	99.7 +.1/1	71.7 +1.1/-1.1			99.0 +.2/2	75.1 +1.1/-1.1	99.2 +.1/2	4.0 +1.2/-1.0
	6 yr	99.2 +.1/1	94.4 +.4/4	99.6 +.1/2	94.9 +.5/6	99.7 +.1/1	87.4 +.7/7	99.8 +.0/1	91.3 +2.0/-2.5	99.1 +.2/2	89.2 +.7/7	99.2 +.1/1	65.9 +.8/8
	5 yr	99.2 +.1/1	97.1 +.3/3	99.7 +.1/1	98.3 +.2/3	99.8 +.1/1	96.9 +.3/4	99.8 +.0/1	97.9 +.3/4	99.3 +.1/2	95.4 +.4/5	99.4 +.1/1	90.6 +.4/4
	4 yr	99.4 +.1/1	98.1 +.2/2	99.8 +.1/1	99.1 +.2/2	99.8 +.1/1	98.5 +.2/2	9.99 0/0.+	99.2 +.1/1	99.5 +.1/2	97.7 +.3/3	99.6 +.1/1	97.0 +.2/2
ant	3 yr	99.5 +.1/1	98.6 +.2/2	99.9 +.0/1	99.4 +.1/1	99.8 +.1/1	99.0 +.1/2	9.99 0/0.+	99.5 +.1/1	99.7 +.1/1	98.7 +.2/2	9.68 1/0.+	98.5 +.1/1
Years After Implant	2 yr	99.6 +.1/1	98.9 +.1/2	99.9 +.0/1	99.6 +.1/1	99.9 +.0/-,1	99.4 +.1/1	9.99 0/0.+	99.8 +.0/-1	99.8 +.1/1	99.4 +.1/1	9.99 +.0/0	99.5 +.1/1
Years A	1 yr	99.7 +.1/1	99.3 +.1/1	100.0 +.0/0	99.8 +.1/1	99.9 +.0/1	99.8 +.1/1	100.0 +.0/0	9.69 0/0.+	99.9 +.0/-1	99.6 +.1/1	100.0 +.0/0	99.8 +.0/-,0
		Excluding Normal Battery Depletion	Including Normal Battery Depletion	Excluding Normal Battery Depletion	Including Normal Battery Depletion	Excluding Normal Battery Depletion	Including Normal Battery Depletion	Excluding Normal Battery Depletion	Including Normal Battery Depletion	Excluding Normal Battery Depletion	Including Normal Battery Depletion	Excluding Normal Battery Depletion	Including Normal Battery Depletion
le	toT	152		42	(9) subset)	36		45	(0) ubset)	100		179	(72) ubset)
rapy sction Not npromised		I		27 =	(9) (0) (9) (9) (advisory-related subset)	27 =		33 =	(0) +(0) =(0)(advisory-related subset)	I		- 20	(69) + (3) = (72) (advisory-related subset)
rapy Function besimorqu	ao) adT	I		15 +	(<mark>9)</mark> (advisor	+ 6		12 +	(0) + (advisory	I		100 +	(69) + (advisory
yıətteri lam (SU) znoitəld	noN Jef	2,562		216	e Battery	1,582		141	re Battery	1,786		3,830	re Battery
bətemi SU əvi stnalo	ţэА	2,000		8,000	ial Prematuı	4,000	D Battery	27,000	tial Prematu	1,000		8,000	tial Prematu
jistered stnslqml		22,000		19,000	2005 Potent hort	17,000	te note on IC	43,000	- 2005 Poten hort	15,000		48,000	2005 Poten hort
təhreM əssə		Oct-98		Dec-02	e page 143 – to Battery S	Dec-00	- Performanı avior	Oct-03	e page 143 - to Battery S	Oct-98		Mar-02	e page 143 - to Battery 5
	Family	GEM		Marquis VR	Advisories: <u>See page</u> 1 <u>43</u> – 2005 Potential Premature Battery Depletion <u>Due to Battery</u> Short	GEM III VR	<u>See page 152</u> – Performance note on ICD Battery Discharge Behavior	Maximo VR	Advisories: <u>See page 143</u> – 2005 Potential Premature Battery Depletion <u>Due to Battery</u> Short	GEM DR		Marquis DR	Advisories: <u>See page 143</u> – 2005 Potential Premature Battery Depletion Due to Battery Short
-	Number	7227		7230		7231		7232		7271		7274	

continued

32 Medtronic CRDM Product Performance Report www.CRDMPPR.medtronic.com

Device	Device Survival Summary continued	ummai	y conti	nued		Malfunctions	ns			Device S	Device Survival Probability (%)	obability	(%)					
		tex Sase	istered stnslqm	bətem VU əvi stnalı	mal Battery Jetions	rapy Function rapy ction Not	npromised	le		Years Aft	Years After Implant	it						
Number	Family			ţэА		no) adT		tot		1 yr	2 yr	3 yr	4 yr	5 yr	6 yr	7 yr	8 yr	10 yr
7275	GEM III DR	Nov-00	20,000	1,000	2,564	11 + 27	II	38	Excluding Normal Battery Depletion	9.66 0/0.+	9.99 1/0.+	99.8 +.1/1	99.8 +.1/1	99.7 +.1/1	99.7 +.1/1	99.7 +.1/1 at 73 mo		
	<u>See page 152</u> – Performance note on ICD Battery Discharge Behavior	- Performanc avior	ce note on l(CD Battery					Including Normal Battery Depletion	99.6 +.1/-,1	99.0 +.1/2	96.9 +.3/3	90.2 +.5/5	64.7 +1.0/-1.0	12.2 +1.0/-1.0	2.6 +.7/6 at 73 mo		
7278	Maximo DR	Oct-03	37,000	21,000	973	8 + 26	II	34	Excluding Normal Battery Depletion	100.0 +.0/0	100.0 +.0/0	9.99 +.0/0	99.9 +.0/1	99.9 +.0/1	99.9 +.0/1 at 71 mo			
	Advisories: <u>See page 143</u> – 2005 Potential Premature Battery Depletion Due to Battery Short	e page 143 – to Battery S	- 2005 Poten hort	itial Prematur	e Battery	(0) + (0) = (0) (advisory-related subset)	= ed subs	(0) set)	Including Normal Battery Depletion	9.99 0/0.+	99.6 +.1/1	99.2 +.1/1	97.6 +.2/2	87.9 +.7/7	59.8 +3.1/-3.3 at 71 mo			
7288	Intrinsic	Aug-04	31,000	19,000	489	7 + 36	11	43	Excluding Normal Battery Depletion	100.0 +.0/0	9.99 +.0/0	9.99 +.0/-,0	99.8 +.0/1	99.8 +.1/1	99.8 +.1/1 at 62 mo			
									Including Normal Battery Depletion	9.99 -/0.+	99.6 +.1/1	99.2 +.1/1	98.1 +.2/2	85.3 +1.2/-1.2	78.7 +2.3/-2.6 at 62 mo			
7290	Onyx	Mar-04	1,000	1,000	13	- + 0	Ш	4	Excluding Normal Battery Depletion	99.9 +.1/7	99.5 +.3/8	99.5 +.3/8	99.5 +.3/8	99.5 +.3/8				
									Including Normal Battery Depletion	99.8 +.2/7	99.1 +.5/9	98.2 +.7/-1.2	96.8 +1.1/-1.7	94.0 +2.0/-2.9				
D153ATG, D153DRG	EnTrust DR	Jun-05	500	200	31	9 + -	П	~	Excluding Normal Battery Depletion	99.8 +.2/-1.4	99.8 +.2/-1.4	99.2 +.6/-1.8	98.4 +.9/-2.2	97.2 +1.5/-3.3 at 56 mo				
									Including Normal Battery Depletion	99.5 +.3/-1.4	99.5 +.3/-1.4	97.7 +1.2/-2.3	89.0 +3.3/-4.6	77.4 +5.1/-6.3 at 56 mo				
D154ATG, D154DRG	EnTrust DR	Jun-05	28,000	20,000	107	6 + 37	II	43	Excluding Normal Battery Depletion	100.0 +.0/0	9.99 /0.+	99.8 +.0/1	99.8 +.1/1	99.7 +.1/2 at 52 mo				
									Including Normal Battery Depletion	9.99 1/0.+	99.7 +.1/1	99.2 +.1/1	97.4 +.4/4	96.4 +.6/8 at 52 mo				
D154AWG D164AWG (Non-advisory population)	Virtuoso DR	May-06	71,000	60,000	28	19 + 15	Ш	34	Excluding Normal Battery Depletion	100.0 +.0/0	9.99 0/0.+	9.99 1/1.+	99.9 +.1/1 at 40 mo					
									Including Normal Battery Depletion	6.66 0/0.+	99.7 +.0/-,1	99.3 +.2/2	99.1 +.3/4 at 40 mo					

Source: Medtronic Device Registration and Returned Product Analysis Data as of January 31, 2010

continued

Device Survival Summary continued

34	Medtronic CRDM Product Performance Report	
	www.CRDMPPR.medtronic.com	

continued

		8 yr												
		7 yr												
		6 yr												
		5 yr				99.7 +.1/2 at 51 mo	98.3 +.4/5 at 51 mo							
(%)		4 yr	71.7 +2.7/-3.0 at 40 mo	40.0 +3.7/-3.7 at 40 mo		99.7 +.1/2	98.3 +.4/5							
Device Survival Probability (%)	nt	3 yr	90.6 +1.0/-1.2	80.9 +1.4/-1.5		99.8 +.1/1	99.3 +.1/2	9.99 0/0.+	99.7 +.1/1					
Survival P	Years After Implant	2 yr	99.9 +.1/2	99.7 +.1/2		99.9 +.0/-1	99.6 +.1/1	9.99 0/0.+	99.7 +.1/-,1		100.0 +.0/0 at 14 mo	99.7 +.1/3 at 14 mo	100.0 +.0/0 at 14 mo	99.9 +.0/1 at 14 mo
Device	Years Ai	1 yr	100.0 +.0/0	100.0 +.0/0		99.9 +.0/1	9.99 +.0/1	100.0 +.0/0	0/0.+		100.0 +.0/0	99.7 +.1/3	100.0 +.0/0	9.99 1/0.+
			Excluding Normal Battery Depletion	Including Normal Battery Depletion		Excluding Normal Battery Depletion	Including Normal Battery Depletion	Excluding Normal Battery Depletion	Including Normal Battery Depletion		Excluding Normal Battery Depletion	Including Normal Battery Depletion	Excluding Normal Battery Depletion	Including Normal Battery Depletion
	le	toT	492			26		13			0		0	
ctions	rapy ction Not bezimorqu	uo) unj	490 =			21 =		4			= 0		= 0	
Malfunctions	rapy Function perimoral	uoj	+ 7			ب +		+ 6			+ 0		+ 0	
I	mal Battery snoisons		4	ą		30		16	g		7		2	
	bətem VU svi stnsle	its∃ itoA qml	2,000	ential Reduce	Anomalies in	10,000		27,000	ential Reduce	Anomalies in	13,000		6,000	
	istered aplants	I SN ნəყ	4,000	3 - 2009 Pote	ice note on <i>l</i> Technology	14,000		32,000	3 - 2009 Pote	ice note on <i>l</i> Technology	14,000		6,000	
	Aarket 9269	ele NSU	May-06	ee page 13 vity	 Performar rated Circuit 	Jun-05		May-06	ee page 13 vity	 Performar rated Circuit 	Aug-08		Aug-08	
		Family	Virtuoso DR	Advisories: <u>See page 138</u> – 2009 Potential Reduced Device Longevity	<u>See page 146</u> – Performance note on Anomalies in <u>MOSFET</u> Integrated Circuit Technology	EnTrust VR		Virtuoso VR	Advisories: <u>See page 138</u> – 2009 Potential Reduced Device Longevity	See page 146 – Performance note on Anomalies in MOSFET Integrated Circuit Technology	Secura DR		Secura VR	
		Number	D154AWG D164AWG (Advisory population)			D154VRC		D154VWC, D164VWC			D224DRG		D224VRC	

		8 yr								
		7 yr								
		6 yr								
		5 yr								
(%)		4 yr								
obability	t	3 yr								
Device Survival Probability (%)	Years After Implant	2 yr					100.0 +.0/1 at 14 mo	100.0 +.0/1 at 14 mo	100.0 +.0/2 at 14 mo	99.9 +.0/2 at 14 mo
Device S	Years Af	1 yr	100.0 +.0/0 at 2 mo	100.0 +.0/0 at 2 mo	100.0 +.0/0 at 2 mo	100.0 +.0/0 at 2 mo	100.0 +.0/1	100.0 +.0/1	100.0 +.1/2	99.9 +.0/2
			Excluding Normal Battery Depletion	Including Normal Battery Depletion						
	le	тоt	0		0		-		-	
ctions	srapy iction Not besimorqu	n٦	= 0		= 0		=		= 0	
Malfunctions	rapy Function promised		+		+ 0		+		+	
E	rmal Battery snoitelo	ioN I9Ū	0		0		0		0	
	bətemi SU əvi stnalq	ţЪА	1,000		400		7,000		4,000	
	stnalqml	SN	1,000		400		7,000		4,000	
	jistered	999	-							
	Market ease Jistered	ləЯ	Aug-09 1		Aug-09		Mar-08		Mar-08	
	əsbə	ləЯ					Maximo II DR Mar-08		Maximo II VR Mar-08	

Device Survival Summary continued

Reference Chart

The longevity estimates provided are mean values calculated for the parameters given. The actual longevity achieved for any device while implanted will depend on the actual programmed parameters and patient factors, and may differ significantly from these estimates.

					E	stimate	d Longe	vity		Elective	Replacement	
					g cy**						ERI)***	End of Life
Model Number	Family	Connector Style	Volume/ Mass*	Delivered Energy	Charging Frequency**	100% Pacing‡	50% Pacing‡	15% Pacing‡	100% Sensing	Battery Voltage	Charge Time	Life (EOL) Battery Voltage
7227	GEM	B, Cx, D, E	49 cc* 90 g	35 J	Monthly Quarterly Semiannual	5.3 7.7 8.8	5.7 8.5 10.0	6.0 9.3 11.0	6.1 9.6 11.5	≤ 2.55 V	—	$\leq 2.40 \ V^{\S}$
7230	Marquis VR	B, Cx, E	36 cc 75 g	30 J	Monthly Quarterly Semiannual	4.9 7.3 8.5	5.2 8.0 9.3	5.4 8.5 10.0	5.5 8.7 10.4	≤ 2.62 V	> 16-second charge time	3 months after ERI
7231	GEM III VR	Cx	39 cc 77 g	30 J	Monthly Quarterly Semiannual	4.3 6.0 6.6	4.7 6.8 7.5	5.0 7.4 8.5	5.2 7.8 8.9	≤ 2.55 V	_	≤ 2.40 V
7232	Maximo VR	B, Cx, E	39 cc 76 g	35 J	Monthly Quarterly Semiannual	4.4 7.0 8.2	4.7 7.5 9.0	4.8 8.0 9.7	4.9 8.3 10.0	≤ 2.62 V	> 16-second charge time	3 months after ERI
7271	GEM DR	DR	62 cc 115 g	35 J	Monthly Quarterly Semiannual	6.0 7.4 7.9	6.9 8.4 9.0	7.5 9.3 10.0	7.8 9.8 10.6	≤ 4.91 V	-	$\leq 4.57 \ V^{\$}$
7274	Marquis DR	DR+LV	36 cc 75 g	30 J	Monthly Quarterly Semiannual	4.0 5.6 6.2	4.4 6.4 7.2	4.8 7.1 8.1	4.9 7.5 8.6	≤ 2.62 V	> 16-second charge time	3 months after ERI
7275	GEM III DR	DR	39.5 cc 78 g	30 J	Monthly Quarterly Semiannual	3.3 4.2 4.5	3.8 5.0 5.5	4.3 5.8 6.5	4.4 6.3 7.0	≤ 2.55 V	_	\leq 2.40 V
7278	Maximo DR	DR	39 cc 77 g	35 J	Monthly Quarterly Semiannual	3.7 5.3 6.0	4.1 6.1 7.0	4.3 6.8 8.0	4.5 7.1 8.5	≤ 2.62 V	> 16-second charge time	3 months after ERI
7288	Intrinsic	DR	38 cc 76 g	35 J	Monthly Quarterly Semiannual	3.7 5.4 6.1	4.1 6.1 7.0	4.3 6.8 8.0	4.5 7.1 8.5	≤ 2.62 V	> 16-second charge time	3 months after ERI
7290	Onyx	Сх	39 cc 77 g	30 J	Monthly Quarterly Semiannual	3.8 5.0 5.4	4.1 5.6 6.1	4.3 6.2 6.7	4.5 6.4 7.0	≤ 2.55 V	> 16-second charge time	\leq 2.40 V

* Volume and mass differ by connector style.

 ** A full charge is a full energy the rapeutic shock or capacitor reformation.

*** The minimum time between ERI and EOL is 3 months (100% pacing, two charges per month).

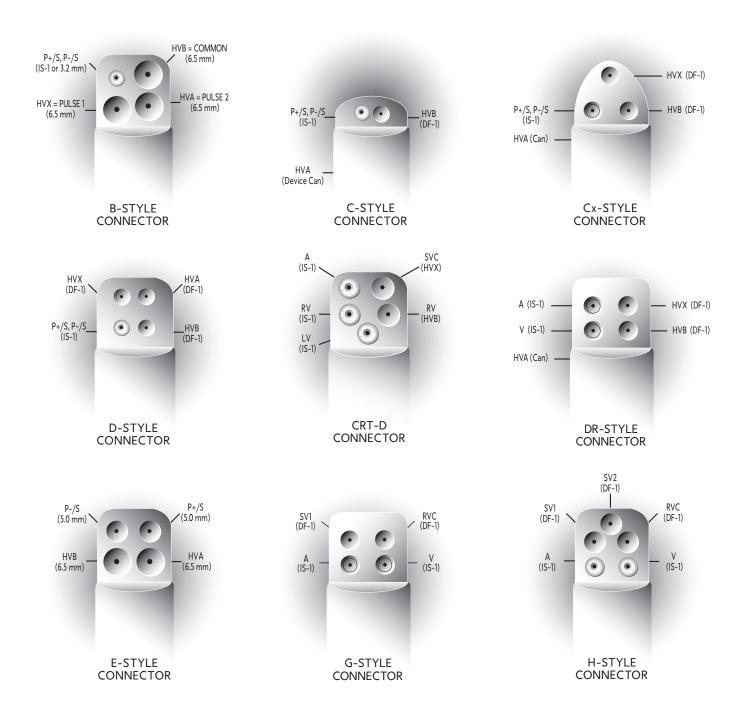
‡ Pacing mode is VVI for single chamber models and DDD for dual chamber and CRT models. Parameter settings; lower rate at 60 ppm, sensing rate at 70 bpm, (A, RV, LV) 3.0 V amplitude, 0.4 ms pulse width, and 510-ohm pace load per applicable channel. CRT models with shared biventricular pacing; InSync Marquis 7277 (LV impedance set to 510 ohms), InSync ICD 7272 (RV amplitude set to 4.0 V).

§ For Model 7271 and 7227 devices, if charge time exceeds 30 seconds, the device is at EOL. Immediate replacement is recommended. If three consecutive charge cycles exceed 30 seconds, the "charge circuit inactive" indicator is tripped and all therapies except emergency VVI pacing are disabled.

continued

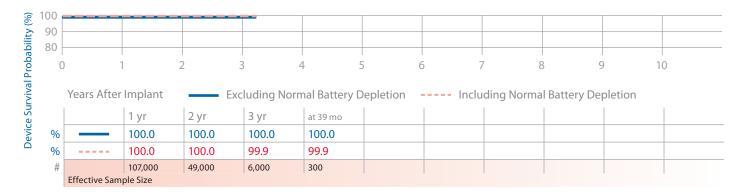
Reference Chart continued

						stimate	d Longe	vity		Repl	nmended acement RT)***	
Model Number	Family	Connector Style	Volume/ Mass*	Delivered Energy	Charging Frequency**	100% Pacing‡	50% Pacing‡	15% Pacing‡	100% Sensing	Battery Voltage	Charge Time	End of Service (EOS)
D153ATG, D153DRG	EnTrust	DR	33 cc 63 g	30 J	Monthly Quarterly Semiannual	3.5 4.8 5.3	3.8 5.4 6.1	4.1 6.0 6.9	4.2 6.3 7.2	≤ 2.61 V	—	3 months after RRT or > 16-second charge time
D154ATG, D154DRG	EnTrust	DR	35 cc 68 g	35 J	Monthly Quarterly Semiannual	3.8 5.5 6.1	4.2 6.1 7.0	4.4 6.8 7.9	4.6 7.0 8.3	≤ 2.61 V	_	3 months after RRT or > 16-second charge time
D154AWG, D164AWG	Virtuoso	DR	37 cc 68 g	35 J	Monthly Quarterly Semiannual	4.1 6.3 7.3	4.5 7.3 8.7	4.8 8.3 10.1	5.0 8.8 11.0	≤ 2.62 V	_	3 months after RRT or > 16-second charge time
D154VRC	EnTrust	Cx	35 cc 68 g	35 J	Monthly Quarterly Semiannual	4.8 7.5 9.0	5.0 8.3 10.0	5.2 8.8 10.7	5.3 9.0 11.0	≤ 2.61 V	_	3 months after RRT or > 16-second charge time
D154VWC, D164VWC	Virtuoso	Cx	37 cc 68 g	35 J	Monthly Quarterly Semiannual	4.8 8.1 10.0	5.1 9.0 11.2	5.3 9.6 12.3	5.4 10.0 12.9	≤ 2.62 V	_	3 months after RRT or > 16-second charge time
D224DRG	Secura DR	DR	37 cc 68 g	35 J	Monthly Quarterly Semiannual	3.60 5.07 5.70	4.08 6.05 7.00	4.50 7.00 8.27	4.67 7.50 9.00	≤ 2.63 V	_	3 months after RRT or > 16-second charge time
D224VRC	Secura VR	Cx	37 cc 68 g	35 J	Monthly Quarterly Semiannual	4.33 6.67 7.76	4.67 7.45 8.85	4.92 8.05 9.79	5.00 8.41 10.25	≤ 2.63 V	_	3 months after RRT or > 19-second charge time
D274DRG	Virtuoso II DR	DR	37 cc 68 g	35 J	Monthly Quarterly Semiannual	3.6 5.0 5.7	4.0 6.0 7.0	4.5 7.0 8.3	4.7 7.5 9.0	≤ 2.63 V	_	3 months after RRT or > 16-second charge time
D274VRC	Virtuoso II VR	Cx	37 cc 68 g	35 J	Monthly Quarterly Semiannual	4.3 6.7 7.8	4.7 7.5 8.9	4.9 8.0 9.8	5.0 8.4 10.3	≤ 2.63 V	_	3 months after RRT or > 19-second charge time
D284DRG	Maximo II DR	DR	37 cc 68 g	35 J	Monthly Quarterly Semiannual	3.60 5.07 5.70	4.08 6.05 7.00	4.50 7.00 8.27	4.67 7.50 9.00	≤ 2.63 V	_	3 months after RRT or > 16-second charge time
D284VRC	Maximo II VR	Сх	37 cc 68 g	35 J	Monthly Quarterly Semiannual	4.33 6.67 7.76	4.67 7.45 8.85	4.92 8.05 9.79	5.00 8.41 10.25	≤ 2.63 V	_	3 months after RRT or > 19-second charge time


* Volume and mass differ by connector style.

** A full charge is a full energy therapeutic shock or capacitor reformation.

*** The minimum time between RRT and EOS is 3 months (100% pacing, two charges per month).


[‡] Pacing mode is VVI for single chamber models and DDD for dual chamber models. Parameter settings; lower rate at 60 ppm, sensing rate at 70 bpm, (A, RV, LV) 3.0 V amplitude, 0.4 ms pulse width, and 510-ohm pace load per applicable channel.

ICD Connector Styles

Adapta DR ADDR01, ADDR03, ADDR06, ADD01

US Market Release	Jul-06	Malfunctions (US)	19	NBG Code	DDDR, DDD
Registered US Implants	174,000	Therapy Function Not Compromised	13	Serial Number Prefix	PWB, PWD,
Estimated Active US Implants	149,000	Electrical Component	13		PWC, PWF, NWB, NWC,
Normal Battery Depletions (US)	10	Therapy Function Compromised	б		NWD
Advisories	None	Electrical Component	б	Estimated Longevity	See page 72

Adapta DR ADDRL1

Product Characteristics

	US Market Release		Jul-0	6	Malfun	ctions (US)			0	NBG Coc	le	DDDR
	Registered US Implants		21,00	0	Thera	py Function No	ot Compromise	d	0	Serial Nu	ımber Prefix	PWE, NWE
	Estimated Active US Impl	lants	18,00	0	Thera	py Function Co	mpromised		0			
	Normal Battery Depletion	ns (US)		0						Estimate	d Longevity	See page 72
	Advisories		Non	e								
-	s 100 											
(%) N	90											

90 -											
80 -											
0) 1	-	2	3 4	. 5	6	5 7	7 8	3	9 1	0
	Years After	Implant	Exc	luding Norn	nal Battery D	enletion	Inclu	iding Norma	l Battery De	pletion	
		implant					i			piction	1
		1.5.00	2.00	2.00							
		1 yr	2 yr	3 yr							
%		1 yr 100.0	2 yr 100.0	3 yr 100.0							
% %		-									
		100.0	100.0	100.0							

apta DR ADDRS1										eristics		
US Market Release		Jul-0	6 Malf	unctions (US)			1	NBG Coc	de			SSIR
Registered US Implants		16,00	0 The	rapy Function l	Not Compromi	sed	0	Serial Nu	umber Prefix	I.		PWA
Estimated Active US Impla	nts	14,00	0 The	rapy Function	Compromised		1					
Normal Battery Depletions	s (US)		6	Electrical Comp	oonent		1	Estimate	ed Longevity	,		See page 7
Advisories		Non	e									
100 90 80												
80 0 1 Years After Imp % 10	/r 2 y 0.0 100	/r 0.0	cluding No 3 yr 100.0	4 ormal Battery at 37 mo 100.0	5 / Depletion	6 	7 7 ncludin	g Norma	al Battery	9 Depletio	10 20)
80 0 1 Years After Imp % 10	olant	Exc 7r 0.0 .8	cluding No 3 yr	at 37 mo			7 7 ncludin)

Adapta SR ADSR01, ADSR03, ADSR06

apta SR ADSR01, ADSR0	3, ADSR06						Product Ch	naracteristic	:s	
US Market Release	Jul-06	5 Malfu	nctions (US)			0	NBG Code		9	SSIR
Registered US Implants	33,000) Ther	apy Function N	ot Compromise	d	0	Serial Numbe	er Prefix		WN, NWM
Estimated Active US Implants	26,000) Ther	apy Function C	ompromised		0			1	NWP
Normal Battery Depletions (US)	8	3					Estimated Lo	ngevity	-	See page
Advisories	None	2								
90										
	2 3		4 rmal Battery		6 	7 ncludin	8 g Normal Ba	9 ttery Deple	10 tion	
90 80 0 1						7		-		
90 80 0 1 Years After Implant	— Excl	luding Nor	rmal Battery			7		-		
90 80 0 1 Years After Implant 1 yr	Excl	luding Nor 3 yr	rmal Battery			7		-		

apta	VDD AD	VDD01							Produ	ct Charact	eristics	
US Marl	ket Release		Jul-06	Malfund	tions (US)			0	NBG Cod	de		VDO
Registe	red US Implant	S	1,000	Therap	y Function N	ot Compromise	ed	0	Serial Nu	umber Prefix		PWG, NW
Estimat	ed Active US In	nplants	1,000	Therap	y Function Co	ompromised		0	Estimate	ed Longevity		See page
Normal	Battery Deple	tions (US)	0									
Advisor	ries		None									
80 -	Years After	Implant		2 uding Norm		5 Depletion	6 In	7 cludir		8 al Battery	9 Depletic	10 20
		1 yr	2 yr	at 27 mo								
%		100.0	100.0	100.0								
%		100.0	100.0	100.0								
#		400	200	100								
	Effective Sam		1 1			1		1			1	1

AT500 AT501, 7253

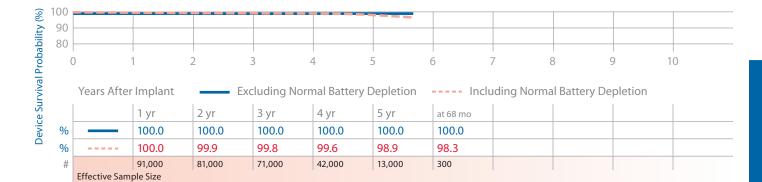
US Mai	rket Release		Mar-	03 Malf	unctions (US)			10	NBG Code	DDDRP
Registe	ered US Implant	ts	11,0	00 The	erapy Function N	ot Compromis	ed	5	Serial Number Prefix	IJF
Estima	ted Active US Ir	mplants	2,0	00	Electrical Compo	onent		2	Estimated Longevity	See page 7
Norma	l Battery Deple	tions (US)	1,2	09	Possible Early Ba	ttery Depletior	ı	3		
Perform	mance Note: <mark>Se</mark>	e page 150 –		The	erapy Function C	ompromised		5		
	mance note on Follow-Up Pro				Electrical Compo	onent		3		
					Electrical Interco			1		
					Possible Early Ba		ı	1		
						tter) bepietter				
100										
90										
80										
70										
60										
50 40										
30										
20										
10										
0										
0			_							I
	Years After	Implant	Ex	cluding No	ormal Battery	Depletion	Inc	ludir	ng Normal Battery Depletic	n
		1 yr	2 yr	3 yr	4 yr	5 yr	6 yr	at	74 mo	
%		100.0	100.0	100.0	99.9	99.9	99.9	99	9.9	
%		99.9	99.9	99.5	97.5	82.8	41.6	28	3.7	
#		10,000	9,000	8,000	7,000	4,000	1,000	20	0	
	Effective Sam	ple Size								

US Market Release		Dec-	-03	Malfunctions (US)			1	NBG Cod	de		DDDR
Registered US Implai	nts	7,0	000	Therapy Function	Not Compromi	ed	1	Serial Nu	umber Prefix	<	PRA
Estimated Active US	Implants	4,0	000	Electrical Com	ponent		1	Estimate	ed Longevity	ý	See page
Normal Battery Depl	etions (US)		54	Therapy Function	Compromised		0				
Advisories		No	one								
100 90 80											
90				4 9 Normal Batter	5 y Depletion	1	7 cludin		8 8 al Battery	9 Depletion	10 n
90 80 Vears Afte	1 yr	Exercise 2 yr	xcluding 3 yr	g Normal Batter	5 y Depletion 5 yr	Ind	/			-	
90 80 0		E>	xcluding	g Normal Batter	5 y Depletion	Inc	/			-	

EnPulse DR E1DR21

Pulse	e DR E1DF	R21							Product Chara	cteristics	
US Marl	ket Release		Dec-0	3 Malfu	nctions (US)			0	NBG Code		DDDR
Registe	ered US Implan	ts	2,00	D The	apy Function N	Not Compromi	sed	0	Serial Number Pref	fix	PPT
Estimat	ted Active US Ir	mplants	1,00	D Ther	apy Function (Compromised		0	Estimated Longevi	ty	See page 7
Normal	l Battery Deple	tions (US)	10	5							
Advisor	ries		Non	e							
90 - 80 - 0		1	2 3		4	5	6	7	8	9	10
	Years After	Implant	Exc	luding No	rmal Battery	Depletion	Ind	ludin	g Normal Battery	/ Depletion	
		1 yr	2 yr	3 yr	4 yr	5 yr	at 69 mo				
%		100.0	100.0	100.0	100.0	100.0	100.0				
%		100.0	99.7	99.0	96.9	93.3	64.1				
#		2,000	1,000	1,000	1,000	1,000	100				
	Effective Sam	ple Size									

EnPulse 2 DR E2DR01, E2DR03, E2DR06


US Market Release	Feb-04	Malfunctions (US)	17	NBG Code	DDDR
Registered US Implants	101,000	Therapy Function Not Compromised	14	Serial Number Prefix	PNB, PNC, PNH
Estimated Active US Implants	62,000	Electrical Component	13		
Normal Battery Depletions (US)	216	Possible Early Battery Depletion	1	Estimated Longevity	See page 72
Advisories	None	Therapy Function Compromised	3		
		Battery	1		

Electrical Component

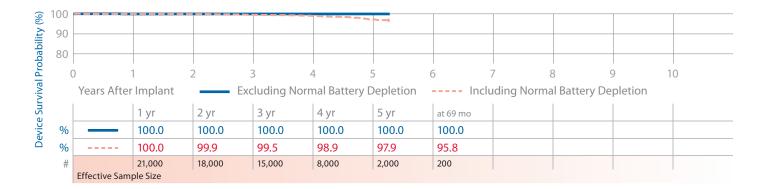
Product Characteristics

2

NBG Code	DDDR
Serial Number Prefix	PNB, PNC, PNH
Estimated Longevity	See page 72

EnPulse 2 DR E2DR21

EnPulse 2 DR E2DR21				Product Characteristics	
US Market Release	Feb-04	Malfunctions (US)	1	NBG Code	DDDR
Registered US Implants	12,000	Therapy Function Not Compromised	0	Serial Number Prefix	PMU
Estimated Active US Implants	7,000	Therapy Function Compromised	1	Estimated Longevity	See page 72
Normal Battery Depletions (US)	155	Electrical Component	1		
Advisories	None				
100					
30 100 100 100 100 100 100 100 100 100 1					


Years After Implant Excluding Normal Battery Depletion
 Including Normal Battery Depletion

e Sui			1 yr	2 yr	3 yr	4 yr	5 yr	at 65 mo		
evic	%		100.0	100.0	100.0	100.0	100.0	100.0		
De	%		99.9	99.7	99.3	97.9	93.0	84.6		
	#		11,000	10,000	8,000	4,000	1,000	200		
		Effective Sam	ple Size							

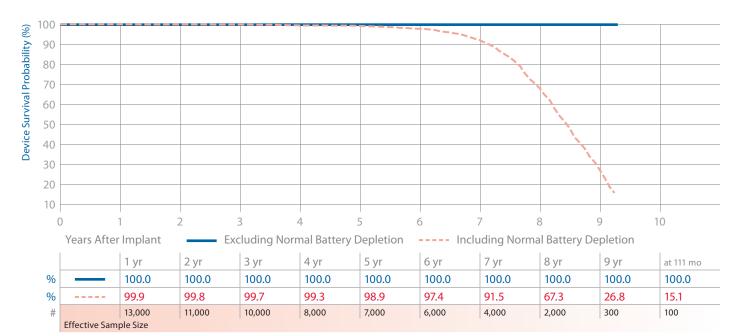
US Mark	ket Release		Feb-	04 Ma	alfunctions (US)			0	NBG Cod	le		DDDR
Register	red US Implan	ts	1,0	00 TI	herapy Function	Not Compromis	ed	0	Serial Nu	ımber Prefix		PNL
Estimat	ed Active US I	mplants	4	00 TI	herapy Function	Compromised		0	Estimate	d Longevity		See page 7
Normal	Battery Deple	tions (US)		0								
Advisor	ries		No	ne								
100												
90 -												
90 - 80 -												
90 80 0		1	2	3	4	5	6	7	5	3	9	10
90 - 80 - 0	Years After	1 Implant	2 Ex	0	4 Vormal Batter	5 y Depletion	-	7 ncludir		3 Il Battery De	-	10
90 - 80 - 0			1	cluding N	Normal Batter	5 y Depletion	-	7 ncludir			-	10
90 - 80 - 0		1 Implant 1 yr 100.0	2 2 Ex 2 yr 100.0	0			-	7 ncludir			-	10
80 -		1 yr	2 yr	cluding N	Normal Batter	at 53 mo	-	7 ncludir			-	10
% #	Years After	1 yr 100.0 100.0 1,000	2 yr 100.0	cluding N 3 yr 100.0	Vormal Batter 4 yr 100.0	at 53 mo	-	7 ncludir			-	10

EnPulse 2 SR E2SR01, E2SR03, E2SR06

Product Characteristics US Market Release Dec-03 Malfunctions (US) 4 NBG Code SSIR Serial Number Prefix PMW, PMY, **Registered US Implants** 25,000 Therapy Function Not Compromised 3 PNA 13,000 Estimated Active US Implants Electrical Component 2 Normal Battery Depletions (US) 104 Possible Early Battery Depletion 1 **Estimated Longevity** See page 72 Advisories **Therapy Function Compromised** None 1 Other 1

	E2VDD01							iiouuc	t Character	154145	
JS Market Release		Dec-0	3 Malfur	nctions (US)			0	NBG Cod	e		VDD
Registered US Impla	nts	1,00	0 Thera	py Function N	ot Compromis	ed	0	Serial Nu	mber Prefix		PMV
Estimated Active US	Implants	40	0 Thera	py Function Co	ompromised		0	Estimate	d Longevity		See page 7
Normal Battery Depl	etions (US)		3								
Advisories		Non	e								
100											
90											
90											
80											
90 80 0	1	2	3	4	5	6	7	8	}	9	10
90 80 0 Years Afte	1 er Implant		-	4 mal Battery	-	-	7 cludin	-	Battery De	-	10
90 80 0 Years Afte		Exc	cluding Nor	mal Battery	-	-	7 cludin	-		-	10
80	1 1 er Implant 1 yr 100.0		-		Depletion	-	7 cludin	-		-	10
90 80 0 Years Afte % %	1 yr	Exc	luding Nor	mal Battery 4 yr	Depletion at 56 mo	-	7 cludin	-		-	10
90 80 0 Years Afte % % 	1 yr 100.0	2 yr 100.0	luding Nor 3 yr 100.0	mal Battery 4 yr 100.0	Depletion at 56 mo 100.0	-	7 cludin	-		-	10

EnRhythm DR P1501DR


Rinyu		UIDK							Product Charact	eristics	
US Mai	ket Release		May-0)5 M	alfunctions (US)		4	5	NBG Code		DDDRP
Registe	ered US Implants		90,00	о т	herapy Function	Not Compromise	d 18	3	Serial Number Prefix		PNP
Estima	ted Active US Impl	ants	68,00	00	Battery		!	5	Estimated Longevity		See page 7
Norma	l Battery Depletio	ns (US)	2	20	Electrical Co	mponent	(5			
	ries: <u>See page 13</u> e Displayed at Dev				Possible Earl	y Battery Depletio	in 2	7			
D (т	herapy Function	Compromised	22	7			
	mance Note: See p alies in MOSFET Int				Electrical Co	mponent	2	5			
Circuit	Technology	-			Electrical Int	erconnect		I			
					Possible Earl	y Battery Depletio	'n .	I			
100 90 80 () 1 Years After Im		2	3	4 Normal Battery	-	5 7	7 7	8 g Normal Battery [9 Depletion	10
			1								
		yr	2 yr	3 yr	4 yr	at 55 mo					
		0.0	100.0	99.9	99.9	99.9					
%		0.0	99.9	99.9	99.7	99.6					
#	Effective Sample),000 Sizo	52,000	35,000	9,000	200					
	Litective Sample	5120									

Kappa 400 DR KDR401, KDR403

IS Mark	ket Release		Jar	n-98 N	lalfunctions (US)			22	NBG Cod	le		DDD/RO
egister	red US Implan	its	47,	000	Therapy Function	Not Comprom	ised	13	Serial Nu	mber Prefix		PER, PET
stimate	ed Active US I	mplants	3,	000	Electrical Com	ponent		9	Estimate	d Longevity	,	See page 7
lormal	Battery Deple	etions (US)	6,	262	Electrical Inter	connect		1				
dvisori	ies		N	one	Possible Early	Battery Depletio	on	2				
					Other			1				
				1	Therapy Function	•		9				
					Electrical Com			7				
					Electrical Inter	connect		2				
100 🗖		_										
90												
80 -												
70 -												
60 -												
50 -												
40										1		
30 -												
20 -												
10 -										i		
0		1	2	3	4	5	6	7	8	3	9	10
	Years After	r Implant	E	xcluding	Normal Batter	y Depletion	In	cluding	Norma	Battery I	Depletion	
		1 yr	2 yr	3 yr	4 yr	5 yr	бyr	7 yr		8 yr	at 101 mo	
%		100.0	100.0	100.0	100.0	99.9	99.9	99.9		99.9	99.9	
%		99.9	99.9	99.7	99.6	99.0	97.1	86.7		49.6	10.4	
#		42,000	38,000	34,000	30,000	26,000	22,000	15,00	0	5,000	1,000	

Kappa 400 SR KSR401, KSR403

US Market Release	Feb-98	Malfunctions (US)	5	NBG Code	SSI/R
Registered US Implants	15,000	Therapy Function Not Compromised	4	Serial Number Prefix	PEU, PGD
Estimated Active US Implants	2,000	Electrical Component	3	Estimated Longevity	See page 72
Normal Battery Depletions (US)	1,100	Possible Early Battery Depletion	1		
Advisories	None	Therapy Function Compromised	1		
		Electrical Interconnect	1		

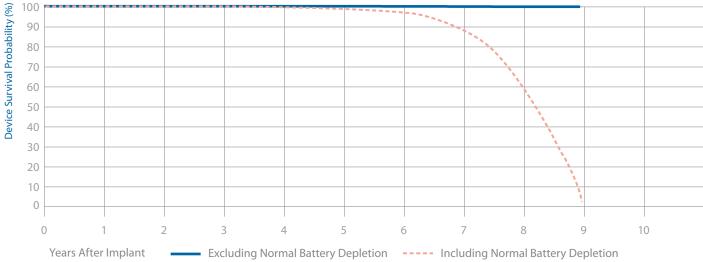
Kappa 600 DR KDR601, KDR603, KDR606

US Market Release	Jan-99
Registered US Implants	24,000
Estimated Active US Implants	100
Normal Battery Depletions (US)	3,260
Advisories: See page 144 – 2002 Potentia Fractured Power Supply Wires; See also p – 2009 Potential Separation of Interconnec	bage 139

Malfunctions (US)
Therapy Function Not Compromised
Electrical Component
Therapy Function Compromised
Electrical Component
Electrical Interconnect (31 malfunctions related to advisory)

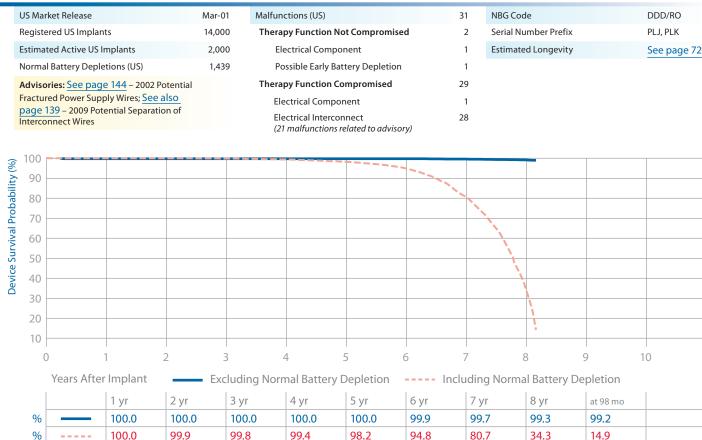
Product Characteristics

37


3

3

34 2


32

NBG Code	DDD/RO
Serial Number Prefix	PHF, PHH, PHG
Estimated Longevity	See page 72

		1 yr	2 yr	3 yr	4 yr	5 yr	бyr	7 yr	8 yr	at 107 mo
%		100.0	100.0	100.0	99.9	99.9	99.9	99.8	99.7	99.6
%		99.9	99.9	99.9	99.5	98.8	96.8	87.8	57.6	3.7
#		21,000	19,000	17,000	15,000	13,000	12,000	9,000	4,000	200
	Effective Samp	ole Size								

Kappa 600 DR KDR651, KDR653

Product Characteristics

13,000

11,000

10,000

9,000

Карра 700 D КD701, КD703, КD706

Effective Sample Size

#

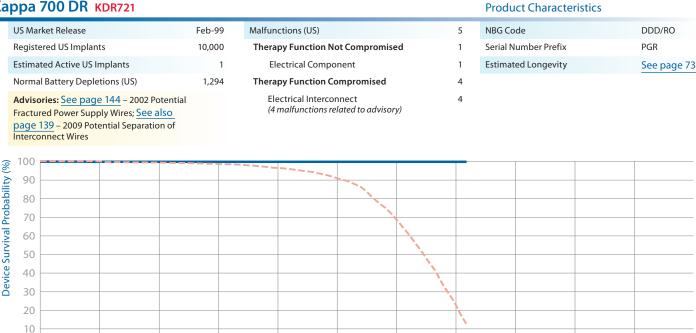
US Market Release DDD Jan-99 Malfunctions (US) 0 NBG Code **Registered US Implants Therapy Function Not Compromised** 0 Serial Number Prefix PHK 300 **Estimated Active US Implants** Estimated Longevity 50 **Therapy Function Compromised** 0 See page 73 Normal Battery Depletions (US) 17 Advisories: See page 144 – 2002 Potential Fractured Power Supply Wires; See also page 139 – 2009 Potential Separation of Interconnect Wires 100 Device Survival Probability (%) 90 80 0 2 3 4 6 8 9 10 Years After Implant **Excluding Normal Battery Depletion** ----- Including Normal Battery Depletion 3 yr 4 yr 5 yr 7 yr at 89 mo 1 yr 2 yr бyr 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 % % 100.0 97.8 100.0 100.0 99.0 95.3 93.9 92.1 # 300 200 200 200 200 100 100 100 **Effective Sample Size**

8,000

7,000

5,000

1,000

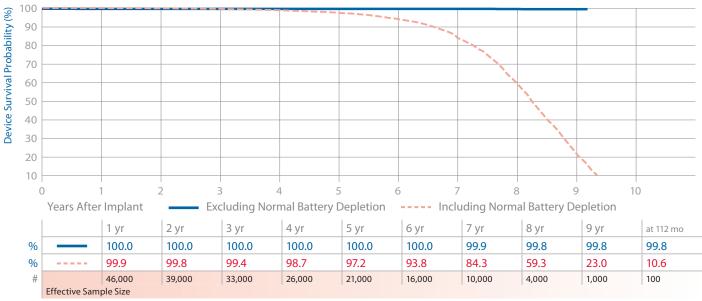

Product Characteristics

100

Kappa 700 DR KDR701, KDR703, KDR706

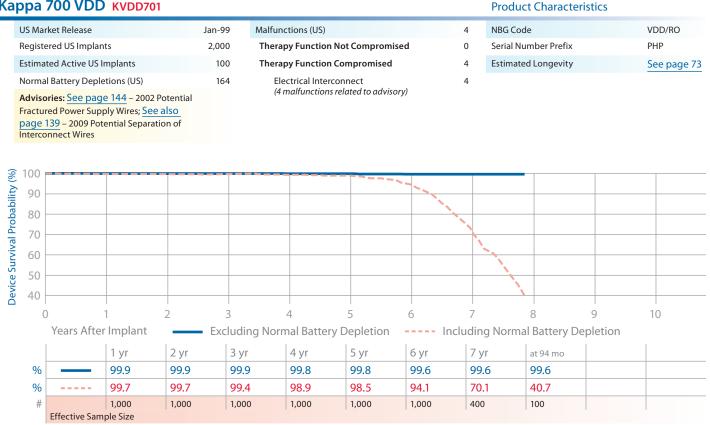
5 Marl	ket Release		Feb	-99 Mal	functions (US)			441 N	NBG Code		DDD/RO
giste	red US Implan	its	192,	000 Th	erapy Function	Not Comprom	ised	28 5	erial Number Pref	îx	PGU, PGY,
	ed Active US I	•		000	Battery			1			PGW
ormal	Battery Deple	etions (US)	20,	148	Electrical Com	ponent		21 E	stimated Longevi	ty	See pag
		<u>ge 144</u> – 2002			Electrical Inter			1			
		pply Wires; <u>Se</u> otential Separa			Possible Early I	Battery Depleti	on	3			
	onnect Wires				Other			2			
				Th	erapy Function			413			
					Electrical Com			15			
					Electrical Inter (320 malfunction		visorv)	398			
					(520 mananetre						
00											
90											
80											
70											
60											
50											
40											
30											
20											
10										b	
0)	1	2	3	4	5	6	7	8	9	10
	Years After	r Implant	—— E	xcluding N	ormal Batter	y Depletion	In	cluding I	Normal Battery	/ Depletion	
		1 yr	2 yr	3 yr	4 yr	5 yr	бyr	7 yr	8 yr	at 104 mo	
		100.0	100.0	99.9	99.9	99.9	99.8	99.7	99.5	99.3	
%			-			00.1	05.0	0.4.1	50.7		
% %		99.9	99.8	99.6	99.2	98.1	95.2	84.1	50.7	5.5	

Карра 700 DR кDR721

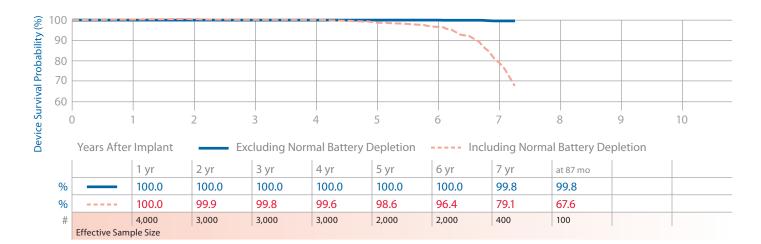


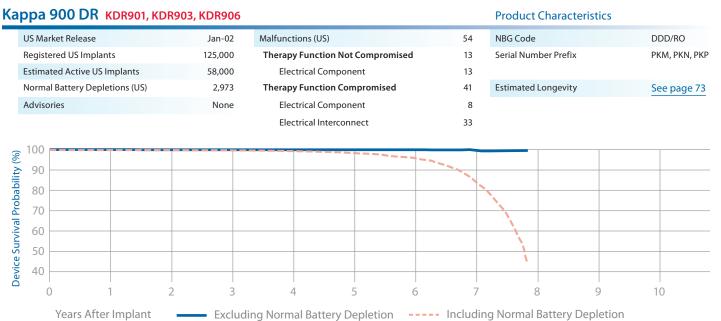
10											
() 1	2	2 3	4	5	6	5 7	8	9	10	
	Years After	Implant	Exc	luding Norn	nal Battery D	Depletion	Inclu	iding Norma	l Battery De	pletion	
		1 yr	2 yr	3 yr	4 yr	5 yr	6 yr	7 yr	at 86 mo		
%		100.0	100.0	100.0	100.0	99.9	99.9	99.9	99.9		
%		99.9	99.6	98.8	96.7	91.0	68.7	22.5	12.2		
#		8,000	7,000	7,000	6,000	4,000	2,000	300	100		

Kappa 700 SR KSR701, KSR703, KSR706


Effective Sample Size

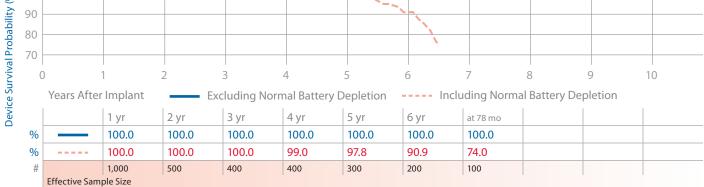
US Market Release NBG Code SSI/R Feb-99 Malfunctions (US) 25 **Registered US Implants** 55,000 **Therapy Function Not Compromised** 3 Serial Number Prefix PHT, PHW, PHU Estimated Active US Implants 8,000 **Electrical Component** 2 Normal Battery Depletions (US) 3,362 Possible Early Battery Depletion 1 **Estimated Longevity** See page 73 **Therapy Function Compromised** 22 Advisories: See page 139 – 2009 Potential Separation of Interconnect Wires **Electrical Component** 4 Electrical Interconnect 18


Source: Medtronic Device Registration and Returned Product Analysis Data as of January 31, 2010


Kappa 700 VDD KVDD701

Kappa 800 DR KDR801, KDR803

US Market Release	Jan-02	Malfunctions (US)	3	NBG Code	DDD/RO
Registered US Implants	4,000	Therapy Function Not Compromised	0	Serial Number Prefix	PKW, PKY
Estimated Active US Implants	2,000	Therapy Function Compromised	3	Estimated Longevity	See page 7
Normal Battery Depletions (US)	131	Electrical Interconnect	3		
Advisories	None				

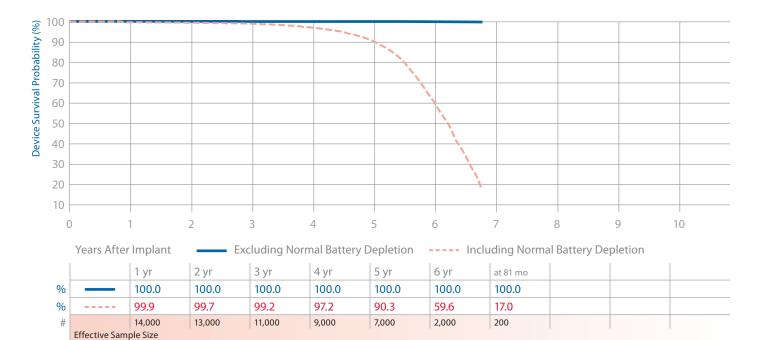

				0				0	,	
		1 yr	2 yr	3 yr	4 yr	5 yr	бyr	7 yr	at 94 mo	
%	_	100.0	100.0	100.0	100.0	100.0	99.9	99.9	99.8	
%		100.0	99.9	99.8	99.4	98.5	96.0	84.0	43.9	
#		113,000	101,000	90,000	73,000	56,000	36,000	12,000	100	
	Effective Sam	ple Size								

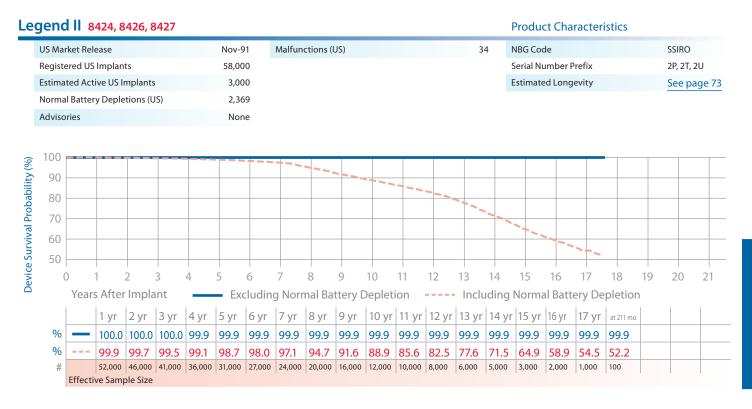
anna 900 SR KSROO1 KSROO3 KSROOG Κ

рра 900 SR кsr901, кsr90	03, KSR906				Product C	Characteri	stics	
US Market Release	Jan-02	Malfunctions (US)		13	NBG Code			VVEV
Registered US Implants	37,000	Therapy Function Not	Compromised	8	Serial Numb	oer Prefix		PLF, PLG, PLH
Estimated Active US Implants	14,000	Electrical Compon	ent	7				
Normal Battery Depletions (US)	613	Possible Early Batte	ery Depletion	1	Estimated L	ongevity		See page 73
See page 139 – 2009 Potential		Therapy Function Con	npromised	5				
Separation of Interconnect Wires		Electrical Intercon	nect	5				
90 90 80 90 70 90 60 90 50 90 0 1								
0 1 2 Years After Implant	Exclud	4 ing Normal Battery D	epletion -	, <u>,</u>	ig Normal B	attery De	9 pletion	10
	2 yr 3 y		5 yr	буr 7 у		1		1

100.0 % 100.0 100.0 100.0 99.9 99.9 99.9 99.9 % 99.9 99.8 99.6 98.9 97.4 94.8 84.3 60.8 - - -# 30,000 26,000 22,000 16,000 11,000 7,000 2,000 200 **Effective Sample Size**

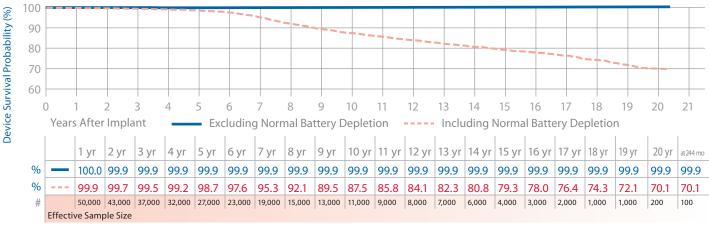
Kappa 900 VDD кvdd901				Product Characteristics	
US Market Release	Jan-02	Malfunctions (US)	0	NBG Code	VDD
Registered US Implants	1,000	Therapy Function Not Compromised	0	Serial Number Prefix	PLE
Estimated Active US Implants	100	Therapy Function Compromised	0	Estimated Longevity	See page 73
Normal Battery Depletions (US)	47				
See page 139 – 2009 Potential Separation of Interconnect Wires					
§ 100					

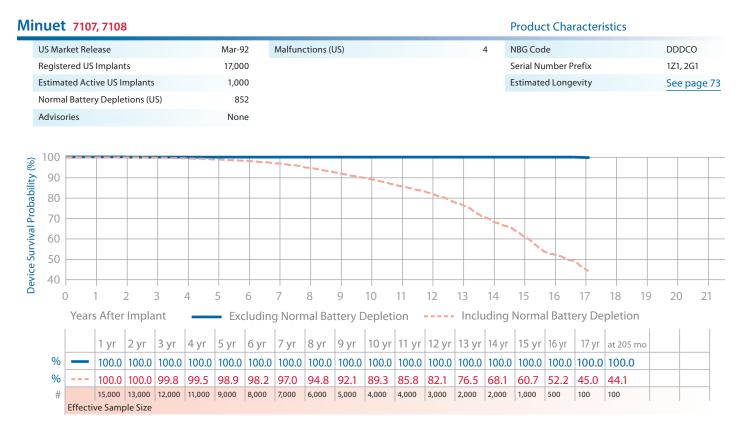


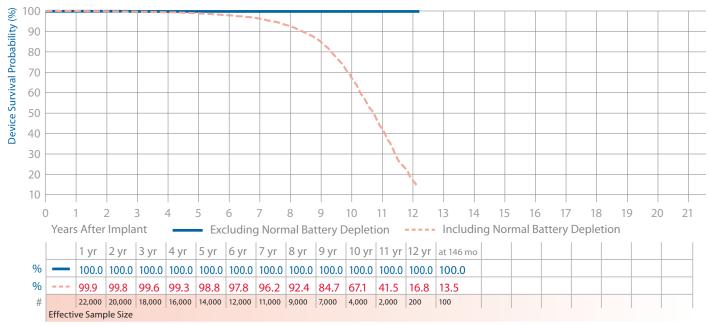

Карра 920 DR кsr921

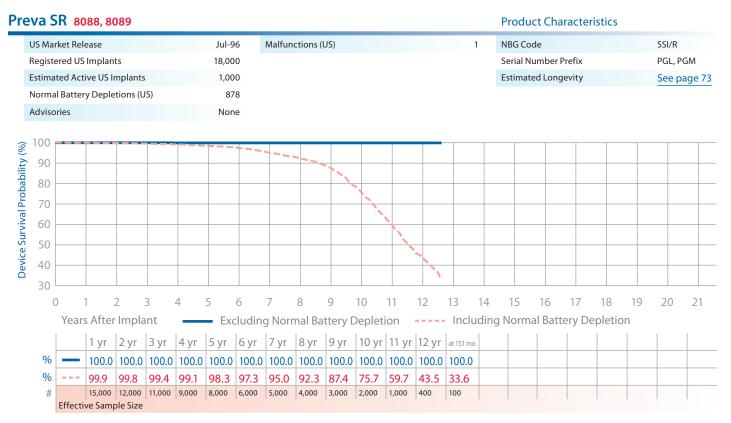
Product Characteristics

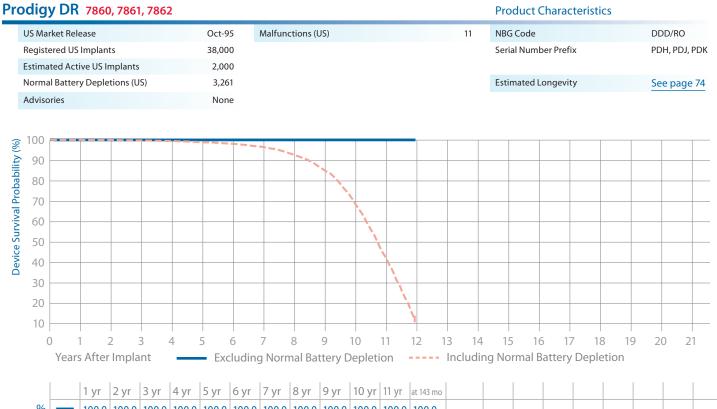
US Market Release	Jan-02	Malfunctions (US)	3	NBG Code	VVEV
Registered US Implants	16,000	Therapy Function Not Compromised	0	Serial Number Prefix	PLF, PLG, PLH
Estimated Active US Implants	3,000	Therapy Function Compromised	3		
Normal Battery Depletions (US)	1,697	Electrical Interconnect	3	Estimated Longevity	See page 73
See page 139 – 2009 Potential					


Separation of Interconnect Wires

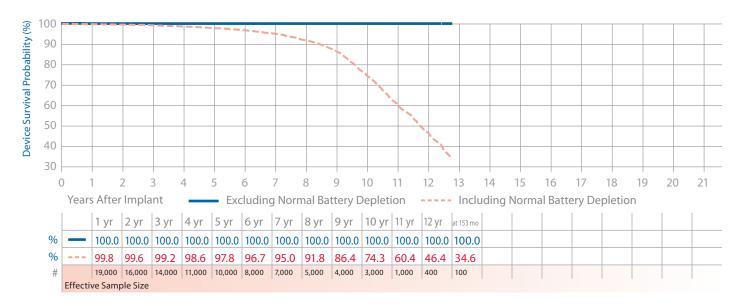



Minix/Minix ST 8340, 8341, 8341M, 8342, 8330, 8331, 8331M

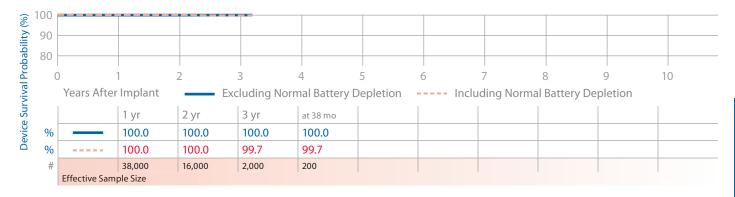

US Market Release	Dec-89	Malfunctions (US)	49	NBG Code	SSIRO
Registered US Implants	58,000			Serial Number Prefix	2P, 2T, 2U
Estimated Active US Implants	3,000			Estimated Longevity	See page 73
Normal Battery Depletions (US)	1,643				
Advisories: <u>See page 145</u> – 1991 Restoration of Permanent Settings					


Pr	eva DR 7088, 7089				Product Characteristics	
	US Market Release	Jul-96	Malfunctions (US)	4	NBG Code	DDD/RO
	Registered US Implants	26,000			Serial Number Prefix	PGJ, PGK
	Estimated Active US Implants	1,000			Estimated Longevity	See page 73
	Normal Battery Depletions (US)	2,358				
	Advisories	None				

Prevail S 8085, 8086


US Mar	rket Rele	ease				Oct-9	5	Malfund	tions (L	JS)				1		NBG Co	de				SSI	
Registe	ered US	Implant	ts			4,00	0									Serial N	umber	Prefix			PGL,	PGM
Estimat	ted Acti	ive US Ir	nplants			40	0									Estimat	ed Long	gevity			See	page 7
Norma	Batter	y Deple	tions (U	S)		4	4															
Adviso	ries					Non	e															
100																						
100																						
90														' I I I I I I I I I I I I I I I I I I I								
80																						
С) 1	1 2	2 .	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
	Years	s After	Impla	nt		- Exc	luding	g Norn	nal Bat	ttery D	epleti	ion		Inclu	ding	g Norm	al Bat	tery D	epleti	on		
90 - 80 - 0 %		1 yr	2 yr	3 yr	4 yr	5 yr	6 yr	7 yr	8 yr	9 yr	10 yr	11 yr	12 yr	at 153 mo								
%		100.0	100.0	100.0			99.9	99.9	99.9	99.9	99.9	99.9	99.9	99.9								
%		99.8	99.8	99.7	99.7	99.1	98.9	98.1	97.2	95.4	93.6	90.1	89.6	88.0								
#		3,000	3,000	2,000	2,000	1,000	1,000	1,000	1,000	1,000	1,000	400	300	100								
	Effectiv	ve Samp	ole Size																			

		I YI	∠ yı	5 yr	4 yi	D yr	O yr	/ yi	o yi	9 yi	IU yi	II yi	at 143 mo					
%		100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0					
%		99.9	99.8	99.7	99.4	98.8	97.9	96.3	92.4	84.6	68.3	41.3	12.3					
#		33,000	30,000	27,000	24,000	21,000	19,000	16,000	13,000	10,000	6,000	2,000	100					
	Effecti	ve Sam	ole Size															


Prodigy SR 8158, 8160, 8161, 8162

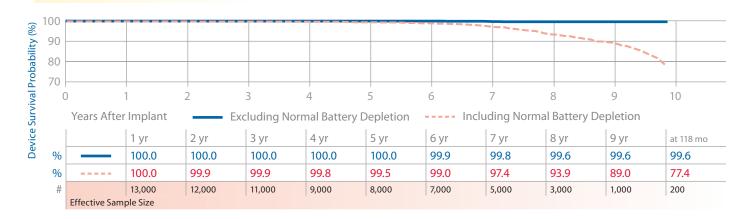
Pr	odigy SR 8158, 8160, 8161, 81	62			Product Characteristics	5
	US Market Release	Oct-95	Malfunctions (US)	4	NBG Code	SSI/R
	Registered US Implants	22,000			Serial Number Prefix	PEM, PED, PEE,
	Estimated Active US Implants	2,000				PEF
	Normal Battery Depletions (US)	1,067			Estimated Longevity	See page 74
	Advisories	None				

58 Medtronic CRDM Product Performance Report www.CRDMPPR.medtronic.com

ensia DR sedro1, sedo1				Product Characteristics	
US Market Release	Jul-06	Malfunctions (US)	5	NBG Code	DDD, DDDR
Registered US Implants	65,000	Therapy Function Not Compromised	3	Serial Number Prefix	PWL, PWK,
Estimated Active US Implants	55,000	Electrical Component	3		NWL
Normal Battery Depletions (US)	7	Therapy Function Compromised	2	Estimated Longevity	See page 74
Advisories	None	Electrical Component	2		

Sensia SR SESR01, SESO1				Product Characteristics	;
US Market Release	Jul-06	Malfunctions (US)	1	NBG Code	SSIR, SSI
Registered US Implants	41,000	Therapy Function Not Compromised	1	Serial Number Prefix	PWR, PWS, NWR
Estimated Active US Implants	32,000	Electrical Component	1		INWR
Normal Battery Depletions (US)	5	Therapy Function Compromised	0	Estimated Longevity	See page 74
Advisories	None				
- 100					
(%) 100 100					
iii 90					
00 001 (%) 001					
<u>د</u> 0 1 2	3	4 5 6	7	8 9	10

Device Survival Years After Implant Excluding Normal Battery Depletion ----- Including Normal Battery Depletion 1 yr 2 yr 3 yr at 38 mo 100.0 100.0 100.0 100.0 % % 100.0 99.9 99.9 99.9 # 22,000 9,000 1,000 100 Effective Sample Size


jma 100 S SS103, SS106				Product Characteristics	
US Market Release	Aug-99	Malfunctions (US)	0	NBG Code	SSI
Registered US Implants	1,000	Therapy Function Not Compromised	0	Serial Number Prefix	PJG, PJH
Estimated Active US Implants	100	Therapy Function Compromised	0	Estimated Longevity	See page 7
Normal Battery Depletions (US)	13				

Advisories: See page 142 – 2005 Potential Separation of Interconnect Wires

100				Т							
90											
80											
() ,		2	3	4	5	6	7	8	9	10
	Years After	Implant	Exc	cluding Norr	nal Battery D	Depletion	Inclu	ding Norma	l Battery De	oletion	
		1 yr	2 yr	3 yr	4 yr	5 yr	бyr	7 yr	at 94 mo		
%		100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0		
%		100.0	100.0	99.6	99.6	98.7	98.7	96.5	93.1		
#		1,000	500	400	300	200	200	100	100		
	Effective Sam	ale Size									

Sigma 200 DR SDR203

Si	gma 200 DR SDR203				Product Characteristics	
	US Market Release	Aug-99	Malfunctions (US)	24	NBG Code	DDD/RO
	Registered US Implants	16,000	Therapy Function Not Compromised	2	Serial Number Prefix	PJD
	Estimated Active US Implants	5,000	Electrical Component	1	Estimated Longevity	See page 74
	Normal Battery Depletions (US)	223	Electrical Interconnect	1		
	Advisories: See page 142 – 2005 Potentia	ıl	Therapy Function Compromised	22		
	Separation of Interconnect Wires; See also	2	Electrical Component	1		
	page 139 – 2009 Potential Separation of Interconnect Wires		Electrical Interconnect (2 malfunctions related to advisory)	21		

Sigma 200 SR SSR203

US Market Release	Sep-99
Registered US Implants	12,000
Estimated Active US Implants	3,000
Normal Battery Depletions (US)	111

Malfunctions (US) Therapy Function Not Compromised Therapy Function Compromised Electrical Interconnect

(3 malfunctions related to advisory)

Product Characteristics

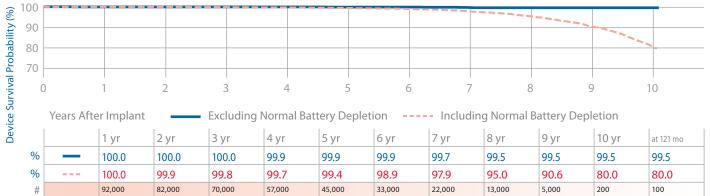
Product Characteristics

10

0

10

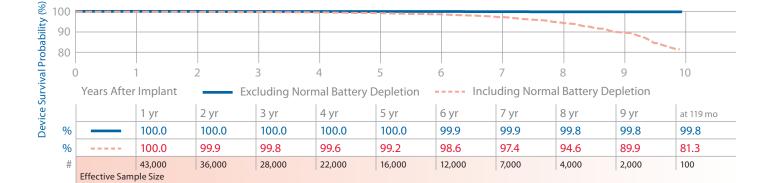
10


NBG Code	SSI/R
Serial Number Prefix	PJG
Estimated Longevity	See page 74

Advisories: See page 142 – 2005 Potential Separation of Interconnect Wires; See also page 139 – 2009 Potential Separation of Interconnect Wires

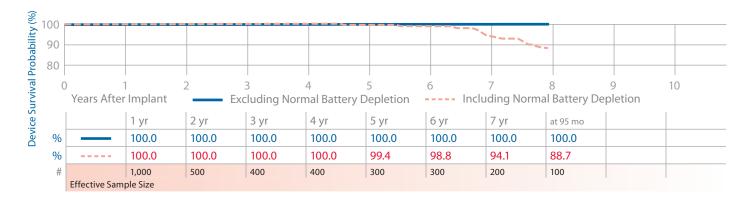
(%)	100											
-	90											
bility												
oba	80											
I Pr	() .	1	2	3	4	5	6	7 8	3 9	9 1	0
rviva		Years After	Implant	Exc	cluding Norr	nal Battery [Depletion	Inclu	iding Norma	l Battery De	pletion	
e Su			1 yr	2 yr	3 yr	4 yr	5 yr	бyr	7 yr	8 yr	9 yr	at 118 mo
Devic	%		100.0	100.0	100.0	100.0	99.9	99.9	99.8	99.8	99.8	99.8
õ	%		99.9	99.9	99.8	99.7	99.2	98.6	97.0	94.8	90.8	85.2
	#		10,000	8,000	7,000	6,000	5,000	4,000	3,000	2,000	1,000	100
		Effective Sam	ple Size									

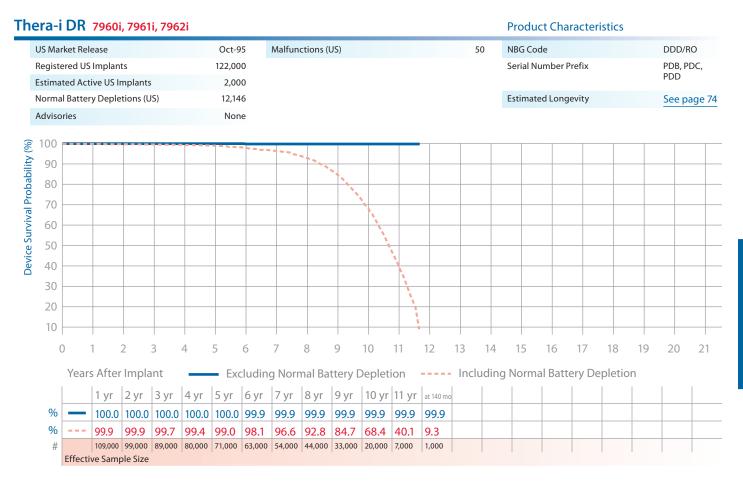
Sigma 300 DR SDR303, SDR306


				inouact characteristics	
US Market Release	Aug-99	Malfunctions (US)	165	NBG Code	DDD/RO
Registered US Implants	107,000	Therapy Function Not Compromised	7	Serial Number Prefix	PJD, PJE
Estimated Active US Implants	46,000	Electrical Component	5	Estimated Longevity	See page 74
Normal Battery Depletions (US)	804	Electrical Interconnect	1		
Advisories: See page 142 – 2005 Pote	ntial	Possible Early Battery Depletion	1		
Separation of Interconnect Wires; See a page 139 – 2009 Potential Separation of		Therapy Function Compromised	158		
Interconnect Wires		Electrical Component	8		
		Electrical Interconnect (30 malfunctions related to advisory)	150		

Effective Sample Size

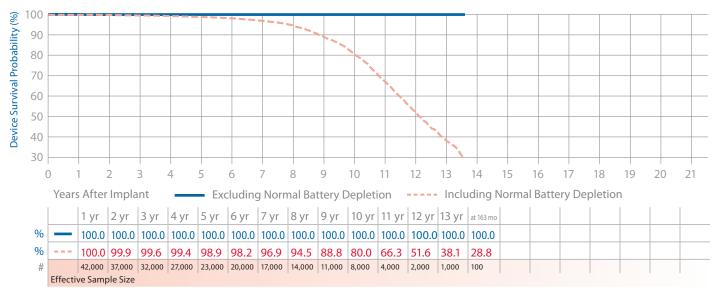
Sigma 300 SR SSR303, SSR306

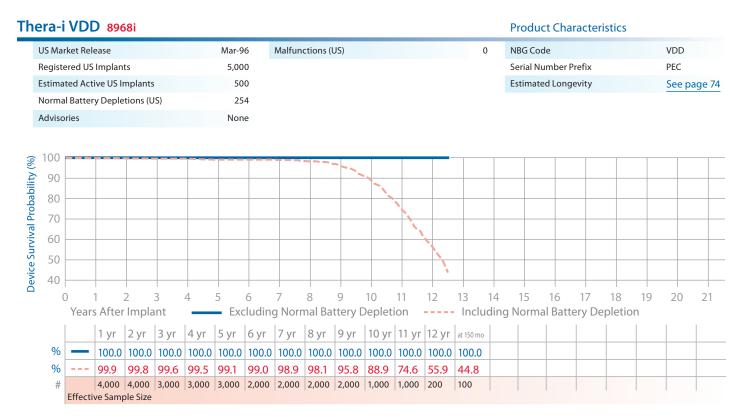

US Market Release	Sep-99	Malfunctions (US)	26	NBG Code	SSI/R
Registered US Implants	54,000	Therapy Function Not Compromised	1	Serial Number Prefix	PJG, PJH
Estimated Active US Implants	17,000	Electrical Component	1	Estimated Longevity	See page 74
Normal Battery Depletions (US)	352	Therapy Function Compromised	25		
Advisories: See page 142 – 2005 Poten	tial	Electrical Component	3		
Separation of Interconnect Wires; See al page 139 – 2009 Potential Separation o Interconnect Wires		Electrical Interconnect (6 malfunctions related to advisory)	22		



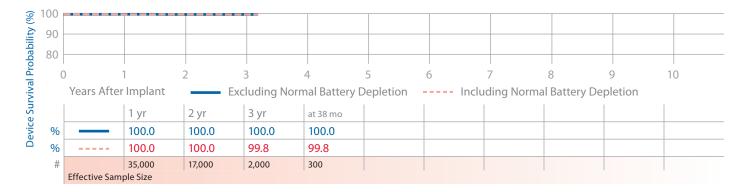
Sigma 300 VDD svDD303

Sigma 300 VDD SVDD303				Product Characteristics	
US Market Release	Sep-99	Malfunctions (US)	0	NBG Code	VDDD
Registered US Implants	1,000	Therapy Function Not Compromised	0	Serial Number Prefix	PJD
Estimated Active US Implants	200	Therapy Function Compromised	0	Estimated Longevity	See page 7
Normal Battery Depletions (US)	21				


Advisories: See page 142 – 2005 Potential Separation of Interconnect Wires



era-i SR 8960i, 8961i, 8962i Tł


Th	era-i SR 8960i, 8961i, 8962i				Product Characteristics	
	US Market Release	Oct-95	Malfunctions (US)	7	NBG Code	SSIR
	Registered US Implants	50,000			Serial Number Prefix	PDU, PDV,
	Estimated Active US Implants	3,000				PDW
	Normal Battery Depletions (US)	2,461			Estimated Longevity	See page 74
	Advisories	None				

Versa DR VEDR01

US Market Release	Jul-06	Malfunctions (US)	4	NBG Code	DDDR
Registered US Implants	55,000	Therapy Function Not Compromised	3	Serial Number Prefix	PWH, NWH
Estimated Active US Implants	46,000	Electrical Component	3	Estimated Longevity	See page 74
Normal Battery Depletions (US)	7	Therapy Function Compromised	1		
Advisories	None	Electrical Component	1		

Summary (95% Confidence Interval)	
fider	
Con	
(95%	
>	
ar	
Ĩ	
Ē	
5	
S	
a	
2	
5	
5	
S	
e e	
Ч.	
Jevice	
ŏ	

The following table shows IP	G device survival estimates with 95% confi	device survival estimates with 95% confidence intervals. Estimates are shown both with and without normal battery depl
included.	Malfunctions (US)	Device Survival Probability (%)
	u	

			I						1						I			
		16 yr																
ons		14 yr																
		12 yr 1																
epletio																		
ttery d		10 yr																
The following table shows IPG device survival estimates with 95% confidence intervals. Estimates are shown both with and without normal battery depletions included. Device Survival Probability (%)		8 yr																
		7 yr											99.9 +.1/1 at 74 mo	28.7 +2.5/-2.5 at 74 mo				
		6 yr											99.9 +.1/1	41.6 +2.0/-2.0	100.0 +.0/1 at 70 mo	97.0 +.5/7 at 70 mo	100.0 +.0/0 at 69 mo	64.1 +5.1/-5.6 at 69 mo
h with		5 yr											99.9 +.1/1	82.8 +.9/-1.0	100.0 +.0/1	98.5 +.3/4	100.0 +.0/0	93.3 +1.3/-1.6
wn bot ility (%)		4 yr	100.0 +.0/0 at 39 mo	99.9 +.0/1 at 39 mo			100.0 +.0/0 at 37 mo	99.8 +.1/1 at 37 mo	100.0 +.0/0 at 38 mo	99.8 +.1/2 at 38 mo			99.9 +.1/1	97.5 +.3/4	100.0 +.0/1	99.1 +.2/3	100.0 +.0/0	96.9 +.8/-1.1
rvals. Estimates are shown bot Device Survival Probability (%)	lant	3 yr	100.0 +.0/0	99.9 ++ 1/0.+	100.0 +.0/0	100.0 +.0/0	100.0 +.0/0	99.8 +.1/1	100.0 +.0/0	99.8 +.1/2	100.0 +.0/0 at 27 mo	100.0 +.0/0 at 27 mo	100.0 ++.0/1	99.5 +.1/2	100.0 1+.0/1	99.9 1-1/-+	100.0 1+.0/0	99.0 +.4/7
stimate: Surviva	Years After Implant	2 yr	100.0 +.0/0	100.0 +.0/0	100.0 +.0/0	100.0 +.0/0	100.0 +.0/0	99.8 +.1/1	100.0 +.0/0	100.0 +.0/0	100.0 +.0/0	100.0 +.0/0	100.0 +.0/1	99.9 +.1/1	100.0 +.0/0	100.0 +.0/0	100.0 +.0/0	99.7 +.2/5
rvals. E Device	Years A	1 yr	100.0 +.0/0	100.0 +.0/0	100.0 +.0/0	100.0 +.0/0	100.0 +.0/0	100.0 +.0/1	100.0 +.0/0	100.0 +.0/0	100.0 +.0/0	100.0 +.0/0	100.0 +.0/1	99.9 +.0/1	100.0 +.0/0	100.0 +.0/0	100.0 +.0/0	100.0 +.0/0
e inte																		
nfidend			Excluding Normal Battery Depletion	Including Normal Battery Depletion	Excluding Normal Battery Depletion	Including Normal Battery Depletion	Excluding Normal Battery Depletion	Including Normal Battery Depletion										
5% co	leto		-		0		-		0		0		10		-		0	
l estimates with 9 Malfunctions (US)	compromised				Ш		Ш		Ш		Ш				Ш		II	
ates w	Therapy Function Not		13		0		0		0		0		Ś		-		0	
stima	besimorq		+		+		+		+		+		+		+		+	
ival e Ma	apy Function	ιәц	9		0		-		0		0		Ś		0		0	
ce surv	ystery lart) (SU) snoitel		10		0		Q		œ		0		1,209) Pacing	54		105	
IPG devi	bəter VƏ bəv SU əv	Acti	149,000		18,000		14,000		26,000		1,000		2,000	See page 150 – Performance note on AT500 Pacing System Follow-Up Protocol	4,000		1,000	
le shows	egistered S Implants		174,000		21,000		16,000		33,000		1,000		11,000	rmance no stocol	7,000		2,000	
ving tab	farket ase	ələЯ N SU	Jul-06		Mar-03	<mark>50</mark> – Perfo ow-Up Prc	Dec-03		Dec-03									
The follow included.	Model Number		ADDR01, ADDR03, ADDR06,		ADDRL1		ADDRS1		ADSR01, ADSR03, ADSR06		ADVDD01		AT501, 7253	See page 1 System Foll	E1DR01, E1DR03, E1DR06		E1DR21	
⊇. ` ⊣ ।	Viims∃				Adapta DR		Adapta DR		Adapta SR		Adapta VDD		AT500		EnPulse DR		EnPulse E DR	

Source: Medtronic Device Registration and Returned Product Analysis Data as of January 31, 2010

continued

1	G Implar		ble Puls	se Gen	erators	s, cont	inuea 												
		16 yr																	
		14 yr																	
		12 yr																	
	Years After Implant	10 yr														99.9 +.0/0 at 101 mo	10.4 +1.0/-1.0 at 101 mo	100.0 +.0/1 at 111 mo	15.1 +2.3/-2.1 at 111 mo
		8 yr														9.99 0/0.+	49.6 +.9/9	100.0 +.0/1	67.3 +1.5/-1.6
		7 yr														9.99 0/0.+	86.7 +.5/5	100.0 +.0/1	91.5 +.7/8
		6 yr	100.0 +.0/0 at 68 mo	98.3 +.2/3 at 68 mo	100.0 +.0/1 at 65 mo	84.6 +2.7/-3.2 at 65 mo			100.0 +.0/0 at 69 mo	95.8 +.8/-1.0 at 69 mo						0/0.+	97.1 +.2/2	100.0 +.0/1	97.4 +.3/4
		5 yr		98.9 +.1/1	100.0 +.0/1	93.0 +.9/-1.0	100.0 +.0/0 at 53 mo	100.0 +.0/0 at 53 mo	100.0 +.0/0	97.9 +.3/4	100.0 +.0/0 at 56 mo	99.3 +.5/-2.0 at 56 mo	99.9 +.0/1 at 55 mo	99.6 +.1/1 at 55 mo		9.99 0/0.+	99.0 +.1/1	100.0 +.0/1	98.9 +.2/2
111TY (%)		4 yr	100.0 +.0/0	99.6 +.1/1	100.0 +.0/1	97.9 +.3/4	100.0 +.0/0	100.0 +.0/0	100.0 +.0/0	98.9 +.2/2	100.0 +.0/0	99.3 +.5/-2.0	99.9 +.0/-1	99.7 +.1/1		100.0 +.0/0	99.6 +.1/1	100.0 +.0/0	99.3 +.1/2
Device Survival Probability (%)		3 yr		9.8 0/0.+	100.0 +.0/1	99.3 +.2/2	100.0 +.0/0	100.0 +.0/0	100.0 +.0/0	99.5 +.1/1	100.0 +.0/0	100.0 +.0/0	9.99 0/0.+	0/0.+		100.0 +.0/0	99.7 +.0/-+	100.0+.0/0	99.7 1/1.+
survival		2 yr		9.99 0/0.+	100.0 +.0/1	99.7 +.1/1	100.0 +.0/0	100.0 +.0/0	100.0 +.0/0	9.9 1/0.+	100.0 +.0/0	100.0 +.0/0	100.0 +.0/0	0/0.+		100.0 +.0/0	9.99 0/0.+	100.0 +.0/0	99.8 1/1.+
Device	Years A	1 yr	100.0 +.0/0	100.0 +.0/0	100.0+.0/0	9.99 1/0.+	100.0 +.0/0	100.0 +.0/0	100.0+.0/0	100.0 +.0/0	100.0+.0/0	100.0	100.0+.0/0	100.0 +.0/0		100.0 +.0/0	9.99 0/0.+	100.0 +.0/0	9.99 1/0.+
ŀ			Excluding Normal Battery Depletion	Including Normal Battery Depletion		Excluding Normal Battery Depletion	Including Normal Battery Depletion	Excluding Normal Battery Depletion	Including Normal Battery Depletion										
	le	тот	17		-		0		4		0		45			22		Ś	
	rction Not besimorqr	rur Coi	=		Ш		Ш		Ш		Ш		11			"		II	
Mairunctions	stapy	эч⊥	+ 4		0 +		0 +		κ +		0 +		+ 18			+ 13		+	
Ma	stapy Function promised		m		-		0		-		0		27			0		-	
	rmal Battery OU) snoiteld)	ION I9Q	216		155		0		104		m		20	~	alies in	6,262		1,100	
	bətemi SU əvi stnslo	ţЪА	62,000		7,000		400		13,000		400		68,000	Low Battery rrogation	e on anom ology	3,000		2,000	
	jistered Implants	SU Səß	101,000		12,000		1,000		25,000		1,000		000'06	<mark>37</mark> – 2010 evice Inte	mance not cuit Techr	47,000		15,000	
	ease Market	ləЯ	Feb-04		Feb-04		Feb-04		Dec-03		Dec-03		May-05	See page 1 layed at D	<u>6</u> – Perfori grated Cir	Jan-98		Feb-98	
	mber del	nN	E2DR01, E2DR03, E2DR03, E2DR06		E2DR21		E2DR31, E2DR33		E2SR01, I E2SR03, E2SR06		E2VDD01		P1501DR	Advisories: <u>See page 137</u> – 2010 Low Battery Voltage Displayed at Device Interrogation	<u>See page 146</u> – Performance note on anomalies in MOSFET Integrated Circuit Technology	KDR401, KDR403		KSR401, KSR403	
	Vlin		EnPulse 2 E		EnPulse 2 E		EnPulse 2 E		EnPulse 2 E		EnPulse 2 E		EnRhythm P DR			Kappa 400 DR		Kappa 400 SR	

бб Medtronic CRDM Product Performance Report www.CRDMPPR.medtronic.com

Device Survival Summary continued

Source: Medtronic Device Registration and Returned Product Analysis Data as of January 31, 2010

		, V														
		1														
		, , ,	1 2 1													
			99.6 +1.1/2 at 107 mo	3.7 +.9/8 at 107 mo	99.2 +.3/4 at 98 mo	14.9 +2.6/-2.4 at 98 mo			99.3 +.1/1 at 104 mo	5.5 +.5/4 at 104 mo			99.8 +.1/1 at 112 mo	10.6 +1.6/-1.5 at 112 mo		
		0	99.7 +.1/-1	57.6 +1.1/-1.1	99.3 +.2/4	34.3 +1.9/-1.9	100.0 +.0/0 at 89 mo	92.1 +3.4/-5.7 at 89 mo	99.5 +.1/1	50.7 +.5/5	99.9 +.0/1 at 86 mo	12.2 +2.0/-1.9 at 86 mo	99.8 +.1/1	59.3 +1.0/-1.0	99.6 +.2/7 at 94 mo	40.7 +4.8/-4.9 at 94 mo
				87.8 +.6/6	99.7 +.1/2	80.7 +.9/-1.0	100.0 +.0/0	93.9 +2.8/-4.9	99.7 +.0/-,0	84.1 +.3/3	99.9 +.0/-1	22.5 +2.0/-2.0	99.9 1/0.+	84.3 +.6/-0.6	99.6 +.2/7	70.1 +3.3/-3.7
		2 V	99.9 +.0/1	96.8 +.3/3	99.9 +.0/1	94.8 +.5/5	100.0 +.0/0	95.3 +2.3/-4.5	99.8 +.0/0	95.2 +.1/1	99.9 +.0/1	68.7 +1.4/-1.5	100.0 +.0/0	93.8 +.3/-0.3	99.6 +.2/7	94.1 +1.3/-1.7
	(9	ц Ц	9.99 1/0.+	98.8 +.2/2	100.0 +.0/1	98.2 +.3/3	100.0 +.0/0	97.8 +1.4/-3.5	9.99 -/0.+	98.1 +.1/1	99.9 +.0/1	91.0 +.7/8	100.0 +.0/0	97.2 +.2/-0.2	99.8 +.1/5	98.5 +.6/9
	bility (9		9.99 9/0.+	99.5 +.1/1	100.0 +.0/1	99.4 +.1/2	100.0 +.0/0	99.0 +.8/-3.1	9.99 9/0.+	99.2 +./0	100.0 +.0/1	96.7 +.4/5	100.0 +.0/0.0	98.7 +.1/-0.1	99.8 +.1/5	98.9 +.5/8
	Device Survival Probability (%)	iplant	100.0 +.0/0	9.9 +.0/-,1	100.0 +.0/0	99.8 +.1/1	100.0 +.0/0	100.0 +.0/0	9.99 +.0/0	99.6 +./0	100.0 +.0/1	98.8 +.2/3	100.0 +.0/0	99.4 +.1/-0.1	99.9 +.1/4	99.4 +.3/6
	e Surviv	Years After Implant	2 yr 100.0 +.0/0	99.9 +.0/-,1	100.0 +.0/0	9.99 +.0/-,1	100.0 +.0/0	100.0 +.0/0	100.0 +.0/0	99.8 +./0	100.0 +.0/1	99.6 +.1/2	100.0 +.0/0	99.8 +.0/-0.0	99.9 +.1/4	99.7 +.2/4
	Devic	Years		9.9.9 0/0.+	100.0 +.0/0	100.0 +.0/1	100.0 +.0/0	100.0 +.0/0	100.0 +.0/-0	9.99.9 +./.	100.0 +.0/1	99.9 +.0/1	100.0 +.0/0	9.99 +.0/-0.0	99.9 +.1/4	99.7 +.2/4
			ding ttery etion	iding ttery etion	ding tery: tion	ding tery tion	ding tery tion	ding tery tion	ling tery tion	ling tery tion	ding tery tion	ling tery tion	ling tery tion	ding tery tion	ding tery tion	ding ttery etion
			Excluding Normal Battery Depletion	Including Normal Battery Depletion	Excluding Normal Battery Depletion	Including Normal Battery Depletion	Excluding Normal Battery Depletion	Including Normal Battery Depletion	Excluding Normal Battery Depletion	Including Normal Battery Depletion	Excluding Normal Battery Depletion	Including Normal Battery Depletion	Excluding Normal Battery Depletion	Including Normal Battery Depletion	Excluding Normal Battery Depletion	Including Normal Battery Depletion
led	Malfunctions (US)	<mark>herapy Function</mark> ompromised unction Not otal otal	L = 31 = 331	(31)+(0)=(31)Inclu(advisory-related subset)Normal BaDepl	29 + 2 = 31 Exclu Normal Bat	(21) + (0) = (21) Inclui (advisory-related subset) Deple	0 + 0 = 0 Exclu Normal Bat	(0)+(0)=(0)Inclusion(advisory-related subset)Deplet	413 + 28 = 441 Excluc Normal Bat	(320) + (0) =(320)Incluc(advisory-related subset)Deple	4 + 1 = 5 Exclud Bat Deple	(4)+(0)=(4)Incluc(advisory-related subset)Depleted pole	22 + 3 = 25 Excluc Normal Bat	(0) + (0) = (0) Incluc Normal Bat Deple	4 + 0 = 4 Exclur Bat Deple	(4) + (0) = (4) Inclu Normal Ba
continued	Malfunctions (US)	ompromised herapy unction Not ompromised	1 (0) 34 + 3 = 37 (0) 1	tured (31) + (0) = (31) (advisory-related subset)	+ 2 = 31	(21) + (0) = (21) (advisory-related subset)	0 0 +	tured (0) + (0) = (0) (advisory-related subset)	+ 28 = 441	tured (320) + (0) = (320) (advisory-related subset)	+ - - 5	(4) + (0) = (4)(advisory-related subset)	+ 3 = 25	(0) = (0) + (0)	+ 0 = 4 Norn	(4) + (0) = (4)
mary continued	Malfunctions (US)	Jeplefions (US) herapy Function compromised inction Not compromised	3,260 34 + 3 = 37	tured (31) + (0) = (31) (advisory-related subset)	29 + 2 = 31	(21) + (0) = (21) (advisory-related subset)	0 0 + 0	tured (0) + (0) = (0) (advisory-related subset)	413 + 28 = 441	tured (320) + (0) = (320) (advisory-related subset)	4 + 1 = 5	Tractured (4) + (0) = (4) 009 (advisory-related subset)	22 + 3 = 25	(0) = (0) + (0)	4 + 0 = 4 Norn	(4) + (0) = (4)
	Malfunctions (US)	mplants Joepletions (US) Joepletions (US) Joepletions (US) Joerapy Unction Not Compromised	000 100 3,260 34 + 3 = 37	tured (31) + (0) = (31) (advisory-related subset)	1,439 29 + 2 = 31	(21) + (0) = (21) (advisory-related subset)	50 17 0 + 0 = 0	tured (0) + (0) = (0) (advisory-related subset)	33,000 20,148 413 + 28 = 441	tured (320) + (0) = (320) (advisory-related subset)	1 1,294 4 + 1 = 5	Tractured (4) + (0) = (4) 009 (advisory-related subset)	3,362 22 + 3 = 25	(0) = (0) + (0)	100 164 4 + 0 = 4 Norm	(4) + (0) = (4)
	Malfunctions (US)	الم المواهمية المرابع الح المرابع الح المرابع الح المرابع الم	7-99 24,000 100 3,260 34 + 3 = 37	tured (31) + (0) = (31) (advisory-related subset)	2,000 1,439 29 + 2 = 31	(21) + (0) = (21) (advisory-related subset)	17 0 + 0 = 0	tured (0) + (0) = (0) (advisory-related subset)	20,148 413 + 28 = 441	tured (320) + (0) = (320) (advisory-related subset)	10,000 1 1,294 4 + 1 = 5	Tractured (4) + (0) = (4) 009 (advisory-related subset)	8,000 3,362 22 + 3 = 25	(0) = (0) + (0)	2,000 100 164 4 + 0 = 4 Norm	(4) + (0) = (4)
Device Survival Summary continued	Malfunctions (US)	ielease Bolistered S Implants Stimated Strive US Mplants Joepletions (US) Sepletions (US) Sepletion Mot Compromised Compromised	NR601, Jan-99 24,000 100 3,260 34 + 3 = 37 NR606 34 + 3 = 37 100 100 100 100 100 100 100 100 100 14 + 3 = 37 NR606 34 + 3 = 37 100	-	14,000 2,000 1,439 29 + 2 = 31	+ (0) = (21) visory-related subset)	300 50 17 0 + 0 = 0		192,000 33,000 20,148 413 + 28 = 441	+ (0) = (320) ory-related subset)	1 1,294 4 + 1 = 5		55,000 8,000 3,362 22 + 3 = 25	(0) = (0) +	100 164 4 + 0 = 4 Norm	+ (0) = (4)

Source: Medtronic Device Registration and Returned Product Analysis Data as of January 31, 2010

Medtronic CRDM Product Performance Report 67 www.CRDMPPR.medtronic.com

continued
Summary
Survival
Device

Device Survival Probability (%)

Malfunctions

IPG	Implantab	le P	ulse G	enerat	ors, co	ntinue	d		I		
		16 yr									
		14 yr									
		12 yr									
		10 yr									
		8 yr	99.8 +.1/5 at 87 mo	67.6 +4.7/-5.3 at 87 mo	99.8 +.0/1 at 94 mo	43.9 +4.1/-4.2 at 94 mo	99.9 +.1/1 at 92 mo	60.8 +3.6/-3.8 at 92 mo			
		7 yr	99.8 +.1/5	79.1 +2.7/-3.0	9.99 /0.+	84.0 +.5/5	99.9 +.1/1	84.3 +1.1/-1.1	100.0 +.0/0 at 78 mo	74.0 +5.9/-7.2 at 78 mo	100.0 +.0/1 at 81 mo
		6 yr	100.0 +.0/3	96.4 +.7/8	9.99 0/0.+	96.0 +.2/2	99.9 +.0/-1	94.8 +.4/4	100.0 +.0/0	90.9 +2.9/-4.1	100.0 +.0/1
		_	00	'n	00	-	0	'n	00	-2.1	0 -

	01150 0	criciu	ors, co	minuc					1				1	1
16 yr											99.9 +.0/0 at 211 mo	52.2 +1.8/-1.8 at 211 mo	99.9 +.0/0 at 244 mo	70.1 +1.6/-1.7 at 244 mo
14 yr											9.99 0/0.+	71.5 +.8/9	9.99 /0.+	80.8 +.7/7
12 yr											9.99 0/0.+	82.5 +.6/6	9.9 0/0.+	84.1 +.6/6
10 yr											0/0.+	88.9 +.4/4	9.99 /0.+	87.5 +.5/5
8 yr	99.8 +.1/5 at 87 mo		99.8 +.0/1 at 94 mo	43.9 +4.1/-4.2 at 94 mo	99.9 +.1/1 at 92 mo	60.8 +3.6/-3.8 at 92 mo					9.99 +.0/-+	94.7 +.3/3	9.9 /0.+	92.1 +.4/4
7 yr	99.8 +.1/5	79.1 +2.7/-3.0	9.99 +.0/.+	84.0 +.5/5	99.9 +.1/1	84.3 +1.1/-1.1	100.0 +.0/0 at 78 mo	74.0 +5.9/-7.2 at 78 mo	100.0 +.0/1 at 81 mo	17.0 +2.1/-2.0 at 81 mo	9.99 /0.+	97.1 +.2/2	9.99 /0.+	95.3 +.3/3
6 yr	100.0 +.0/3	96.4 +.7/8	9.99 /0.+	96.0 +.2/2	99.9 +.0/1	94.8 +.4/4	100.0 +.0/0	90.9 +2.9/-4.1	100.0 +.0/1	59.6 +1.3/-1.4	9.99 /0.+	98.0 +.1/2	9.96 0/0.+	97.6 +.2/2
5 yr	100.0 +.0/0	98.6 +.4/5	100.0 +.0/0	98.5 +.1/1	9.99 -/0.+	97.4 +.2/3	100.0 +.0/0	97.8 +1.1/-2.1	100.0 +.0/1	90.3 +.6/7	9.99 0/0.+	98.7 +.1/1	9.99 0/0.+	98.7 +.1/1
4 yr	100.0 +.0/0	99.6 +.2/3	100.0 +.0/0	99.4 +.0/1	100.0 +.0/0	98.9 +.1/2	100.0 +.0/0	99.0 +.6/-1.7	100.0 +.0/1	97.2 +.3/3	9.99 +.0/-/0	99.1 +.1/1	9.99 0/0.+	99.2 +.1/1
3 yr	100.0 +.0/0	99.8 +.1/2	100.0 +.0/0	99.8 +.0/0	100.0 +.0/0	99.6 +.1/1	100.0 +.0/0	100.0 +.0/0	100.0 +.0/1	99.2 +.1/2	100.0 +.0/0	99.5 +.1/1	9.99 0/0.+	99.5 +.1/1
2 yr	100.0 +.0/0	99.9 +.1/2	100.0 +.0/0	9.99 +.0/-,0	100.0 +.0/0	99.8 +.0/1	100.0 +.0/0	100.0 +.0/0	100.0 +.0/0	99.7 +.1/1	100.0 +.0/0	0/0.+	9.99 /0.+	99.7 +.0/-,1
1 yr	100.0 +.0/0	100.0 +.0/0	100.0 +.0/0	100.0 +.0/0	100.0 +.0/0	9.99 +.0/-,0	100.0 +.0/0	100.0 +.0/0	100.0 +.0/0	99.9 +.0/1	100.0 +.0/0	0/0.+	100.0 +.0/0	9.99 0/0.+
	Excluding Normal Battery Depletion	Including Normal Battery Depletion	Excluding Normal Battery Depletion	Including Normal Battery Depletion	Excluding Normal Battery Depletion	Including Normal Battery Depletion	Excluding Normal Battery Depletion	Including Normal Battery Depletion	Excluding Normal Battery Depletion	Including Normal Battery Depletion	Excluding Normal Battery Depletion	Including Normal Battery Depletion	Excluding Normal Battery Depletio	Including Normal Battery Depletion
от	m		54		13		0		m		34		49	I
о) nј ЧТ	= 0		13 =		11 ©		= 0		= 0		I		I	
о) 41	+ M		41 +		+ •		+		+ m		I		I	1
оИ ЭД	131		2,973		613	onnect	47	onnect	1,697	onnect	2,369		1,643	
rz∃ DA ml	2,000		58,000		14,000	n of Interc	100	n of Interc	3,000	n of Interc	3,000		3,000	ial Delayed
รก จ _ิ ย	4,000		125,000		37,000	al Separatic	1,000	al Separatic	16,000	al Separatic	58,000		58,000	991 Potent ngs
əม รก	Jan-02		Jan-02		Jan-02	2009 Potentia	Jan-02	2009 Potentia	Jan-02	2009 Potentia	Nov-91		Dec-89	<mark>oage 145</mark> – 19 rmanent Setti
νN	KDR801, KDR803		KDR901, KDR903, KDR906		KSR901, KSR903, KSR906	See page 139 - 3 Wires	KVDD901	See page 139 - Wires	KDR921	See page 139 – 3 Wires	8424, 8426, 8427		8330, 8331, 8331M, 8340, 8341, 8341M, 8342	Advisories: <u>See page 145</u> – 1991 Potential Delayed Restoration of Permanent Settings
I67	Kappa 800 DR		Kappa 900 DR		Kappa 900 SR		Kappa 900 VDD		Kappa 920 DR		Fegend II C Device		Minix/ Minix ST	
	XZ USR R*U BAT Z FU FU P 1 1 2 1 1 2 4 5 7 8 10 12 14	>pa 800 KDR801, Jan-02 4,000 2,000 131 3 + 0 = 3 10,r 10,r 10,00 100,00 100,00 9,8 9,8 1/7.5 <	× ≥ 5 2 2 2 2 3 3 4 5 7 5 4 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7	$ \vec{\mathbf{x}} \vec{\mathbf{z}} = \mathbf{\vec{x}} \mathbf$	$ \vec{\mathbf{z}} \vec{\mathbf{z}} = 5 \vec{\mathbf{z}}$	$ \vec{\mathbf{z}} \vec{\mathbf{z}} = 5 \vec{\mathbf{z}} \cdot 5 \vec{\mathbf{z}}$	$ \vec{z} \vec{z} = 52^{\circ} \vec{z} \vec{z} = 70^{\circ} \vec{z} = 70^{\circ}$	$ \vec{\mathbf{x}} = \mathbf{\vec{x}} = \vec$	$ \vec{\mathbf{z}} \vec{\mathbf{z}} = 5 \vec{\mathbf{z}} = 5 \vec{\mathbf{z}} = 2 \vec{\mathbf{z}} \mathbf{\vec{z}} = 2 \vec{\mathbf{z}} = 2 \vec{\mathbf{z}} \mathbf{\vec{z}} = 2 \vec{\mathbf{z}} = 2 \vec{\mathbf{z}} \mathbf{\vec{z}} = 2 \vec{\mathbf{z}} = 2$		$ \vec{z} = 3 - 3 - 3 - 2 - 3 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 4 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3$		32 52 25 54 50 50 50 50 70	SZ SZ

continued

68 Medtronic CRDM Product Performance Report www.CRDMPPR.medtronic.com

IP	G	Implantab	e P	ulse G	enerat	ors, co	ntinue	d					
			16 yr	100.0 +.0/1 at 205 mo	44.1 +3.1/-3.1 at 205 mo								
			14 yr	100.0 +.0/1	68.1 +1.5/-1.6	100.0 +.0/1 at 146 mo	13.5 +1.7/-1.6 at 146 mo	100.0 +.0/1 at 151 mo	33.6 +3.3/-3.3 at 151 mo	99.9 +.1/4 at 153 mo	88.0 +2.5/-3.0 at 153 mo		
			12 yr	100.0 +.0/1	82.1 +1.0/-1.1	100.0 +.0/1	16.8 +1.6/-1.5	100.0 +.0/1	43.5 +2.4/-2.4	99.9 +.1/4	89.6 +2.0/-2.5	100.0 +.0/0 at 143 mo	12.3 +1.6/-1.5 at 143 mo
			10 yr	100.0 +.0/1	89.3 +.7/8	100.0 +.0/1	67.1 +1.0/-1.1	100.0 +.0/1	75.7 +1.3/-1.4	99.9 +.1/4	93.6 +1.5/-1.9	100.0 +.0/0	68.3 +.9/9
			8 yr	100.0 +.0/1	94.8 +.5/5	100.0 +.0/0	92.4 +.5/5	100.0 +.0/1	92.3 +.6/7	99.9 +.1/4	97.2 +.8/-1.2	100.0 +.0/0	92.4 +.4/4
			7 yr	100.0 +.0/1	97.0 +.3/4	100.0 +.0/0	96.2 +.3/3	100.0 +.0/1	95.0 +.5/5	99.9 +.1/4	98.1 +.6/9	100.0 +.0/0	96.3 +.3/3
			6 yr	100.0 +.0/1	98.2 +.2/3	100.0 +.0/0	97.8 +.2/2	100.0 +.0/1	97.3 +.3/4	99.9 +.1/4	98.9 +.4/7	100.0 +.0/0	97.9 +.2/2
	(%)		5 yr	100.0 +.0/1	98.9 +.2/2	100.0 +.0/0	98.8 +.2/2	100.0 +.0/1	98.3 +.2/3	99.9 +.1/4	99.1 +.4/6	100.0 +.0/0	98.8 +.1/1
	bility		4 yr	100.0 +.0/1	99.5 +.1/1	100.0 +.0/0	99.3 +.1/1	100.0 +.0/1	99.1 +.2/2	100.0 +.0/0	99.7 +.1/3	100.0 +.0/0	99.4 +.1/1
	Device Survival Probability (%)	mplant	3 yr	100.0 +.0/0	99.8 +.1/1	100.0 +.0/0	99.6 +.1/1	100.0 +.0/0	99.4 +.1/1	100.0 +.0/0	99.7 +.1/3	100.0 +.0/0	99.7 1/1.+
	ice Surv	Years After Implant	2 yr	100.0 +.0/0	100.0+.0/0	100.0 +.0/0	99.8 +.0/1	100.0 +.0/0	99.8 +.1/1	100.0 +.0/0	99.8 +.1/2	100.0 +.0/0	99.8 +.0/-,0
	Dev	Year	1 yr	100.0	100.0	100.0	9.99 +.0/0	100.0	99.9 +.0/1	100.0	99.8	100.0	9.99
				Excluding Normal Battery Depletion	Including Normal Battery Depletion								
		ls	тот	4		4		-		-		11	
	Malfunctions	rapy srapy npromised	n٦	I		I		I				I	
ned	Malfu	rapy Function besimorqu	_					1					
contir		mal Battery rnai Battery		852		2,358		878		44		3,261	
nmary		bətem V əvi stnslo	ţЪА	1,000		2,000		1,000		400		2,000	
val Sur		listered Implants	SU Seg	17,000		26,000		18,000		4,000		38,000	
Device Survival Summary continued		tearket ease		Mar-92		Jul-96		Jul-96		Oct-95		Oct-95	
Device		nber del		7107, 7108		7088, 7089		8088, 8089		8085, 8086		7860, 7861, 7862	
		۷lir	ne7	Minuet		Preva DR		Preva SR		Prevail S		Prodigy DR	

Source: Medtronic Device Registration and Returned Product Analysis Data as of January 31, 2010

				•		Malfunctions	ctions			Device	Device Survival Probability (%)	l Probal	oility (%)								
γlin	mber del	Market ease	baratered stnslqml	bətemi SU əvii stnalq	rmal Battery pletions	erapy Functio besimorqm	erapy notion Not besimorqm	le:		Years	Years After Implant	olant	-	-	-	-	-	-	-	-	
ıs٦		Rel SU	SU Seg	рА			ın 🛛	toT		1 yr	2 yr	3 yr	4 yr	5 yr	6 yr	7 yr	8 yr	10 yr	12 yr	14 yr	16 yr
Prodigy SR	8158, 8160, 8161, 8162	Oct-95	22,000	2,000	1,067	I	I	4	Excluding Normal Battery Depletion	100.0 +.0/0	100.0 +.0/0	100.0 +.0/0	100.0 +.0/0	100.0 +.0/0	100.0 +.0/0	100.0 +.0/0	100.0 +.0/0	100.0 +.0/0	100.0 +.0/0	100.0 +.0/0 at 153 mo	
									Including Normal Battery Depletion	99.8 +.1/1	99.6 +.1/1	99.2 +.1/1	98.6 +.2/2	97.8 +.2/3	96.7 +.3/4	95.0 +.4/5	91.8 +.6/6	74.3 +1.2/-1.3	46.4 +2.2/-2.2	34.6 +3.1/-3.1 at 153 mo	
Sensia DR	SEDR01, SED01	Jul-06	65,000	55,000	2	+	II M	Ŋ	Excluding Normal Battery Depletion	100.0 +.0/0	100.0 +.0/0	100.0 +.0/0	100.0 +.0/0 at 38 mo								
									Including Normal Battery Depletion	100.0 +.0/0	100.0 +.0/0	99.7 +.1/2	99.7 +.1/2 at 38 mo								
Sensia SR	SESR01, SES01	Jul-06	41,000	32,000	Ś	+ 0	= _	-	Excluding Normal Battery Depletion	100.0 +.0/0	100.0 +.0/0	100.0 +.0/0	100.0 +.0/0 at 38 mo								
									Including Normal Battery Depletion	100.0 +.0/0	9.99 +.0/-1	99.9 +.0/1	99.9 +.0/1 at 38 mo								
Sigma 100 S	SS103, SS106	Aug-99	1,000	100	13	+ 0	= 0	0	Excluding Normal Battery Depletion	100.0 +.0/0	100.0 +.0/0	100.0 +.0/0	100.0 +.0/0	100.0 +.0/0	100.0 +.0/0	100.0 +.0/0	100.0 +.0/0 at 94 mo				
	Advisorie of Interco	es: See page onnect Wires	1 <u>42</u> – 2005	Advisories: <u>See page 142</u> – 2005 Potential Separation of Interconnect Wires	aration	(0) + (0) (advisory-related	(0) = (0) -related subset)	(0) set)	Including Normal Battery Depletion	100.0 +.0/0	100.0 +.0/0	99.6 +.3/-1.3	99.6 +.3/-1.3	98.7 +.8/-2.2	98.7 +.8/-2.2	96.5 +1.8/-3.7	93.1 +3.1/-5.5 at 94 mo				
Sigma 200 DR	SDR203	Aug-99	16,000	5,000	223	22 +	2 =	24	Excluding Normal Battery Depletion	100.0 +.0/0	100.0 +.0/0	100.0 +.0/0	100.0 +.0/0	100.0 +.0/1	99.9 +.0/1	99.8 +.1/2	99.6 +.1/2	99.6 +.1/2 at 118 mo			
	Advisorié of Interco Potential	Advisories: See page 142 – 2005 Potential S of Interconnect Wires; <u>See also page 139 – :</u> Potential Separation of Interconnect Wires	142 – 2005 ; <u>See also p</u> of Interconr	Advisories: <u>See page</u> 142 – 2005 Potential Separation of Interconnect Wires; <u>See also page</u> 139 – 2009 Potential Separation of Interconnect Wires	aration 09	(2) + (0) a (advisory-related	(0) = (2) -related subset)	(2) set)	Including Normal Battery Depletion	100.0 +.0/0	9.99 1/0.+	99.9 +.0/-,1	99.8 +.1/1	99.5 +.1/2	99.0 +.2/2	97,4 +.4/4	93.9 +.7/7	77.4 +3.1/-3.4 at 118 mo			
Sigma 200 SR	SSR203	Sep-99	12,000	3,000	111	10 +	= 0	10	Excluding Normal Battery Depletion	100.0 +.0/0	100.0 +.0/0	100.0 +.0/0	100.0 +.0/1	99.9 +.0/1	99.9 +.1/2	99.8 +.1/2	99.8 +.1/2	99.8 +.1/2 at 118 mo			
	Advisorié of Interco Potential	Advisories: See page 142 – 2005 Potential S of Interconnect Wires; See also page 139 – Potential Separation of Interconnect Wires	142 – 2005 ; <u>See also p</u> of Interconr	Advisories: See page 142 – 2005 Potential Separation of Interconnect Wires; <u>See also page 139</u> – 2009 Potential Separation of Interconnect Wires	aration 09	(3) + (0) : (advisory-related	(0) = (3) -related subset)	(3) set)	Including Normal Battery Depletion	99.9 +.0/1	9.99 +.1/1	99.8 +.1/1	99.7 +.1/2	99.2 +.2/3	98.6 +.3/4	97.0 +.5/6	94.8 +.8/9	85.2 +2.6/-3.1 at 118 mo			
Sigma 300 DR	SDR303, SDR306	Aug-99	107,000	46,000	804	158 +	7 =	165	Excluding Normal Battery Depletion	100.0 +.0/0	100.0 +.0/0	100.0 +.0/0	9.99 +.0/0	9.99 /0.+	9.99 /0.+	99.7 +.0/1	99.5 +.1/1	99.5 +.1/1	99.5 +.1/1 at 121 mo		
	Advisorie of Interco Potential	Advisories: See page 142 – 2005 Potential S of Interconnect Wires; See also page 139 – Potential Separation of Interconnect Wires	142 – 2005 ; <u>See also p</u> of Interconr	Advisories: See page 142 – 2005 Potential Separation of Interconnect Wires; <u>See also page 139</u> – 2009 Potential Separation of Interconnect Wires	aration 09	(30) + (0) = (advisory-related	sub	(30) set)	Including Normal Battery Depletion	100.0 +.0/0	9.99 +.0/0	99.8 +.0/0	99.7 0/0.+	99.4 +.1/1	98.9 11.+	97.9 +.1/2	95.0 +.3/3	80.0 +2.1/-2.3	80.0 +2.1/-2.3 at 121 mo		

Device Survival Summary continued

70 Medtronic CRDM Product Performance Report www.CRDMPPR.medtronic.com

IPG Implantable Pulse Generators, continued

				ors, cor									
	16 yr												
	14 yr							100.0 +.0/0 at 163 mo	28.8 +2.5/-2.5 at 163 mo	100.0 +.0/0 at 150 mo	44.8 at+4.5/-4.6 at 150 mo		
	12 yr					99.9 +.0/0 at 140 mo	9.3 +.8/7 at 140 mo	100.0 +.0/0	51.6 +1.2/-1.2	100.0 +.0/0	55.9 +3.5/-3.7		
	10 yr	99.8 +.1/1 at 119 mo	81.3 +2.2/-2.5 at 119 mo			9.99 9/0.+	68.4 +.5/5	100.0 +.0/0	80.0 +.7/7	100.0 +.0/0	88.9 +1.4/-1.6		
	8 yr	99.8 +.1/1	94.6 +.5/5	100.0 +.0/0 at 95 mo	88.7 +3.9/-5.7 at 95 mo	0/0.+	92.8 +.2/2	100.0 +.0/0	94.5 +.3/3	100.0 +.0/0	98.1 +.5/6		
	7 yr	99.9 +.1/1	97.4 +.3/3	100.0 +.0/0	94.1 +2.4/-4.0	9.99 +.0/0	96.6 +.1/1	100.0 +.0/0	96.9 +.2/2	100.0 +.0/0	98.9 +.3/4		
	6 yr	9.99 +.0/0	98.6 +.2/2	100.0 +.0/0	98.8 +.7/-2.0	9.99 9/0.+	98.1 +.1/1	100.0 +.0/0	98.2 +.2/2	100.0 +.0/0	99.0 +.3/4		
	5 yr	100.0 +.0/0	99.2 +.1/1	100.0 +.0/0	99.4 +.4/-1.7	100.0 +.0/0	99.0 +.1/.+	100.0 +.0/0	98.9 +.1/1	100.0 +.0/0	99.1 +.3/4		
	4 yr	100.0 +.0/0	99.6 +.1/1	100.0 +.0/0	100.0 +.0/0	100.0 +.0/0	99.4 +.0/-1	100.0 +.0/0	99.4 +.1/1	100.0 +.0/0	99.5 +.2/3	100.0 +.0/0 at 38 mo	99.8 +.1/2 at 38 mo
nplant	3 yr	100.0 +.0/0	99.8 +.0/1	100.0 +.0/0	100.0 +.0/0	100.0 +.0/0	99.7 +.0/-+	100.0 +.0/	99.6 +.1/1	100.0 +.0/0	99.6 +.2/3	100.0 +.0/0	99.8 +.1/2
Years After Implant	2 yr	100.0 +.0/0	0/0.+	100.0 +.0/0	100.0 +.0/0	100.0 +.0/0	9.99 +.0/-,0	100.0 +.0/0	9.99 +.0/-,0	100.0 +.0/0	99.8 +.1/2	100.0 +.0/0	100.0 +.0/0
Years	1 yr	100.0 +.0/0	100.0 +.0/0	100.0 +.0/0	100.0 +.0/0	100.0 +.0/0	9.99 0/0.+	100.0 +.0/0	100.0 +.0/0	100.0 +.0/0	9.99 +.1/1	100.0 +.0/0	100.0 +.0/0
		Excluding Normal Battery Depletio	Including Normal Battery Depletion	Excluding Normal Battery Depletio	Including Normal Battery Depletion	Excluding Normal Battery Depletion	Including Normal Battery Depletion	Excluding Normal Battery Depletion	Including Normal Battery Depletion	Excluding Normal Battery Depletion	Including Normal Battery Depletion	Excluding Normal Battery Depletion	Including Normal Battery Depletion
Įŧ	510T	26 Norm	Norm	0 Norm	Including Normal Battery Depletion	50 Excluding Normal Battery Depletion	Including Normal Battery Depletior	7 Excluding Normal Battery Depletion	Including Normal Battery Depletion	0 Excluding Normal Battery Depletion	Including Normal Battery Depletion	4 Norm	Including Normal Battery Depletior
ction Not besimorqr	uo) unJ	= 26 Norm	= 6 Norm ed subset)	= 0 Norm	Including Normal Battery Depletion	Norm	Including Normal Battery Depletior	Norm	Including Normal Battery Depletion	Norm	Including Normal Battery Depletion	Norm	Including Normal Battery Depletior
npromised rapy rapion Not npromised	no) nui adT adT	+ 1 = 26 Norm	+ (0) = 6 Norm. (visory-related subset)	0 Norm	Including Normal Battery Depletion	Norm	Including Normal Battery Depletior	7 Norm	Including Normal Battery Depletion	0	Including Normal Battery Depletion	= 4 Norm	Including Normal Battery Depletior
rapy Function npromised ction Not npromised	no) 9dT 9dT	1 = 26 Norm	(6)+(0)=6Norm.(advisory-related subset)1	0 = 0 Norm	Norm	- 50 Norm	Including Normal Battery Depletior	—7 Norm	Including Normal Battery Depletion	0 Norm	Including Normal Battery Depletion	1 + 3 = 4 Norm	Including Normal Battery Depletion
npromised rapy rapion Not npromised	no) adT adT adT adT adT ad ad ad ad ad ad ad ad ad ad ad ad ad	+ 1 = 26 Norm	(6)+(0)=6Norm.(advisory-related subset)1	+ 0 = 0 Norm	Norm	Norm	Including Normal Battery Depletior	7 Norm	Including Normal Battery Depletion	0	Including Normal Battery Depletion	3 = 4 Norm	Including Normal Battery Depletion
iletions rapy Function rapy ction Not opromised	Acti Pop Dep Dep Dep Dep Dep Dep Dep Dep Dep De	25 + 1 = 26 Norm	(6)+(0)=6Norm.(advisory-related subset)1	0 + 0 = 0 Norm	Norm	- 50 Norm	Including Normal Battery Depletior	—7 Norm	Including Normal Battery Depletion	0 Norm	Including Normal Battery Depletion	1 + 3 = 4 Norm	Including Normal Battery Depletion
ve US lants mal Battery rapy Function rapy rapy rapy rapy rapy rapy	USI Esti Acti Imp Nor Dep Con The Con	352 25 + 1 = 26 Norm	(6)+(0)=6Norm.(advisory-related subset)1	21 0 + 0 = 0 Norm	42 – 2005 Potential Separation	12,146 — 50 Norm	Including Normal Battery Depletior	2,461 — 7 Norm	Including Normal Battery Depletion	254 — — 0 Norm	Including Normal Battery Depletion	7 1 + 3 = 4 Norm	Including Normal Battery Depletion
mplants mated ve US rapy Function npromised rapy rapy rapy rapy rapy rapy rapy rapy	Reld Red USI Dep Dep The Con The Con	17,000 352 25 + 1 = 26 Norm	(6)+(0)=6Norm.(advisory-related subset)1	200 21 0 + 0 = 0 Norm	42 – 2005 Potential Separation	2,000 12,146 — 50 Norm	Including Normal Battery Depletior	3,000 2,461 — 7 7	Including Normal Battery Depletion	500 254 — — 0 Norm	Including Normal Battery Depletion	46,000 7 1 + 3 = 4 Norm	Including Normal Battery Depletion
nber Market sase mplants mal Battery ve US mal Battery hetions npromised rapy rop not ot ion sor not	USI Reje Reg USI Esti Inp Con The Con The Fun Con	54,000 17,000 352 25 + 1 = 26 Norm	+ (0) = 6 Norm. (visory-related subset)	1,000 200 21 0 + 0 = 0 Norm	Advisories: <u>See page 142</u> – 2005 Potential Separation of Interconnect Wires Depletion	122,000 2,000 12,146 — — 50 Norm	Including Normal Battery Depletior	50,000 3,000 2,461 — 7 7	Including Normal Battery Depletion	5,000 500 254 0 Norm	Including Normal Battery Depletion	55,000 46,000 7 1 + 3 = 4 Norm	Including Normal Battery Depletion

Device Survival Summary continued

Malfunctions

Device Survival Probability (%)

Ddl

Reference Chart

The longevity estimates provided are mean values calculated for the parameters given. The longevity estimates shown here assume a lower rate of 60 ppm, 100% pacing, and pulse width of 0.4 ms unless noted otherwise. The actual longevity achieved for any device while implanted will depend on the actual programmed parameters and patient factors, and may differ significantly from these estimates. The elective replacement time is indicated via telemetry indication, and rate and mode change to 65 ppm and VVI respectively (VOO/65 with magnet), unless noted otherwise.

		Estimated I	ongevity		
Family	Model Number	Amplitude Setting	500 Lead Ω	1000 Lead Ω	Elective Replacement Indicators
Adapta DR	ADDR01, ADDR03, ADDR06, ADD01	Low 2.5 V (A, RV) Nominal 3.5 V (A, RV) High 5.0 V (A, RV)	7.4 6.0 4.5	8.2 7.3 6.0	**
Adapta DR	ADDRS1	Low 2.5 V (A, RV) Nominal 3.5 V (A, RV) High 5.0 V (A, RV)	5.5 4.3 3.2	6.1 5.4 4.4	**
Adapta DR	ADDRL1	Low 2.5 V (A, RV) Nominal 3.5 V (A, RV) High 5.0 V (A, RV)	9.1 7.4 5.4	10.1 9.0 7.3	**
Adapta SR	ADSR01, ADSR03, ADSR06	Low 2.5 V (RV) Nominal 3.5 V (RV) High 5.0 V (RV)	7.3 6.4 5.0	7.8 7.4 6.2	**
Adapta VDD	ADVDD01	Low 2.5 V (RV) Nominal 3.5 V (RV) High 5.0 V (RV)	6.2 5.5 4.4	6.5 6.2 5.4	**
AT500	AT501, 7253	Low 2.0 V (A, RV) Nominal 3.0 V (A, RV) High 5.0 V (A, RV)	7.7 5.8 3.7	8.3 7.0 5.2	Telemetry indication. Pacing mode and rate (magnet and non-magnet) as programmed.
EnPulse DR	E1DR01, E1DR03, E1DR06	Low 2.5 V (A, RV) Nominal 3.5 V (A, RV) High 5.0 V (A, RV)	7.5 6.2 4.4	8.5 7.6 5.9	**
EnPulse DR	E1DR21	Low 2.5 V (A, RV) Nominal 3.5 V (A, RV) High 5.0 V (A, RV)	5.4 4.3 3.0	6.0 5.4 4.2	**
EnPulse 2 DR	E2DR01, E2DR03, E2DR06	Low 2.5 V (A, RV) Nominal 3.5 V (A, RV) High 5.0 V (A, RV)	7.5 6.2 4.4	8.5 7.6 5.9	**
EnPulse 2 DR	E2DR21	Low 2.5 V (A, RV) Nominal 3.5 V (A, RV) High 5.0 V (A, RV)	5.4 4.3 3.0	6.0 5.4 4.2	**
EnPulse 2 DR	E2DR31, E2DR33	Low 2.5 V (A, RV) Nominal 3.5 V (A, RV) High 5.0 V (A, RV)	9.0 7.4 5.2	10.1 9.1 7.1	**
EnPulse 2 SR	E2SR01, E2SR03, E2SR06	Low 2.5 V (A, RV) Nominal 3.5 V (A, RV) High 5.0 V (A, RV)	7.2 6.3 4.8	7.7 7.3 6.1	**
EnPulse 2 VDD	E2VDD01	Low 2.5 V (RV) Nominal 3.5 V (RV) High 5.0 V (RV)	6.1 5.5 4.3	6.5 6.2 5.4	**
EnRhythm DR	P1501DR	Low 2.5 V (A, RV) Nominal 3.5 V (A, RV) High 5.0 V (A, RV)	10.6 8.0 5.4	12.3 10.3 7.8	**
Kappa 400 DR	KDR401, KDR403	Low 2.5 V (A, RV) Nominal 3.5 V (A, RV) High 5.0 V (A, RV)	7.8 6.4 5.1	8.5 7.5 6.5	**
Kappa 400 SR	KSR401, KSR403	Low 2.5 V (RV) Nominal 3.5 V (RV) High 5.0 V (RV)	7.9 6.9 5.8	8.4 7.7 7.0	**
Kappa 600 DR	KDR601, KDR603, KDR606	Low 2.5 V (A, RV) Nominal 3.5 V (A, RV) High 5.0 V (A, RV)	7.7 6.3 4.4	8.6 7.7 6.0	**
Kappa 600 DR	KDR651, KDR653	Low 2.5 V (A, RV) Nominal 3.5 V (A, RV) High 5.0 V (A, RV)	7.7 6.3 4.4	8.6 7.7 6.0	**

**Telemetry indication. Rate and mode change to 65 ppm and VVI respectively (VOO/65 with magnet).

Reference Chart continued

		Estimated Long	gevity		
Family	Model Number	Amplitude Setting	500 Lead Ω	1000 Lead Ω	Elective Replacement Indicators
Kappa 700 D	KD701, KD703, KD706	Low 2.5 V (A, RV) Nominal 3.5 V (A, RV) High 5.0 V (A, RV)	7.7 6.3 4.4	8.6 7.7 6.0	**
Kappa 700 DR	KDR701, KDR703, KDR706	Low 2.5 V (A, RV) Nominal 3.5 V (A, RV) High 5.0 V (A, RV)	7.7 6.3 4.4	8.6 7.7 6.0	**
Kappa 700 DR	KDR721	Low 2.5 V (A, RV) Nominal 3.5 V (A, RV) High 5.0 V (A, RV)	5.5 4.4 3.0	6.1 5.5 4.2	**
Kappa 700 SR	KSR701, KSR703, KSR706	Low 2.5 V (RV) Nominal 3.5 V (RV) High 5.0 V (RV)	7.4 6.5 4.9	7.9 7.5 6.2	**
Kappa 700 VDD	KVDD701	Low 2.5 V (RV) Nominal 3.5 V (RV) High 5.0 V (RV)	6.2 5.6 4.4	6.6 6.3 5.3	**
Kappa 800 DR	KDR801, KDR803	Low 2.5 V (A, RV) Nominal 3.5 V (A, RV) High 5.0 V (A, RV)	7.7 6.3 4.4	8.6 7.7 6.0	**
Kappa 900 DR	KDR901, KDR903, KDR906	Low 2.5 V (A, RV) Nominal 3.5 V (A, RV) High 5.0 V (A, RV)	7.7 6.3 4.4	8.6 7.7 6.0	**
Kappa 920 DR	KDR921	Low 2.5 V (A, RV) Nominal 3.5 V (A, RV) High 5.0 V (A, RV)	5.5 4.4 3.0	6.1 5.5 4.3	**
Kappa 900 SR	KSR901, KSR903, KSR906	Low 2.5 V (RV) Nominal 3.5 V (RV) High 5.0 V (RV)	7.3 6.4 4.9	7.9 7.4 6.1	**
Kappa 900 VDD	KVDD901	Low 2.5 V (RV) Nominal 3.5 V (RV) High 5.0 V (RV)	6.2 5.6 4.4	6.6 6.3 5.4	**
Legend II	8424, 8426, 8427	Low 2.5 V, 0.36 ms (RV) Nominal 3.3 V, 0.36 ms (RV) High 5.0 V, 0.36 ms (RV)	12.9 9.4 7.8	14.5 11.8 10.5	If programmed to non-rate responsive mode (e.g., VVI), rate decrease of 10% from programmed rate. Telemetry indication. If programmed to rate responsive mode (e.g., VVIR), rate change to 65 ppm and mode change to VVI. Telemetry indication.
Minix	8340, 8341, 8341M, 8342	Low 2.5 V (RV) Nominal 3.3 V (RV) High 5.0 V (RV)	14.9 10.2 7.9	17.3 13.6 11.3	Telemetry indication. Rate decrease of 10% from programmed rate.
Minix ST	8330, 8331, 8331M	Low 2.5 V (RV) Nominal 5.0 V (RV) High 8.0 V (RV)	14.9 7.9 4.0	17.3 11.4 7.0	Telemetry indication. Rate decrease of 10% from programmed rate.
Minuet	7107, 7108	Low 2.5 V, 0.36 ms (A, RV) Nominal 4.0 V, 0.36 ms (A, RV) High 5.0 V, 0.36 ms (A, RV)	12.5 7.7 4.7	15.6 10.9 7.6	**
Preva DR	7088, 7089	Low 2.5 V (A, RV) Nominal 3.5 V (A, RV) High 5.0 V (A, RV)	9.9 7.4 5.4	11.3 9.4 7.5	**
Preva SR	8088, 8089	Low 2.5 V (RV) Nominal 3.5 V (RV) High 5.0 V (RV)	9.8 8.0 6.4	10.7 9.5 8.1	**
Prevail S	8085, 8086	Low 2.5 V, 0.42 ms (RV) Nominal 3.3 V, 0.42 ms (RV) High 5.0 V, 0.42 ms (RV)	16.4 10.8 8.6	19.4 14.4 12.4	Telemetry indication. Rate decrease of 10% from programmed rate.

Reference Chart continued

		Estimated I	ongevity		
Family	Model Number	Amplitude Setting	500 Lead Ω	1000 Lead Ω	Elective Replacement Indicators
Prodigy DR	7860, 7861, 7862	Low 2.5 V (A, RV) Nominal 3.5 V (A, RV) High 5.0 V (A, RV)	9.9 7.4 5.4	11.3 9.4 7.5	**
Prodigy SR	8158, 8160, 8161, 8162	Low 2.5 V (RV) Nominal 3.5 V (RV) High 5.0 V (RV)	9.8 8.0 6.4	10.7 9.5 8.1	**
Sensia DR	SEDR01, SED01	Low 2.5 V (A, RV) Nominal 3.5 V (A, RV) High 5.0 V (A, RV)	7.5 6.1 4.5	8.3 7.4 6.0	**
Sensia SR	SESR01, SES01	Low 2.5 V (RV) Nominal 3.5 V (RV) High 5.0 V (RV)	7.3 6.4 5.0	7.8 7.4 6.2	**
Sigma 100 S	SS103, SS106	Low 2.5 V (RV) Nominal 3.5 V (RV) High 5.0 V (RV)	10.1 8.2 6.4	11.1 9.8 8.4	**
Sigma 200 DR	SDR203	Low 2.5 V (A, RV) Nominal 3.5 V (A, RV) High 5.0 V (A, RV)	10.1 7.5 5.5	11.7 9.6 7.8	**
Sigma 200 SR	SSR203	Low 2.5 V (RV) Nominal 3.5 V (RV) High 5.0 V (RV)	10.1 8.2 6.4	11.1 9.8 8.4	**
Sigma 300 DR	SDR303, SDR306	Low 2.5 V (A, RV) Nominal 3.5 V (A, RV) High 5.0 V (A, RV)	10.1 7.5 5.5	11.7 9.6 7.8	**
Sigma 300 SR	SSR303, SSR306	Low 2.5 V (RV) Nominal 3.5 V (RV) High 5.0 V (RV)	10.1 8.2 6.4	11.1 9.8 8.4	**
Sigma 300 VDD	SVDD303	Low 2.5 V (RV) Nominal 3.5 V (RV) High 5.0 V (RV)	8.9 7.3 5.8	9.7 8.6 7.4	**
Thera-i DR	7960i, 7961i, 7962i	Low 2.5 V (A, RV) Nominal 3.5 V (A, RV) High 5.0 V (A, RV)	9.9 7.4 5.4	11.3 9.4 7.5	**
Thera-i SR	8960i, 8961i, 8962i	Low 2.5 V (RV) Nominal 3.5 V (RV) High 5.0 V (RV)	9.8 8.0 6.4	10.7 9.5 8.1	**
Thera-i VDD	8968i	Low 2.5 V (RV) Nominal 3.5 V (RV) High 5.0 V (RV)	11.5 9.6 7.7	12.4 11.1 9.7	**
Versa DR	VEDR01	Low 2.5 V (A, RV) Nominal 3.5 V (A, RV) High 5.0 V (A, RV)	7.5 6.1 4.5	8.3 7.4 6.0	**

**Telemetry indication. Rate and mode change to 65 ppm and VVI respectively (VOO/65 with magnet).

Method for Estimating Lead Performance

Medtronic CRDM has tracked lead survival for over 27 years with its multicenter, global chronic lead studies.

Leads Performance Analysis

Implanted leads operate in the challenging biochemical environment of the human body and the body's response to foreign objects. Implanted leads are also subject to mechanical stresses associated with heart motion, body motion, and patient anatomy.

In this environment, pacemaker and defibrillation leads cannot be expected to last forever. While IPGs and ICDs have a battery that will deplete after a predictable length of time, a lead's longevity cannot be predicted, nor are there simple indicators that a lead is approaching the end of its service life. Therefore, regular monitoring while implanted, and evaluation of lead integrity upon IPG or ICD replacement, is necessary to determine if a lead may be approaching the end of its service life.

Returned Product Analysis Shortfalls

All leads and lead segments returned to Medtronic are analyzed to determine whether or not they meet performance limits established by Medtronic. Although returned product analyses are valuable for gaining insight into lead failure mechanisms, this data cannot be used by itself for determining the survival probability of leads because only a small fraction of leads are explanted and returned for analysis. Additionally, those leads that are returned cannot be assumed to be statistically representative of the performance of the total population for a given lead model. Partial or total lead extraction can result in significant damage to a lead, making a definitive analysis of a suspected failure and its cause impossible. Thus, lead survival probabilities are more appropriately determined through a clinical surveillance study. Although returned product analysis results are presented in this report, Medtronic tracks lead survival through its System Longevity Study.

System Longevity Study (SLS)

The SLS is a prospective, non-randomized multicenter, global study designed to monitor the performance of market-released cardiac therapy products. Medtronic has been monitoring the performance of its cardiac therapy products with a multicenter study for 27 years and has evaluated the performance of more than 75,000 leads, with data reported from 14 countries on four continents.

The primary purpose of the SLS is to evaluate and publish the long-term reliability and performance of Medtronic market-released cardiac therapy products by analyzing product survival probabilities. Productrelated adverse events, indicating the status of the product, are collected to measure survival probabilities. The data gathered in this study may also be used to support the design and development of investigational plans for new cardiac therapy products. The SLS is designed to continue indefinitely, encompassing new products as they become commercially available.

Eligible products for study enrollment include all Medtronic market-released cardiac therapy products. Medtronic may limit overall enrollment of any product when the number of enrollments provides an adequate number to effectively assess product survivability. Medtronic reserves the right to close enrollment of a product at a site level in order to ensure all participating sites have an equal opportunity to enroll.

To ensure a sufficiently large and representative source of data, participating clinical centers must meet specific selection criteria. In addition, centers are selected to be representative of the range of clinical environments in which Medtronic conducts business.

Investigators enroll qualified subjects with specific Medtronic market-released cardiac therapy products and follow these subjects from their implant date until they can no longer be followed (e.g., death and lost to follow-up). Using a Clinical Investigation Plan, each center monitors and reports on the performance of specific Medtronic market-released cardiac therapy products (e.g., product-related adverse events, replacements and abandonments) and subject status (e.g., subject death and subject withdrawal from the study). Subjects will be followed by their respective center in accordance with the center's established practices for routine follow-up.

Patients are eligible for enrollment in the study if:

- They are within 6 months post-implant of a Medtronic market-released lead connected to a market-released CRT, ICD, or IPG device, and the lead is used for a pacing, sensing, or defibrillation application, or
- 2. They participated in a qualifying study of a marketreleased Medtronic cardiac therapy product; complete implant and follow-up data are available; and the data is appropriately and legally released for use in the study.

The Standard Actuarial Method is used to determine estimates of lead survival.

The SLS protocol requires regular follow-up reporting on all leads actively followed in the study. The follow-up schedule for this study is based on utilizing routine, scheduled office/clinic visits and unscheduled office/ clinic visits prompted by symptoms or complaints. Data collected at each follow-up includes routine clinical electrical data, any system modifications, and any lead or generator adverse events.

Each study center must inform Medtronic whenever a lead complication has occurred or when a patient is no longer participating in the study. Under the study protocol, each lead is assumed to be normally active unless a lead-related complication is confirmed, the lead is abandoned or explanted, the patient is no longer available for follow-up, or more than 24 months have passed since last follow-up. The data analyses assume that the patient is still part of the study and no lead complications had occurred as of the report cutoff date unless specifically reported by the center.

Medtronic evaluates center compliance with study protocol through clinical monitoring at each study site. Additionally, study center personnel must be trained in the study procedures prior to participating, and they must adhere to the policies and procedures of their local ethics boards.

Lead Complications

All adverse events are critically evaluated by a Medtronic technical review committee and the investigator is asked to assess the relationship of the adverse event to the presence or performance of the implanted system, generator and/or lead(s).

The SLS complication criteria are defined below. These criteria do not, however, enable a lead integrity or "hardware" failure to be conclusively differentiated from other clinical events such as an undetected lead dislodgement, exit block, or concurrent pulse generator failure manifested as a sensing or capture problem.

A lead-related complication is considered to have occurred if at least one of the following clinical observations is reported and at least one of the following clinical actions is made 30 days or more after the implant.

Clinical Observations

- Failure to capture
- Failure to sense/undersensing
- Oversensing
- Abnormal pacing impedance (based on lead model, but normal range is typically 200-3,000 ohms)
- Abnormal defibrillation impedance (based on lead model, but normal range is typically 20-200 ohms)
- Insulation breach, observed visually, that has degraded system performance
- Conductor fracture, observed visually or radiographically
- Extracardiac stimulation
- Cardiac perforation
- Lead dislodgement

Clinical Actions

- Lead surgically abandoned/capped
- Lead electrically abandoned/capped
- Lead explanted
- Lead replaced
- Polarity reprogrammed (i.e., bipolar to unipolar; unipolar to bipolar)
- Lead use continued based on medical judgment despite a known clinical performance issue
- Other lead-related surgery performed (e.g., lead mechanical alteration or unsuccessful repositioning)

Note: Successful lead repositioning is not a qualifying action.

Data Analysis Methods

The performance of leads is expressed in terms of lead survival estimates, where "survival" refers to the function of the lead, not the survival of the patient. These survival estimates are intended to illustrate the probability that a lead will survive for a given number of years without a lead-related complication.

The survival estimates are determined from the analysis of the data collected through the SLS. These data are presented graphically and numerically.

Survival times are calculated from the implant date to the earlier of the complication date, out-of-service date (for example, subject leaves the study, the lead is no longer being used, or no data has been reported within a specified time interval), or the cutoff date of the report. If a lead experiences more than one complication, the first is used to calculate survival time; although all complications associated with a lead are in the tables in this report.

Of the several different statistical methods available for survival analysis, the Standard Actuarial Method, with suspensions assumed distributed across the intervals (Cutler-Ederer Method), is used to determine estimates of lead survival. This method is commonly used by medical researchers and clinicians.

On the following pages, each graph includes a survival curve where events include qualifying lead-related complications. This survival estimate is a good representation of the probability a lead will survive a period of time without a lead-related complication. For example, if a survival probability is 95% after 5 years of service, then the lead has a 5% chance of experiencing a lead-related complication in the first 5 years following implant.

Since the survival estimate can become very imprecise with small effective sample sizes, Medtronic truncates the survival curve when the number of leads entering an interval is less than 50 leads. When the number of leads entering an interval reaches 50, the next data point is added to the survival curve. Although the report provides tabular data in 1-year intervals, the curves are actually computed and plotted using 3-month intervals.

The data in the tables is rounded to the nearest tenth of one percent. Occasionally, a graph may show 100% survival, but have one or more complications. This occurs because even with the complications, the data rounds to 100%.

The survival curves are statistical estimates. As performance experience accumulates, the estimation improves. Confidence intervals are provided as a way to indicate the degree of certainty of the estimates. Greenwood's formula is used to calculate corresponding 95% confidence intervals for the standard errors, and the complementary log-log method is used to produce the confidence bounds.

Medtronic urges all physicians to return explanted products and to notify Medtronic when a product is no longer in use, regardless of reason for explant or removal from use.

Sample Size and How the Population and Population Samples Are Defined

The population sample from which the survival estimates are derived is comprised of the patients successfully enrolled in the SLS as of the report cutoff date. The number of enrolled implants is listed for each model.

This sample based on SLS enrollments is considered to be representative of the worldwide population, including data from 14 countries on four continents, and therefore the survival estimates shown in this report should be representative of the performance worldwide of these models.

In general, a model or model family will be included in this report when more than 100 leads have been enrolled and no fewer than 50 leads followed for at least 6 months. Models will remain in the report for at least 20 years as long as Medtronic estimates at least 500 leads remain active in the United States, based on estimated US implants.

Medtronic, at its discretion, may stop providing updated performance information on lead models that received original US market-release approval 20 or more years ago. These models may be removed from this report at that time.

Returned Product Analysis Results

Every lead or lead portion returned to Medtronic receives an analysis. Although the returned product analysis data is not used to generate the survival estimates, the data provides valuable insight into the causes of lead malfunction.

For reporting returned product analysis results, Medtronic CRDM considers a lead as having malfunctioned whenever the analysis shows that any parameter was outside the performance limits established by Medtronic while implanted and in service. To be considered a malfunction for returned product analysis reporting, the lead must have been returned to Medtronic and analyzed.

The results of the analysis is presented in four categories. The lead reporting categories are:

• Conductor Fracture: Conductor malfunction with complete or intermittent loss of continuity that could interrupt current flow (e.g., fractured conductors), including those associated with clavicle flex fatigue or crush damage.

- Insulation Breach: A malfunction of the insulation allowing inappropriate entry of body fluids or inappropriate current flow between the conductors, or between the conductor and the body. Examples include cuts, tears, depressions, abrasions, and material degradation.
- Crimps/Welds/Bonds: Any malfunction in a conductor or lead body associated with a point of connection.
- Other: Malfunctions of specific lead mechanical attributes, such as sensors, connectors, seal rings, or malfunction modes not included in the three categories above.

A lead subject to a safety advisory is not considered to have malfunctioned unless it has been returned to Medtronic CRDM and found, through analysis, to actually have performed outside the performance limits established by Medtronic.

For leads designed for either ventricular or atrial use, the numbers listed in the Returned Product Analysis tables include both.

The numbers of malfunctions listed in the Returned Product Analysis tables are the actual numbers confirmed in the returned product analysis from the United States. The numbers of complications listed in the complications tables are the actual numbers observed in the SLS centers around the world.

US Reports of Acute Lead Observations (Occurring within First Month of Service)

In the first weeks following lead implantation, physiologic responses and lead performance can vary until longterm lead stability is attained. Acute (defined as the first month after implant) lead performance may be subject to a number of factors, including patient-specific anatomy,

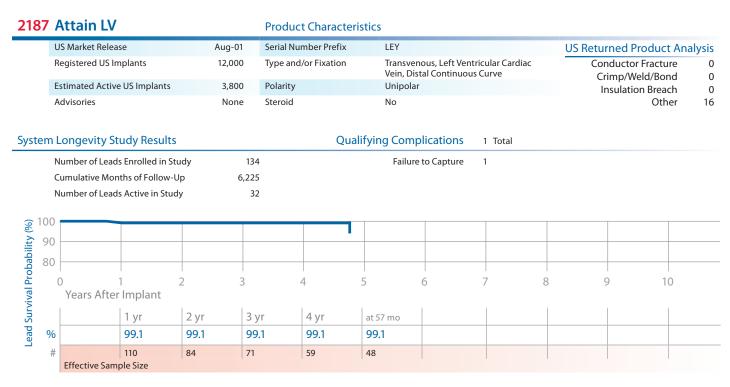
clinical conditions and/or varying implant conditions/ techniques. After a period of time, the implant and the lead performance stabilizes. It is for this reason that the System Longevity Study results, which are intended to measure long-term performance, do not include complications that occur within the first 30 days after implant.

With this issue of the CRDM Product Performance Report, Medtronic is including information about the clinical experience in the first month of service. The source for this information is Medtronic's complaint handling system database. The information is summarized in tables titled "US Reports of Acute Lead Observations." To be included in this summary of observations, a lead must first be successfully implanted and registered in Medtronic's Device and Registrant Tracking system.

Each Event Report received by Medtronic's complaint handling system is assigned one or more Reason for Report codes based on the information received. The Reason for Report codes have been grouped into Acute Lead Observation categories. The categories used for this product performance report are drawn from the "FDA Guidance for Submission of Research and Marketing Applications for Permanent Pacemaker Leads and for Pacemaker Lead Adapter 510(k) Submissions." The categories are:

- 1. Cardiac Perforation
- 2. Conductor Fracture
- 3. Lead Dislodgement
- 4. Failure to Capture
- 5. Oversensing
- 6. Failure to Sense
- 7. Insulation Breach
- 8. Impedance Abnormal
- 9. Extracardiac Stimulation
- 10. Unspecified

Although multiple observations are possible for any given lead, only one observation is reported per lead. The observation reported is the observation highest on the list. For example, if an Event Report includes observations for both Lead Dislodgement and Failure to Sense, Lead Dislodgement is reported.


The lead event reported to Medtronic may or may not have involved clinical action or product returned to Medtronic. The lead may have remained implanted and in service.

Estimated Number of Implanted and Active Leads in the United States

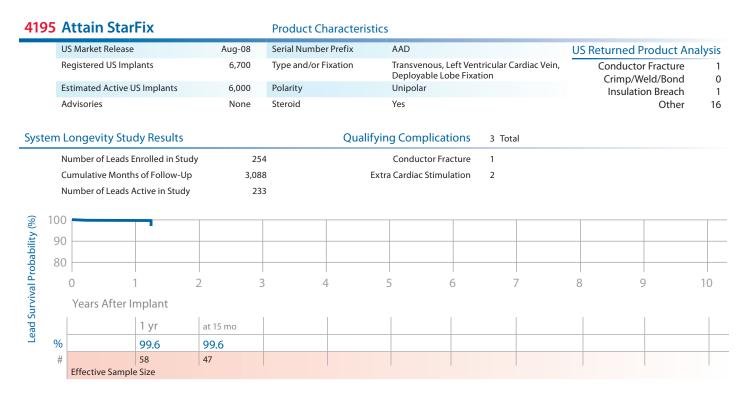
In addition to providing the number of leads enrolled in the SLS, this report also provides the number of leads registered as implanted and the number remaining active in the United States based on the status recorded in the Medtronic Device and Registrant Tracking system.

Some lead models do not have a survival curve presented in this report. These lead models do not have a survival curve because they have insufficient sample size in the System Longevity Study. Returned Product Analysis results for these models are included here for reference and comparison.

Left-Heart Leads

2188 Attain CS

Product Characteristics


Aug-01	Serial Number Prefix	LEB	US Returned Product Ana	lysis
1,800	Type and/or Fixation	Transvenous, Coronary Sinus/ Cardiac Vein, Canted	Conductor Fracture	1
400	Polarity	Bipolar	Insulation Breach	0
None	Steroid	No	Other	0
	1,800 400	1,800Type and/or Fixation400PolarityNoneSteroid	1,800Type and/or FixationTransvenous, Coronary Sinus/ Cardiac Vein, Canted400PolarityBipolarNoneSteroidNo	1,800Type and/or FixationTransvenous, Coronary Sinus/ Cardiac Vein, CantedConductor Fracture Crimp/Weld/Bond Insulation Breach400PolarityBipolarInsulation Breach

System Longevity Study Results		Qualitying complications	i lotal
Number of Leads Enrolled in Study	15	Extra Cardiac Stimulation	1
Cumulative Months of Follow-Up	460		
Number of Leads Active in Study	0		

90	Survival estimate								
80									
		1							
() 1 Years After Imp	2 plant	 5 4	5	6) /	č	5	1
(2 plant 0 mo	 ; 4	5		o /	6	5	
%	at	1	 ; 4				۲ ۲	5	

	US Market Rele	ase	May-	02 Seri	al Number Prefix	BAA			US Returned F	Product Ana	alysis
	Registered US	Implants	100,3	00 Тур	e and/or Fixation		venous, Left Ver I Double Curve	tricular Cardiac Vein,	Conducto		21
	Estimated Acti	ve US Implants	49,5	00 Pola	arity	Unipo				on Breach	2
	Advisories	Noi	ne Ster	oid	Yes				Other	71	
sten	Longevity S	Study Results	5		Qua	alifying Co	mplications	36 Total			
	Number of Lea	ds Enrolled in S	tudy	677		Cond	luctor Fracture	1	Lead Dis	lodgement	13
	Cumulative Mo	Up 2	26,842		Extra Cardi	ac Stimulation	7	Unspecified Clir	nical Failure	3	
	Number of Lea	ds Active in Stu	dy	218		Fail	ure to Capture	12			
10	0										
10											
9	0										
8	0										
	0	1	2	3	4	5	6	7 8	9	10	
	0	er Implant	2	5		5	0	, 0		10	
9 8		1 yr	2 yr	3 yr	4 yr	5 yr	бyr	at 78 mo			
	,					-					
	0	95.9 549	95.0 429	94.2 345	94.2 245	94.2 159	94.2 80	94.2			
	#							47			

	US Market Release	Aug-04	Serial Number Pre	fix LFG		US R	leturned Pro	duct Ana	alysis
	Registered US Implants	86,500	Type and/or Fixati	on Transvenous, Left Ve Cardiac Vein, Distal			Conductor F		3
	Estimated Active US Implants	62,300	Polarity	Bipolar			Crimp/Weld Insulation		0 18
	Advisories	None	Steroid	Yes			Insulation		12
ystem	n Longevity Study Results			Qualifying Complications	8 Total				
	Number of Leads Enrolled in Study	677	7	Failure to Capture	1				
	Cumulative Months of Follow-Up	26,842	2	Lead Dislodgement	6				
	Cumulative Months of Follow-Up Number of Leads Active in Study	26,842 218		Lead Dislodgement Insulation (ESC)					
10	Number of Leads Active in Study								
<u>چ</u> 10	Number of Leads Active in Study								
(%) 10(%) 10(9)	Number of Leads Active in Study								
00 (%) 90 (%) 10 (%)	Number of Leads Active in Study								
Probability (%)	Number of Leads Active in Study					8	9	10	
Irvival Probability (%) 8 6	Number of Leads Active in Study	218	3	Insulation (ESC)	1	8	9	10	
ad Survival Probability (%) 8 6 10	Number of Leads Active in Study	3	3	Insulation (ESC)	1	8	9	10	
ad Survival Probability (%	Number of Leads Active in Study	218 3 yr 3	3	Insulation (ESC)	1	8	9	10	

419	96	Attain Abi	lity		Product Charac	teristics			
		US Market Releas	e	May-09	Serial Number Prefi	x PVI		US Returned Product An	alysis
		Registered US Im	plants	9,800	Type and/or Fixation	n Transvenous, Left Preformed Body, I	Ventricular Cardiac Vein, Double Curve	Conductor Fracture Crimp/Weld/Bond	0
		Estimated Active	US Implants	9,300	Polarity	Bipolar		Insulation Breach	0
		Advisories		None	Steroid	Yes		Other	6
Syst	tem	Longevity Stu	ıdy Results		Q	Qualifying Complication	15 0 Total		
		Number of Leads	Enrolled in Study	219	1				
		Cumulative Mont	hs of Follow-Up	1,331					
		Number of Leads	Active in Study	211					
(%	10	0							
lity (9	0							
babi									
rob	8	0							
/al F		0	1 2	3	4	5 6	7	8 9	10
Lead Survival Probability (%)		Years After	Implant						
ad S			at 6 mo						
Ľ	%)	100.0						
	#	ŧ	48						
		Effective Samp	le Size						

Lead Survival Summary (95% Confidence Interval)

		Release	lled	Leads Active in Study	suo	e Months of in Study		Survival		lity (%)						
Model Number	Family	US Market Release	Leads Enrolled	Leads Activ	Qualifying Complications	Cumulative Months Follow-Up in Study	1 yr	2 yr	3 yr	4 yr	5 yr	бyr	7 yr	8 yr	9 yr	10 yr
2187	Attain LV	Aug-01	134	32	1	6,225	99.1 +.8/-5.1	99.1 +.8/-5.1	99.1 +.8/-5.1	99.1 +.8/-5.1	99.1 +.8/-5.1 at 57 mo					
2188	Attain CS	Aug-01	15	0	1	460	100.0 at 0 mo									
4193	Attain OTW	May-02	677	218	36	26,842	95.9 +1.3/-1.8	95.0 +1.4/-2.1	94.2 +1.7/-2.2	94.2 +1.7/-2.2	94.2 +1.7/-2.2	94.2 +1.7/-2.2	94.2 +1.7/-2.2 at 78 mo			
4194	Attain OTW	Aug-04	677	218	8	26,842	99.4 +.4/-1.1	98.6 +.8/-1.5	98.6 +.8/-1.5	97.9 +1.2/-2.6	97.9 +1.2/-2.6 at 51 mo					
4195	Attain StarFix	Aug-08	254	233	3	3,088	99.6 +.3/-2.6	99.6 +.3/-2.6 at 15 mo								
4196	Attain Ability	May-09	219	211	0	1,331	100.0 at 6 mo									

Source: System Longevity Study Data as of January 31, 2010

US Returned Product Analysis Summary

Model Number	Family	US Market Release	Estimated US Implants	Estimated US Active	Conductor Fracture	Crimp/Weld/ Bond	Insulation Breach	Other
2187	Attain LV	Aug-01	12,000	3,800	0	0	0	16
2188	Attain CS	Aug-01	1,800	400	1	0	0	0
4193	Attain OTW	May-02	100,300	49,500	21	0	2	71
4194	Attain OTW	Aug-04	86,500	62,300	3	0	18	12
4195	Attain StarFix	Aug-08	6,700	6,000	1	0	1	16
4196	Attain Ability	May-09	9,800	9,300	0	0	0	6

Source: Returned Product Analysis Data as of January 31, 2010

US Reports of Acute Lead Observations

Model Number	Family	Estimated US Implants	Cardiac Perforation	Conductor Fracture	Lead Dislodgement	Failure to Capture	Failure to Sense		Impedance Abnormal	Extracardiac Stimulation	Unspecified
2187	Attain LV	12,000	1	0	8	3	1	0	0	1	0
2188	Attain CS	1,800	0	0	2	0	0	0	0	0	0
4193	Attain OTW	100,300	0	1	49	13	0	0	1	17	0
4194	Attain OTW	86,500	0	1	38	13	0	0	1	9	3
4195	Attain StarFix	6,700	0	0	8	6	0	0	0	4	0
4196	Attain Ability	9,800	0	0	10	1	0	1	0	6	1

Report Cutoff Date: January 31, 2010

Reference Chart

Model Number	Family	Туре	Insulation	Conductor Material	Tip Electrode	Connector Type
2187	Attain LV	Transvenous Cardiac Vein Preformed Body	Polyurethane (55D)	MP35N	Platinized Platinum	IS-1 UNI
2188	Attain CS	Transvenous Cardiac Vein Preformed Body	Polyurethane (55D)	MP35N	Platinized Platinum	IS-1 BI
4193	Attain OTW	Transvenous Cardiac Vein Preformed Body	Polyurethane (55D)	MP35N	Platinized Platinum	IS-1 UNI
4194	Attain OTW	Transvenous Cardiac Vein Preformed Body	Polyurethane (55D)/ Silicone (4719)	MP35N	Platinum Alloy	IS-1 BI
4195	Attain StarFix	Transvenous Cardiac Vein Deployable Lobes	Polyurethane (55D)	MP35N	Platinum Alloy	IS-1 Uni
4196	Attain Ability	Transvenous Cardiac Vein Preformed Body	Polyurethane (55D), SI polyimide	Ag core – MP35N	Tapered, Annualar, Titanium nitride	IS-1 BI

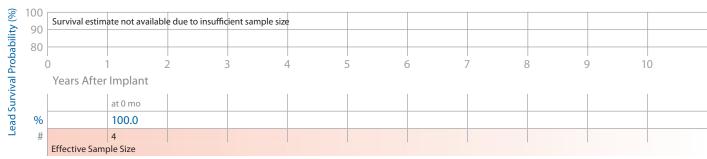
Defibrillation Leads

6721, 6921 Epicardial Patch

Product Characteristics

	US N	larket Rele	ase		Feb-93	Serial Number Pr	efix TB⊦	I, TBG, TBB, TAD, 1	FAC, or TAB	US Re	turned Product Anal	lysis
	Regi	stered US I	mplants		8,400	Type and/or Fixat	tion Epid	ardial Defib Patc	h, Suture		Conductor Fracture	7
	Estin	nated Activ	e US Implants	;	1,300	Polarity	Def	ib Electrode only			Crimp/Weld/Bond	
	Advi	sories			None	Steroid	No				Insulation Breach Other	1(
ster	n Lor	igevity S	tudy Result	ts			Qualifying C	omplications	52 Total			
	Num	ber of Lead	ds Enrolled in	Study	407		Cor	nductor Fracture	21	Insulatio	on (not further defined)	3
	Cum	ulative Mo	nths of Follow	-Up	19,649		Fa	ailure to Capture	8		Oversensing	10
	Num	ber of Lead	ds Active in St	udy	10		Impedar	ce Out of Range	4			
1(00											
(90 -											
8	80 -											
	70 -											
	0		1	2	3	4	5	6	7	8	9 10	
	Ye	ars After	Implant									
			1 yr	2 yr	З у	4 yr	5 yr	6 yr	7 yr	at 93 mo		
	%		96.5	95.0	92.	3 91.3	88.1	81.0	78.9	78.9		
	#	(330 aple Size of Le	282	209	158	121	84	66	54		

6930 Sprint Fidelis


Product Characteristics

US Market Release	Sep-04	Serial Number Prefix	LFK	US Returned Product Anal	ysis
Registered US Implants	400	Type and/or Fixation	Transvenous, Vent, Defib and Pace/Sense, Tines	Conductor Fracture Crimp/Weld/Bond	2
Estimated Active US Implants	200	Polarity	True Bipolar/One Coil	Insulation Breach	0
Advisories	1	Steroid	Yes	Other	0
See page 141 – 2007 Potential Cor Fracture	nductor Wire				

System Longevity Study Results

Qualifying Complications 0 Total

Number of Leads Enrolled in Study	4
Cumulative Months of Follow-Up	131
Number of Leads Active in Study	4

931	Sprint Fid	elis		Produc	t Characteris	tics						
	US Market Releas	e	Sep-04	Serial Nur	mber Prefix	LFL			US Re	turned Product Ar	nalysis	
	Registered US Im	plants	8,100	Type and	/or Fixation	Transveno Screw-in	us, Vent, De	efib and Pace/Sen	se, (Conductor Fracture Crimp/Weld/Bond	267 C	
	Estimated Active	US Implants	5,400	Polarity		True Bipol	ar/One Coil			Insulation Breach	C	
	Advisories See page 141 – Fracture	2007 Potential (1 Conductor Wire	Steroid		Yes				Other	2	
sten	n Longevity Stu	udy Results			Qualit	fying Compli	ications	14 Total				
	Number of Leads	Enrolled in Stud	dy 2	94		Failure to	o Capture	3		Lead Dislodgement	2	
	Cumulative Mont	hs of Follow-Up	9,1	68		Failure	e to Sense	1		Oversensing		
	Number of Leads	Active in Study	2	08		Impedance Out of Range 2				Other		
						Conducto	r Fracture	2				
10	0			•								
9	0											
8	0											
	0 1	2	2 3		4	5 6	5	7	8	9 10		
10 9 8	Years After	Implant										
		1 yr	2 yr 3	3 yr	at 39 mo							
ç	%	98.2	96.2	93.9	93.9							
	#	260	223	96	52							
	Effective Samp	le Size										

6932 Sprint

Product Characteristics

Tines Crimp/Weld/Bond	952	Spin	it.						Touuc	t Chai	acteris	sucs										
Times Crimp/Weld/Bond Insulation Breach Other Estimated Active US Implants 5,300 Polarity True Bipolar/One Coil Crimp/Weld/Bond Insulation Breach Other Advisories None Steroid Yes Other stem Longevity Study Results Qualifying Complications 9 Total Number of Leads Enrolled in Study 411 Extra Cardiac Stimulation 1 Cumulative Months of Follow-Up 23,445 Failure to Capture 2 Number of Leads Active in Study 67 Failure to Sense 2 Oversensing 4		US Mark	et Relea	ise			Aug-96	6 9	Serial Nu	mber Pr	refix	TC	A					US Re	turne	d Prod	luct Ai	nalysis
Estimated Active US Implants 5,300 Polarity Prove Bipolar/One Coll Insulation Breach Other Advisories None Steroid Yes Insulation Breach Other Insulation Breach Other Qualifying Complications 9 Total Number of Leads Enrolled in Study 411 Extra Cardiac Stimulation 1 Cumulative Months of Follow-Up 23,445 Failure to Capture 2 Number of Leads Active in Study 67 Failure to Sense 2 Oversensing 4 0 <t< td=""><td></td><td>Register</td><td>ed US Ir</td><td>nplants</td><td></td><td></td><td>15,000</td><td>τ Ο</td><td>Type and</td><td>/or Fixa</td><td>tion</td><td></td><td></td><td>is, Vent, D</td><td>efib and</td><td>Pace/Se</td><td>ense,</td><td></td><td></td><td></td><td></td><td>19</td></t<>		Register	ed US Ir	nplants			15,000	τ Ο	Type and	/or Fixa	tion			is, Vent, D	efib and	Pace/Se	ense,					19
Advisories None Steroid Yes Other stem Longevity Study Results Qualifying Complications 9 Total 1 Number of Leads Enrolled in Study 411 Extra Cardiac Stimulation 1 Cumulative Months of Follow-Up 23,445 Failure to Capture 2 Number of Leads Active in Study 67 Failure to Sense 2 Oversensing 4 0		Estimate	d Activ	e US Imp	olants		5,300	D F	Polarity			Tru	ue Bipola	r/One Coi	I							22
Number of Leads Enrolled in Study 411 Extra Cardiac Stimulation 1 Cumulative Months of Follow-Up 23,445 Failure to Capture 2 Number of Leads Active in Study 67 Failure to Sense 2 Oversensing 4 100 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Years After Implant 1 yr 2 yr 3 yr 4 yr 5 yr 6 yr 7 yr 8 yr 9 yr 10 yr at 123 mo 16 17 18 19 20 21 Years After Implant 1 yr 2 yr 3 yr 4 yr 5 yr 6 yr 7 yr 8 yr 9 yr 10 yr at 123 mo 16 17 18 19 20 21 % 99.2 98.3 98.3 97.7 97.7 97.7 96.8 96.8 96.8 96.8 96.8 96.8 96.8 96.8 96.8		Advisori	es				None	e S	Steroid			Ye	S									8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	stem	Longe	vity St	tudy R	esults						Quali	fying (Complie	cations	9 To	otal						
Number of Leads Active in Study 67 Failure to Sense 2 100 Image: Constraint of the sense 2 101 Image: Constraint of the sense 2 11 Image: Constraint of the sense 2 <td></td> <td>Number</td> <td>of Lead</td> <td>ls Enroll</td> <td>ed in Stu</td> <td>udy</td> <td></td> <td>411</td> <td></td> <td></td> <td></td> <td>Extra Ca</td> <td>ardiac Stir</td> <td>nulation</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		Number	of Lead	ls Enroll	ed in Stu	udy		411				Extra Ca	ardiac Stir	nulation	1							
Oversensing 4 100 1		Cumulat	ive Mor	nths of F	ollow-L	lp	23	3,445				I	Failure to	Capture	2							
100 90 10 11 12 13 14 15 16 17 18 19 20 21 Years After Implant % 99.2 98.3 98.3 97.7 97.7 96.8		Number	of Lead	ls Active	in Stud	у		67					Failure	to Sense	2							
90 1 <th1< th=""> 1 1 1<td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Ove</td><td>rsensing</td><td>4</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th1<>													Ove	rsensing	4							
% 99.2 98.3 98.3 97.7 97.7 97.7 96.8 <t< td=""><td>100</td><td>)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	100)																				
% 99.2 98.3 98.3 97.7 97.7 97.7 96.8 <t< td=""><td>90</td><td>)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	90)																				
% 99.2 98.3 98.3 97.7 97.7 97.7 96.8 <t< td=""><td>80</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	80																					
% 99.2 98.3 98.3 97.7 97.7 97.7 96.8 <t< td=""><td>00</td><td></td><td>1</td><td>2</td><td>3</td><td>4</td><td>5</td><td>6</td><td>7</td><td>8</td><td>9 1</td><td>0 1</td><td>1 12</td><td>13</td><td>14</td><td>15</td><td>16</td><td>17</td><td>18</td><td>19</td><td>20</td><td>21</td></t<>	00		1	2	3	4	5	6	7	8	9 1	0 1	1 12	13	14	15	16	17	18	19	20	21
% 99.2 98.3 98.3 97.7 97.7 97.7 96.8 <t< td=""><td></td><td>Year</td><td>s Aftei</td><td>r Impla</td><td>ant</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		Year	s Aftei	r Impla	ant																	
% 99.2 98.3 98.3 97.7 97.7 97.7 96.8 <t< td=""><td></td><td></td><td>1 yr</td><td>2 yr</td><td>3 yr</td><td>4 yr</td><td>5 yr</td><td>6 yr</td><td>7 yr</td><td>8 yr</td><td>9 yr</td><td>10 yr</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			1 yr	2 yr	3 yr	4 yr	5 yr	6 yr	7 yr	8 yr	9 yr	10 yr										
# 355 277 230 191 152 125 105 90 77 51 48 I	%		99.2	98.3	-	98.3		1		96.8	96.8	96.8	96.8									
Effective Sample Size	#	ŧ	355	_	_		152		105	90	_		48									
		Effecti	ive Sam	ple Size																		

,	US Mark	et Relea	se			Dec-93	s S	erial Nu	mber Pr	efix	TA	T, TBU, o	or TAF				US Re	eturne	d Prod	uct An	alysis
F	Register	ed US In	nplants			15,900) T	ype and	/or Fixa	tion	Tra	ansvend	ous CS or S\	/C Defib					uctor Fr		16
E	Estimate	d Active	e US Imp	olants		2,600) P	olarity			Or	ne Defib	Coil						p/Weld		
ŀ	Advisori	es				None	e S	teroid			No	D						Insu	Ilation I	Breach Other	3 1
tem	Longe	vity St	udy R	esults						Quali	fying (Compl	ications	55 To	otal						
1	Number	of Lead	s Enrolle	ed in Stu	ıdy		966				Co	onducto	or Fracture	18				Lead	Dislodg	ement	1
(Cumulat	ive Mor	ths of F	ollow-U	р	49	,623				Extra Ca	ardiac St	timulation	5		Ir	nsulatio	n (not fu	rther de	efined)	2
1	Number	of Lead	s Active	in Study	у		31				I	Failure t	o Capture	8					Overse	ensing	12
												Failur	e to Sense	1			Unsp	ecified	Clinical I	Failure	4
											Impeda	ince Ou	t of Range	4							
100																					
90																					
80												-									
	0	1	2	3 4	4	5 (5	7	8	9 1	0 1	1 1	2 13	14	15	16	17	18	19	20	21
	Years	After	Implar	nt																	
			2.15	3 yr	4 yr	5 yr	6 yr	7 yr	8 yr	9 yr	10 yr	11 yr	at 135 mo	Í							
		1 yr	2 yr						-	-	-										
%		1 yr 98.4	2 yr 97.5	97.2	96.6	95.0	94.4	93.2	92.7	91.3	90.2	90.2	90.2								

6935	5 Sprint Quattro Secur	e	Product Characteri	stics			
	US Market Release	Nov-08	Serial Number Prefix	TAU		US Returned Product Ana	lysis
	Registered US Implants	7,100	Type and/or Fixation	Transvenous, Vent, D Screw-in	efib and Pace/Sense,	Conductor Fracture Crimp/Weld/Bond	0
	Estimated Active US Implants	6,900	Polarity	True Bipolar/One Coi	I	Insulation Breach	0
	Advisories	None	Steroid	Yes		Other	9
Syster	m Longevity Study Results		Qua	lifying Complications	0 Total		
	Number of Leads Enrolled in Study	236	5				
	Cumulative Months of Follow-Up	1,608	3				
	Number of Leads Active in Study	229)				
bility (00 90 80						
al Pr	0 1 2	3	4	5 6	7	8 9	10
viva	Years After Implant						
Sur	at 9 mo						
ead	% 100.0						
	# 40						

Leads

Effective Sample Size

6939, 6999 Sub-Q Patch **Product Characteristics** US Market Release Dec-93 Serial Number Prefix TBA or TAP **US Returned Product Analysis Registered US Implants** 3,600 Type and/or Fixation Subcutaneous Defib Patch, Suture **Conductor Fracture** 28 Estimated Active US Implants 300 Polarity Defib Electrode Only Crimp/Weld/Bond 0 **Insulation Breach** 5 Advisories None Steroid No Other 1 System Longevity Study Results **Qualifying Complications** 47 Total Number of Leads Enrolled in Study 384 **Conductor Fracture** 12 Impedance Out of Range 2 Cumulative Months of Follow-Up Extra Cardiac Stimulation Insulation (not further defined) 18,121 5 4 Number of Leads Active in Study 4 Failure to Capture 11 Oversensing 10 Failure to Sense **Unspecified Clinical Failure** 2 1 Lead Survival Probability (%) 90 80 0 2 3 4 5 6 7 8 9 10 Years After Implant 1 yr 2 yr 3 yr 4 yr 5 yr бyr 7 yr at 93 mo % 96.0 94.1 93.7 93.7 91.5 88.3 86.0 86.0 # 249 193 116 82 60 50 311 146 Effective Sample Size of Lead Group Overall

943	Sprint				Product	t Character	istics						
	US Market Relea	se	00	ct-97	Serial Nur	nber Prefix	TCE			US R	eturned Pro	duct Ana	lysis
	Registered US In	nplants	20),800	Type and/	or Fixation		enous, Vent, De Sense, Screw-in	efib and		Conductor F		52
	Estimated Active	e US Implants	8	3,100	Polarity		True B	ipolar/One Coil			Crimp/Wel Insulation		1 22
	Advisories		Ν	None	Steroid		Yes				insulation	Other	9
stem	n Longevity St	udy Results	S			Qua	lifying Con	nplications	83 Total				
	Number of Lead	s Enrolled in S	tudy	1,311			Condu	uctor Fracture	18	Insulatio	on (not further c	efined)	1
	Cumulative Mon	ths of Follow-	Up	74,001			Failu	ire to Capture	11		Lead Dislod	gement	1
	Number of Lead	s Active in Stu	dy	318			Fa	ilure to Sense	6		Over	sensing	36
							Impedance	Out of Range	6	Uns	pecified Clinica	Failure Other	3 1
100	0												
90) (
8(0												
	0	1	2	3	4	ŀ	5	6	7	8	9	10	
9 100 90 80	Years After	' Implant											
		1 yr	2 yr	3 уі	r	4 yr	5 yr	бyr	7 yr	8 yr	9 yr	at 117	mo
9	6	98.7	97.7	96.	5	95.5	93.5	92.1	91.4	91.1	89.8	89.8	
	#	1,147	966	858		721	583	435	307	188	95	54	
	Effective Sam	ple Size											

44	Sprint Q	uattro			Product Charact	eristics						
	US Market Relea	ise	De	ec-00	Serial Number Prefix	TDC			U	S Returned P	roduct Ana	alysis
	Registered US Ir	nplants	34	4,800	Type and/or Fixation		svenous, Vent, De e/Sense, Tines	efib and		Conducto	r Fracture eld/Bond	44
	Estimated Activ	e US Implants	20	0,400	Polarity	True	Bipolar/Two Coils	5			on Breach	2
	Advisories		1	None	Steroid	Yes					Other	ç
tem	Longevity St	udy Result	S		Q	ualifying Co	omplications	3 Total				
	Number of Lead	s Enrolled in S	Study	239			Oversensing	2				
	Cumulative Mor	nths of Follow	-Up	9,387		Unspecified	d Clinical Failure	1				
	Number of Lead	s Active in Stu	ıdy	117								
100												
90												
8()											
	0	1	2	3	4	5	6	7	8	9	10	
	Years Afte	r Implant										
		1 yr	2 yr	3 yr	4 yr	5 yr	6 yr	at 75 mo				
9	6	100.0	100.0	99.1	97.9	96.5	96.5	96.5				
:	#	167	122	98	74	61	54	50				
	Effective Sam	nlo Cino										

694	5 Sprint			Pi	roduct Characte	ristics						
	US Market Rele	ase	Sej	o-97 Se	erial Number Prefix	TDA			US R	eturned Pro	duct Ana	alysis
	Registered US I	mplants	42,	.800 Ty	pe and/or Fixation		venous, Vent, De Sense, Screw-in	fib and		Conductor Fr		100
	Estimated Activ	ve US Implants	16,	,600 Pc	olarity	Integr	ated Bipolar/Tw	o Coils		Crimp/Weld		2 25
	Advisories		Ν	one St	eroid	Yes					Other	14
Syster	m Longevity S	itudy Results	5		Qua	alifying Cor	nplications	36 Total				
	Number of Lea	ds Enrolled in S	tudy	1,153		Cond	uctor Fracture	5	In	pedance Out o	of Range	5
	Cumulative Mo	nths of Follow-	Up	61,419		Extra Cardi	ac Stimulation	1		Over	sensing	18
	Number of Lea	ds Active in Stu	dy	181		Fail	ure to Capture	2	Uns	pecified Clinica	l Failure	1
						Fa	ailure to Sense	4				
8 10	0											
oilit)	0											
Lead Survival Probability (%)	30											
al Pr	0	1	2	3	4	5	6	7	8	9	10	
rviva	Years Afte	er Implant										
d Su		1 yr	2 yr	3 yr	4 yr	5 yr	бyr	7 yr	8 yr	9 yr	10 y	/r
Lea	%	99.4	98.7	98.3	97.7	96.8	95.8	95.2	94.0	93.4	93.4	4
	#	995	801	657	533	429	347	286	202	113	45	

	US Market Releas	se	Nov	-01	Serial Number Prefix	TDG			US R	eturned Prod	duct An	alysi
	Registered US Im	plants	256,	800	Type and/or Fixation		venous, Vent, De 'Sense, Screw-in	fib and		Conductor Fr		13
	Estimated Active	US Implants	187,	400	Polarity		Bipolar/Two Coils			Crimp/Weld		1(
	Advisories		N	one	Steroid	Yes					Other	9
tem	Longevity St	udy Results	i.		Qu	alifying Co	mplications	27 Total				
	Number of Lead	s Enrolled in St	udy	2,364		Cond	uctor Fracture	3		Lead Dislodg	gement	3
	Cumulative Mon	ths of Follow-U	Jp	74,555		F	ailure to Sense	2		Overs	sensing	8
	Number of Lead	s Active in Stud	dy	1447		Impedance	e Out of Range	7	Unsp	pecified Clinical	Failure	2
					Ins	sulation (not fu	rther defined)	2				
100 90												
100 90 80)											
90)	1	2	3	4	5	6	7	8	9	10	
90)	1 Implant	2	3	4	5	6	7	8	9	10	
90	0	l Implant 1 yr	2 2 yr	3 3	-	5 5 yr	6 6 yr	7 7 7 yr	8 at 90 mo	9	10	
90	0 Years After		_		4 yr	-	-			9	10	

6948 Sprint Fidelis

Product Characteristics

•					
US Market Release	Sep-04	Serial Number Prefix	LFH	US Returned Product Ana	alysis
Registered US Implants	10,400	Type and/or Fixation	Transvenous, Vent, Defib and Pace/Sense, Tines	Conductor Fracture Crimp/Weld/Bond	52
Estimated Active US Implants	7,100	Polarity	True Bipolar/Two Coils	'	0
Estimated Alerice of Implants	,,	i olanty	nue sipolai, mo cons	Insulation Breach	0
Advisories	1	Steroid	Yes	Other	6
See page 141 – 2007 Potential Cond Fracture	uctor Wire				

Qualifying Complications

0 Total

System Longevity Study Results

Number of Leads Enrolled in Study	30
Cumulative Months of Follow-Up	1,046
Number of Leads Active in Study	20

Lead Survival Probability (%) 100 Survival estimate not available due to insufficient sample size 90 80 2 3 5 8 9 0 4 6 7 10 1 Years After Implant at 0 mo % 100.0 # 30 Effective Sample Size

49	Sprint Fig	delis			Product Charac	teristics				
	US Market Relea	se	Sep	o-04	Serial Number Prefi	ix LFJ	I		US Returned Product A	nalysis
	Registered US In	nplants	186,	800	Type and/or Fixatio		nsvenous, Vent, De rew-in	efib and Pace/Sense,	Conductor Fracture	3,109
	Estimated Active	e US Implants	120,	300	Polarity	Tru	e Bipolar/Two Coil	5	Crimp/Weld/Bond Insulation Breach	2
	Advisories See page 141 Fracture	- 2007 Potenti	al Conductor \	1 Vire	Steroid	Yes	5		Other	54
em	Longevity St	udy Result	5		C	Qualifying C	Complications	37 Total		
	Number of Lead	s Enrolled in S	tudy	797		Co	nductor Fracture	16	Insulation (not further defined)	1
	Cumulative Mor	nths of Follow-	Up	28,466		F	ailure to Capture	2	Lead Dislodgement	1
	Number of Lead	s Active in Stu	dy	508			Failure to Sense	2	Oversensing	10
						Impeda	nce Out of Range	5		
100 90						1				
80										
	0	1	2	3	4	5	6	7 8	9 10	
	Years After	' Implant	2	5	I	9	0	, 0	2 10	
		1 yr	2 yr	3 yr	4 yr	at 57 mc				
%	6	98.8	97.1	95.2	<u>94.2</u>	94.2				
#	#	711	615	376	154	54				
	Effective Sam	ple Size								

90 3	Sub-Q Lea	u		Product Character	STICS					
US	JS Market Release	•	Jun-01	Serial Number Prefix	TCR			US Retu	rned Product An	alysis
Re	legistered US Imp	lants	2,700	Type and/or Fixation	Subcuta	ineous Defib Co	il, Suture	Cor	nductor Fracture	5
Es	stimated Active U	JS Implants	1,700	Polarity	One Def	fib Coil			imp/Weld/Bond	(
Ac	dvisories		None	Steroid	No			Ir	nsulation Breach Other	(
stem L	Longevity Stu	dy Results		Qua	lifying Com	plications	0 Total			
N	lumber of Leads I	Enrolled in Study	21							
с.	umulativo Month	is of Follow-Up	641							
C	unnulative Monti	is of i ofform op								
	lumber of Leads /	•	17							
Nu	lumber of Leads /	•	17							
Nu 100	Survival estim	•		,						
Nu 100 90	Survival estim	Active in Study		,						
Nu 100 90 80	Survival estim	Active in Study	ue to insufficie	ent sample size						10
Nu 100 90 80	Survival estim	Active in Study		ent sample size	5	б	7	8	9	10
Nu 100 90 80	Survival estim	Active in Study	ue to insufficie	ent sample size	5	6	7	8	9	10
Nu 100 90 80	Survival estim	Active in Study	ue to insufficie	ent sample size	5	6	7	8	9	10
Nu 100 90 80	Survival estim	Active in Study ate not available du 1 2 mplant	ue to insufficie	ent sample size	5	6	7	8	9	10

92 Medtronic CRDM Product Performance Report www.CRDMPPR.medtronic.com

	ılıy Market Release	Aarket Release		ds Enrolled	ybut2 ni əvitəA sb	eniyili) prications	sdfnoM əvifslur ybuf2 ni qU-wollo	Device Survival Pro Years After Implant	urvival F ter Impla	Device Survival Probability (%) Years After Implant	ty (%)										
66.5 59.0 73.3 81.4.3 81.6.7 86.7.3 87.9.3	peəd	peəd		реәղ				1 yr	2 yr				6 yr	7 yr	8 yr	10 yr	12 yr	14 yr	16 yr	18 yr	20 yr
0000 1 23/44 23/4	Epicardial Feb-93 407 10 Patch	407		10		52									78.9 +5.6/-7.3 at 93 mo						
atom atom </td <td>Sprint Fidelis Sep-04 4 4</td> <td>Sep-04 4</td> <td></td> <td>4</td> <td></td> <td>0</td> <td></td> <td>100.0</td> <td></td>	Sprint Fidelis Sep-04 4 4	Sep-04 4		4		0		100.0													
88.2. 89.3 89.3 89	Advisories: See page 141 – 2007 Potential Conductor Wire Fracture		007 Potential Conducto	ial Conducto	Ĕ	or Wire Fr		at 0 mo													
Mode Mode <t< td=""><td>Sprint Fidelis Sep-04 294 208</td><td>Sep-04 294</td><td></td><td>208</td><td></td><td>14</td><td></td><td></td><td></td><td></td><td>93.9 +2.5/-4.1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Sprint Fidelis Sep-04 294 208	Sep-04 294		208		14					93.9 +2.5/-4.1										
92.2 88.3 96.3 97.3 97.7 96.8 <th< td=""><td>Advisories: See page 141 – 2007 Potential Conductor Wire Fracture</td><td>page 141 – 2007 Potential Conducto</td><td>007 Potential Conducto</td><td>ial Conducto</td><td>5</td><td>r Wire Fr</td><td></td><td></td><td></td><td></td><td>at 39 mo</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	Advisories: See page 141 – 2007 Potential Conductor Wire Fracture	page 141 – 2007 Potential Conducto	007 Potential Conducto	ial Conducto	5	r Wire Fr					at 39 mo										
844 975 972, 1 927, 1 927, 3 927, 4 932, 4 932, 4 932, 4 933, 4 1 1000 1	Sprint Aug-96 411 67	411		67					98.3 +.9/-2.1								96.8 +1.7/-3.9 at 123 mo				
1000 1000 <th< td=""><td>SVC/CS Dec-93 966 31</td><td>966</td><td></td><td>31</td><td></td><td></td><td></td><td></td><td>97.5 +.9/-1.3</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>90.2 +3.2/-4.7 at 135 mo</td><td></td><td></td><td></td><td></td></th<>	SVC/CS Dec-93 966 31	966		31					97.5 +.9/-1.3								90.2 +3.2/-4.7 at 135 mo				
96.2 97.0 95.1 91.1 91.2 92.1 91.1 91.12 91.12 91.12 91.12 91.27 $95.66.53$ 95.74 63.73 $63.66.5$ $53.66.53$ $55.66.53$ 96.02 941.1 91.12 91.73 91.92 91.73 91.92 <td< td=""><td>Sprint Quattro Nov-08 236 229 Secure</td><td>236</td><td></td><td>229</td><td></td><td>0</td><td></td><td>100.0 at 9 mo</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Sprint Quattro Nov-08 236 229 Secure	236		229		0		100.0 at 9 mo													
$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$	Transvene Dec-93 1,349 36	1,349 36	36															59.5 +6/-6.5 at 147 mo			
	Sub-Q Patch Dec-93 384 4	384 4	4			47		0 5/-2.7	94.1 +2/-3.2						86.0 +4.6/-6.5 at 93 mo						
$ \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	Sprint Jul-97 351 50	351		50		7			99.1 +.6/-1.9							96.7 +1.8/-3.9 at 108 mo					
$ \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	Sprint Oct-97 1,311 318	1,311		318					97.7 +.7/-1.1							89.8 +2.4/-3.1 at 117 mo					
$ \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	Sprint Quattro Dec-00 239 117	239		117		m		100.0						96.5 +2.4/-7.2 at 75 mo							
$ \begin{bmatrix} 99.4 \\ +37.0.4 \\ +37.6 \\ +37.6 \\ +37.6 \\ +47.7 \\ +67.1 \\ +567.2 \\ +567.1 \\ +17.13 \\ +177.2 \\ +177$	Sprint Sep-97 1,153 181	1,153		181		36			98.7 +.5/-1						94.0 +1.9/-2.7	93.4 +2.1/-3					
100.0 100.0 at0mo 95.2 98.8 97.1 98.8 97.1 11.4/15 11.4/2 11.1/2 11.1/2.3 at0mo 11.1/2 at0mo 11.1/2/2.3	Sprint Quattro Nov-01 2,364 1447 Secure	Nov-01 2,364		1447					99.2 +.3/6						97.5 +1/-1.6 at 90 mo						
98.8 97.1 95.2 94.2 +66/1.1 +1/16 +1.4/2 +1.7/2.3 100.0 100.0 100.0 100.0	Sprint Fidelis Sep-04 30 20	Sep-04 30		20		0		100 .0 at 0 mo													
98.8 97.1 95.2 94.2 +.6/-1.1 +1/-1.6 +1.4/-2 +1.7/-2.3 100.0 100.0 100.0 100.0	Advisories: See page 141 – 2007 Potential Conductor Wire Fracture		.007 Potential Conducto	ial Conducto	5	r Wire Fr	acture														
t 100.0	Sprint Fidelis Sep-04 797 508	Sep-04 797		508			-		97.1 +1/-1.6			94.2 +1.7/-2.3									
445	Advisories: See page 141 – 2007 Potential Conductor Wire Fracture	page 141 – 2007 Potential Conducto	007 Potential Conducto	ial Conducto	to	r Wire Fr	acture					at 57 mo									
	Sub-Q Lead Jun-01 17 14	17		14		0		100.0 at 0 mo													

Lead Survival Summary (95% Confidence Interval)

US Returned Product Analysis Summary

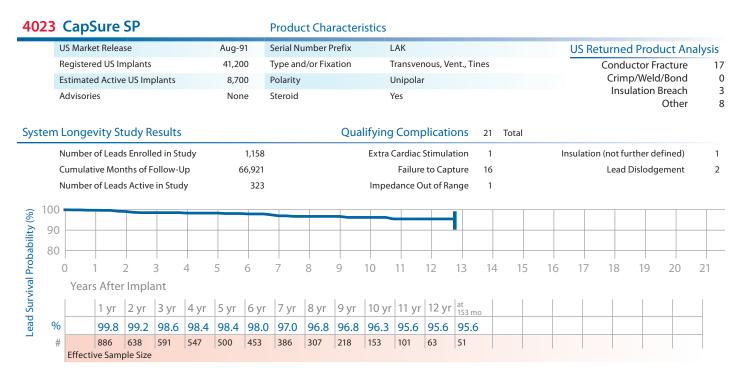
Model Number	Family	US Market Release	Estimated US Implants	Estimated US Active	Conductor Fracture	Crimp/Weld/ Bond	Insulation Breach	Other
6721, 6921	Epicardial Patch	Feb-93	8,400	1,300	70	1	10	1
6930	Sprint Fidelis	Sep-04	400	200	2	0	0	0
6931	Sprint Fidelis	Sep-04	8,100	5,400	267	0	0	2
6932	Sprint	Aug-96	15,000	5,300	19	0	22	8
6933, 6937, 6937A, 6963	SVC/CS	Dec-93	15,900	2,600	166	0	32	16
6935	Sprint Quattro Secure	Nov-08	7,100	6.900	0	0	0	9
6936, 6966	Transvene	Dec-93	23,700	2,900	177	0	326	20
6939, 6999	Sub-Q Patch	Dec-93	3,600	300	28	0	5	1
6942	Sprint	Jul-97	17,700	6,800	14	1	21	8
6943	Sprint	Oct-97	20,800	8,100	52	1	22	9
6944	Sprint Quattro	Dec-00	34,800	20,400	44	2	2	9
6945	Sprint	Sep-97	42,800	16,600	100	2	25	14
6947	Sprint Quattro Secure	Nov-01	256,800	187,400	139	1	10	91
6948	Sprint Fidelis	Sep-04	10,400	7,100	52	0	0	б
6949	Sprint Fidelis	Sep-04	186,800	120,300	3,109	2	9	54
6996	Sub-Q Lead	Jun-01	2,700	1,700	5	0	0	0

US Reports of Acute Lead Observations

Model Number	Family	Estimated US Implants	Cardiac Perforation	Conductor Fracture	Lead Dislodgement	Failure to Capture	Oversensing	Failure to Sense		Impedance Abnormal	Extracardiac Stimulation	Unspecified
6721, 6921	Epicardial Patch	8,400	0	1	0	0	0	0	2	3	0	4
6931	Sprint Fidelis	8,100	1	2	1	1	3	1	0	0	0	1
6932	Sprint	15,000	0	0	3	2	0	2	0	1	0	0
6933, 6937, 6937A, 6963	SVC/CS	15,900	0	0	2	0	1	0	2	1	0	1
6935	Sprint Quattro Secure	7,100	1	1	1	1	0	0	0	2	0	0
6936, 6966	Transvene	23,700	7	2	1	6	4	5	1	1	0	4
6939, 6999	Sub-Q Patch	3,600	0	0	0	0	0	0	0	1	0	1
6942	Sprint	17,700	1	0	2	4	1	0	0	2	0	1
6943	Sprint	20,800	1	0	0	2	1	1	1	3	0	0
6944	Sprint Quattro	34,800	1	1	5	8	5	2	0	5	0	6
6945	Sprint	42,800	0	1	4	6	8	2	2	1	1	3
6947	Sprint Quattro Secure	256,800	8	11	32	27	48	11	3	17	0	9
6948	Sprint Fidelis	10,400	0	1	7	6	1	0	0	1	0	0
6949	Sprint Fidelis	186,800	9	26	26	31	29	24	б	23	0	12
6996	SubQ	2,700	0	0	0	0	0	0	0	1	0	0

Report Cutoff Date: January 31, 2010

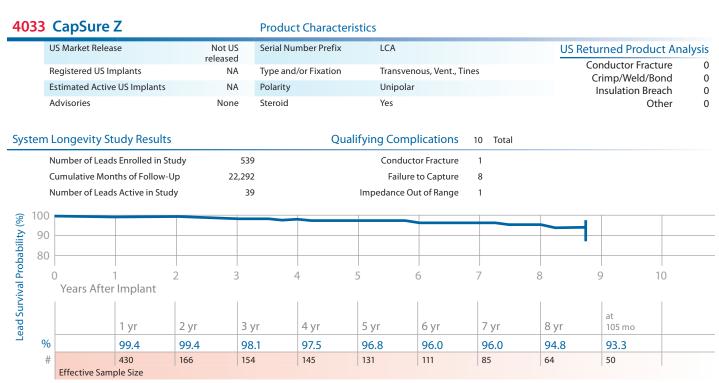
Reference Chart


			Pin Cont	iguration			
Model Number	Family	Туре	Pace/Sense	High Voltage	Lead Body Diameter	Insulation, Lead Body	Fixation, Steroic
6721	Epicardial Patch	Epi Patch	_	DF-1	S, M, L	Silicone, Single Lumen	Suture
6921	Epicardial Patch	Epi Patch	_	6.5 mm	S, M, L	Silicone, Single Lumen	Suture
6930	Sprint Fidelis	Endo RV True Bipolar Sensing	IS-1	DF-1	6.6 Fr	Silicone with Polyurethane Overlay, Multilumen	Passive, Steroid
6931	Sprint Fidelis	Endo RV True Bipolar Sensing	IS-1	DF-1	6.6 Fr	Silicone with Polyurethane Overlay, Multilumen	Active, Steroid
6932	Sprint	Endo RV True Bipolar Sensing	IS-1	DF-1	7.8 Fr	Silicone, Multilumen	Passive, Steroid
6933	SVC/CS	Endo SVC/CS Coil	_	DF-1	7 Fr	Silicone, Single Lumen	Passive
6934S	Transvene	Endo RV True Bipolar Sensing	IS-1	DF-1	12 Fr	Silicone, Coaxial	Passive, Steroid
6935	Sprint Quattro Secure	Endo RV True Bipolar Sensing	IS-1	DF-1	8.2 Fr	Silicone with Polyurethane Overlay, Multilumen	Active, Steroid
6936	Transvene	Endo RV True Bipolar Sensing	IS-1	DF-1	10 Fr	Polyurethane, Coaxial	Active
6937	SVC/CS	Endo SVC Coil	_	DF-1	5.5 Fr	Silicone, Single Lumen	Passive
6937A	SVC/CS	Endo SVC Coil	_	DF-1	7.5 Fr	Silicone with Polyurethane Overlay, Single Lumen	Passive
6939	Sub-Q Patch	SQ Patch	_	DF-1	One Size	Silicone, Single Lumen	Suture
6942	Sprint	Endo RV/SVC Integrated Bipolar Sensing	IS-1	2 DF-1	7.8 Fr	Silicone, Multilumen	Passive, Steroid
6943	Sprint	Endo RV True Bipolar Sensing	IS-1	DF-1	7.8 Fr	Silicone, Multilumen	Active, Steroid
6944	Sprint Quattro	Endo RV/SVC True Bipolar Sensing	IS-1	2 DF-1	8.2 Fr	Silicone with Polyurethane Overlay, Multilumen	Passive, Steroid
6945	Sprint	Endo RV/SVC Integrated Bipolar Sensing	IS-1	2 DF-1	7.8 Fr	Silicone, Multilumen	Active, Steroid
6947	Sprint Quattro Secure	Endo RV/SVC True Bipolar Sensing	IS-1	2 DF-1	8.2 Fr	Silicone with Polyurethane Overlay, Multilumen	Active, Steroid
6948	Sprint Fidelis	Endo RV/SVC True Bipolar Sensing	IS-1	2 DF-1	6.6 Fr	Silicone with Polyurethane Overlay, Multilumen	Passive, Steroid
6949	Sprint Fidelis	Endo RV/SVC True Bipolar Sensing	IS-1	2 DF-1	6.6 Fr	Silicone with Polyurethane Overlay, Multilumen	Active, Steroid
6963	SVC/CS	Endo SVC/CS Coil	_	6.5 mm	7 Fr	Silicone, Single Lumen	Passive
6966	Transvene	Endo RV True Bipolar Sensing	3.2 mm L.P.	6.5 mm	10 Fr	Polyurethane, Coaxial	Active
6996	Sub-Q Lead	SQ Coil	-	DF-1	7.5 Fr	Silicone, Single Lumen	Passive
6999	Sub-Q Patch	SQ Patch	_	6.5 mm	One Size	Silicone, Single Lumen	Suture

Pacing Leads

	US Market Release		Aug-05	Serial Number Pr	efix LFF				US Returned Pro	oduct Ana	alysi
	Registered US Implants		15,300	Type and/or Fixat	tion Transv	renous, V or A, S	crew-in		Conductor I	Fracture	
	Estimated Active US Impla	nts	13,000	Polarity	Bipola	r			Crimp/We		
	Advisories		None	Steroid	Yes				Insulatior	0 Breach Other	
	Placement										
em	n Longevity Study Res	ults			Qualifying Cor	nplications	1 Total				
	Number of Leads Enrolled	in Study	278	:	Fa	ilure to Sense	1				
	Cumulative Months of Foll	ow-Up	7,880)							
	Cumulative Months of Foll Number of Leads Active in		7,880 200								
1.0	Number of Leads Active in										
10	Number of Leads Active in										
10(9(Number of Leads Active in										
	Number of Leads Active in										
9(Number of Leads Active in	Study	200		5	6	7	8	9	10	
9(Number of Leads Active in	Study			5	6	7	8	9	10	
9(Number of Leads Active in	Study	200	4	5	6	7	8	9	10	
9(Number of Leads Active in	Study	200	4	5 at 54 mo	6	7	8	9	10	
9(Number of Leads Active in	Study	200	4 r 4 yr	I	6	7	8	9	10	

Ventricular Placement


System	Longevity St	tudy Result	S		Q	ualifying Cor	nplicatio	ons 0 Tot	al		
	Number of Lead		,	210							
	Cumulative Mor			7,105							
I	Number of Lead	ls Active in Stu	dy	133							
<u>ଛ</u> 100											
A											
08 0 <mark>9</mark> 0											
Lead Survival Probability (%) 8 06 01 8 06 001	0	1	2	3	4	5	6	7	8	9	10
IVa											
A N	Years After	r Implant									
ad S		1 yr	2 yr	3 yr	4 yr	at 54 mo					
۳ %		100.0	100.0	100.0	100.0	100.0					
#		143	118	84	58	48					
	Effective Sam	ple Size									

4024 CapSure SP

Product Characteristics

istered US Impla										eturned Product An	
	ints	222,30	0	Type and	/or Fixation	Transv	venous, Vent., Ti	nes		Conductor Fracture	2
mated Active US	Implants	51,20	0	Polarity		Bipola	r			Crimp/Weld/Bond	(
visories		Non	ie	Steroid		Yes				Insulation Breach Other	12 4
ngevity Stud	y Results				Qua	lifying Cor	nplications	4 Total			
nber of Leads En	rolled in Stu	dy	1,215			Failu	ure to Capture	3			
nulative Months	of Follow-Up	3	0,002		Insu	lation (not fu	rther defined)	1			
nber of Leads Ac	tive in Study	,	20								
										4	
										•	
1)	5		1	5	6	7	Q	0 10	
ر ears After Im/	_		5		÷	5	0	/	0	9 10	
	plant		1		1		1				
1 1	yr	2 yr	3 yr		4 yr	5 yr	бyr	7 yr	8 yr	at 105 mo	
99).9	99.8	99.8		99.8	99.8	99.8	99.8	99.8	98.8	
870	0	105	97		87	80	74	69	59	49	
r r	isories ngevity Stud nber of Leads En hulative Months nber of Leads Ac 1 'ears After Im 1 y 99	isories ngevity Study Results nber of Leads Enrolled in Study nber of Leads Active in Study 1 2 'ears After Implant 1 yr 99.9	isories Non ngevity Study Results nber of Leads Enrolled in Study nulative Months of Follow-Up 3 nber of Leads Active in Study 1 2 'ears After Implant 1 yr 2 yr 99.9 99.8	isories None Ingevity Study Results Inder of Leads Enrolled in Study 1,215 Inductive Months of Follow-Up 30,002 Inder of Leads Active in Study 20 Inder of Leads Active in Stu	isories None Steroid ngevity Study Results nber of Leads Enrolled in Study 1,215 nulative Months of Follow-Up 30,002 nber of Leads Active in Study 20 1 2 3 /ears After Implant 1 yr 2 yr 3 yr 99.9 99.8 99.8	isories None Steroid ngevity Study Results Qua nber of Leads Enrolled in Study 1,215 nulative Months of Follow-Up 30,002 Insu nber of Leads Active in Study 20 1 2 3 4 /ears After Implant 1 yr 2 yr 3 yr 4 yr 99.9 99.8 99.8 99.8	isories None Steroid Yes Ingevity Study Results Qualifying Cor Index of Leads Enrolled in Study 1,215 Failuation (not furnition of furnition (not furnition of furnition (not furnition of furniti	isories None Steroid Yes Ingevity Study Results Qualifying Complications nber of Leads Enrolled in Study 1,215 Failure to Capture nulative Months of Follow-Up 30,002 Insulation (not further defined) nber of Leads Active in Study 20 20 1 2 3 4 5 6 // cars After Implant 1 yr 3 yr 4 yr 5 yr 6 yr 99.9 99.8 99.8 99.8 99.8 99.8 99.8	isories None Steroid Yes Ingevity Study Results Qualifying Complications 4 Total Inber of Leads Enrolled in Study 1,215 Failure to Capture 3 Inulative Months of Follow-Up 30,002 Insulation (not further defined) 1 Inber of Leads Active in Study 20 20 1 1 Indication Insulation Insulation Insulation 1 Indication Insulation Insulation Insulation Insulation Indication Insulation Insulation Insulation Insulation Insulation Insulation Insulation Insulation Insulation Insulation Insulation Insulation Insulation Insulation Insulation Insulation Insulation Insulation Insulation Insulation Insulation <td>isories None Steroid Yes Ingevity Study Results Qualifying Complications 4 Total Inber of Leads Enrolled in Study 1,215 Failure to Capture 3 Inulative Months of Follow-Up 30,002 Insulation (not further defined) 1 Inber of Leads Active in Study 20 20 Insulation 1 Image: Insulation (not further defined) 1 1 1 1 Image: Insulation (not further defined) 1 1 1 1 Image: Insulation (not further defined) 1 1 1 1 1 Image: Insulation (not further defined) 1 1 1 1 1 1 1 Image: Insulation (not further defined) 1 <td< td=""><td>isories None Steroid Yes Insulation Breach Other ngevity Study Results Qualifying Complications 4 Total nber of Leads Enrolled in Study 1,215 Failure to Capture 3 nulative Months of Follow-Up 30,002 Insulation (not further defined) 1 nber of Leads Active in Study 20 1 2 3 4 5 6 7 8 9 10 rears After Implant 1 yr 2 yr 3 yr 4 yr 5 yr 6 yr 7 yr 8 yr 105 mo 99.9 99.8 99.8 99.8 99.8 99.8 99.8 99.8</td></td<></td>	isories None Steroid Yes Ingevity Study Results Qualifying Complications 4 Total Inber of Leads Enrolled in Study 1,215 Failure to Capture 3 Inulative Months of Follow-Up 30,002 Insulation (not further defined) 1 Inber of Leads Active in Study 20 20 Insulation 1 Image: Insulation (not further defined) 1 1 1 1 Image: Insulation (not further defined) 1 1 1 1 Image: Insulation (not further defined) 1 1 1 1 1 Image: Insulation (not further defined) 1 1 1 1 1 1 1 Image: Insulation (not further defined) 1 <td< td=""><td>isories None Steroid Yes Insulation Breach Other ngevity Study Results Qualifying Complications 4 Total nber of Leads Enrolled in Study 1,215 Failure to Capture 3 nulative Months of Follow-Up 30,002 Insulation (not further defined) 1 nber of Leads Active in Study 20 1 2 3 4 5 6 7 8 9 10 rears After Implant 1 yr 2 yr 3 yr 4 yr 5 yr 6 yr 7 yr 8 yr 105 mo 99.9 99.8 99.8 99.8 99.8 99.8 99.8 99.8</td></td<>	isories None Steroid Yes Insulation Breach Other ngevity Study Results Qualifying Complications 4 Total nber of Leads Enrolled in Study 1,215 Failure to Capture 3 nulative Months of Follow-Up 30,002 Insulation (not further defined) 1 nber of Leads Active in Study 20 1 2 3 4 5 6 7 8 9 10 rears After Implant 1 yr 2 yr 3 yr 4 yr 5 yr 6 yr 7 yr 8 yr 105 mo 99.9 99.8 99.8 99.8 99.8 99.8 99.8 99.8

4067 CapSureFix

Product Characteristics

	US Market Relea	se	Jan-9	7 Se	rial Number Prefix	LCV				US Retur	ned Product A	nalysi
	Registered US Im	nplants	1,00	0 Ту	pe and/or Fixation	Trans	venous, V or A, S	crew-	in	Con	ductor Fracture	
	Estimated Active	e US Implants	30	0 Po	larity	Unipo	olar				mp/Weld/Bond	
	Advisories		Non	e Ste	eroid	Yes				In	sulation Breach Other	
stem	n Longevity St	udy Results			Qua	lifying Co	mplications	8	Total			
	Number of Lead	s Enrolled in St	udy	171		Fail	ure to Capture	6				
	Cumulative Mon	ths of Follow-U	Jp	9,899		Impedance	e Out of Range	1				
	Number of Leads	s Active in Stud	ły	59			Oversensing	1				
	_						-					
10	0											
9	0											
8	0											
	0	1	2	3	4	5	6	7	8	9	10	
	Years After	Implant	_					-				
		1 yr	2 yr	3 yr	4 yr	5 yr	6 yr					
9	6	98.1	98.1	98.1	98.1	98.1	98.1					
-	#	130	98	90	84	72	50					
	Effective Sam	ple Size										

	US Mai	ket Relea	ise			Mar-9	6	Serial Nu	mber Pr	efix	LC	E					US R	eturne	d Proc	luct Ar	nalysi
	Registe	ered US Ir	nplants			124,90	0	Type and	/or Fixa	tion	Tra	ansvend	ous, V o	A, Screw	-in			Condu	uctor Fr	acture	3
	Estima	ted Activ	e US Imp	olants		39,80	0	Polarity			Bij	polar							p/Welc		
	Adviso	Advisories Placement Longevity Study Results Number of Leads Enrolled in Study				Non	e	Steroid			Ye	S						Insu	lation	Breach Other	9 1
		lacement Longevity Study Results Jumber of Leads Enrolled in Study Cumulative Months of Follow-Up								Quali	fying(Compl	icatio	ns 66	Total						
	Numbe	er of Leac	ls Enroll	ed in St	udy		2,413				Co	onducto	or Fractu	ure 2				h	nsulatio	n (ESC)	:
	Cumul	Longevity Study Results Number of Leads Enrolled in Study Cumulative Months of Follow-Up				12	20,127				Extra Ca	ardiac St	timulati	on 2		I	Insulatio	on (not fu	urther d	efined)	2
	Longevity Study Results Number of Leads Enrolled in Study Cumulative Months of Follow-Up Number of Leads Active in Study						517					Failure t	o Capti	ure 21				Lead	Dislodg	jement	8
		Number of Leads Enrolled in Study										Failur	e to Ser	nse 11					Overs	ensing	1
											Impeda	nce Ou	t of Ran	ge 6			Uns	pecified	Clinical	Failure	:
																		Ir	nsulatio	n (MIO)	:
100																					
90																					
80																					
	0	1	2	3	4	5	6	7	8	9	10 1	1 1	2	13 14	15	16	17	18	19	20	21
	Yea	rs Afte	r Impla	ant																	
100 90 80		1 yr	2 yr	3 yr	4 yr	5 yr	6 yr	7 yr	8 yr	9 yr	10 yr	 11 yr	12 yr	at 147 mo							
%	,	98.9	98.7	98.1	97.8	97.2	96.9	96.8	95.7	94.9	94.6	93.1	91.3	91.3							
#		1,907 tive Sam	1.1	1,074	969	859	730	585	423	293	219	146	70	54							

System l	onge	vity St	udy R	esults						Quali	fying (Compl	ications	39	Total						
N	lumber	of Lead	s Enroll	ed in Stu	dy	1	,799				Co	onducto	or Fracture	2			Imp	edance	Out of	Range	5
C	umulati	ive Mon	ths of F	ollow-Up	D	87	,850				Extra Ca	rdiac St	timulation	2		In	sulation	ı (not fui	rther de	fined)	1
Ν	lumber	of Lead	s Active	in Study	,		425				I	ailure t	o Capture	21					Overse	ensing	3
6												Failur	e to Sense	3			Unsp	ecified C	linical I	Failure	2
Lead Survival Probability (%) 06 001 06 001																					
90																					
80												-									
///	0	1	2	3 4	4 !	5 (6	7	8	9 1	10 1	1 1	12 13	14	15	16	17	18	19	20	21
3	Years	s After	Impla	nt																	
		1 yr	2 yr	3 yr	4 yr	5 yr	6 yr	7 yr	8 yr	9 yr	10 yr	11 yr	at 138 mo								
%		99.3	98.7	98.7	98.2	97.8	97.3	96.6	95.9	94.3	94.3	94.3	92.6								
#		1,428	950	863	768	678	547	388	244	140	88	60	49								
	Effecti	ve Samp	ole Size																		

4073 CapSure Sense **Product Characteristics** US Market Release Jun-02 Serial Number Prefix BBF **US Returned Product Analysis Registered US Implants** 600 Type and/or Fixation Transvenous, Vent., Tines **Conductor Fracture** 0 Crimp/Weld/Bond 0 Estimated Active US Implants 400 Polarity Unipolar Insulation Breach 0 Advisories None Steroid Yes Other 0 **Qualifying Complications** System Longevity Study Results 0 Total Number of Leads Enrolled in Study 102 Cumulative Months of Follow-Up 5,930 Number of Leads Active in Study 83

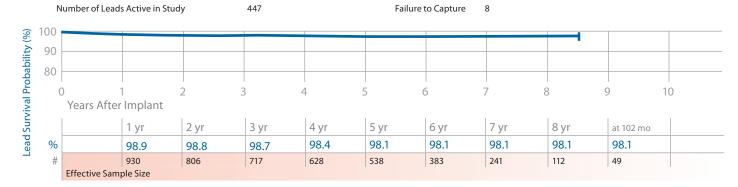
00 90											
80											
(0 1		2	3	4	5	6	7	8	9	10
	Years After In	mplant									
	Years After In	mplant 1 yr	2 yr	3 yr	4 yr	5 yr	at 63 mo				
%	Years After In	.	2 yr 100.0	3 yr	4 yr 100.0	5 yr 100.0	at 63 mo				
% #	Years After In	1 yr									

	US Market Release	Jun-02	Serial Number Prefix	BBD			US Returned F	Product Ana	alvsie
	Registered US Implants	71,600	Type and/or Fixation	Transvenous,	, Vent., Tines			r Fracture	
	Estimated Active US Implants	49,300	Polarity	Bipolar			Crimp/W	/eld/Bond	
	Advisories	None	Steroid	Yes			Insulati	on Breach Other	
ial	l Placement								
tem	m Longevity Study Results		Qua	alifying Complica	ations 2	Total			
	Number of Leads Enrolled in Study	212	າ	Failure to Ca	apture 1				
	Number of Leads Enrolled in Study	212	2	Failule to Ca	upture i				
	Cumulative Months of Follow-Up	11,223		Failure to	•				
	,		3		•				
10	Cumulative Months of Follow-Up Number of Leads Active in Study	11,223	3		•				
	Cumulative Months of Follow-Up Number of Leads Active in Study	11,223	3		•				
9	Cumulative Months of Follow-Up Number of Leads Active in Study	11,223	3		•				
9	Cumulative Months of Follow-Up Number of Leads Active in Study	11,223	3		•				
9	Cumulative Months of Follow-Up Number of Leads Active in Study	11,223	3		•	8	9	10	
9	Cumulative Months of Follow-Up Number of Leads Active in Study	11,223	3 7	Failure to	Sense 1	8	9	10	
9	Cumulative Months of Follow-Up Number of Leads Active in Study	11,223 167	3 7	Failure to	Sense 1	8	9	10	
9	Cumulative Months of Follow-Up Number of Leads Active in Study	11,223 167 3 yr 3	3 7 4	Failure to	Sense 1	8	9	10	

Ventricular Placement System Longevity Study R

stem	Longevity Stu	ıdy Results			Quali	fying Comp	lications	4 1	Total			
	Number of Leads		,	415		Impedance Ou	5	3				
	Cumulative Mont Number of Leads			,367 322		Lead Dislo	odgement	1				
100		Active in Study		522								
							1					
90												
80								_				
	0 1	2	. 3	4		5	б	7	8	(9 .	0
	Years After	Implant										
		1 yr	2 yr	3 yr	4 yr	5 yr	бyr					
%		99.7	99.5	99.5	99.5	99.5	99.5					
#		378	350	293	178	82	49					
	Effective Samp	le Size										

	US Market Release	Market Release		Serial Nu	ımber Prefix	BBL			l	US Returned Product Analysis				
	Registered US Implants Estimated Active US Implants		257,000	Type and	d/or Fixation	Transvenous, V or A, Screw-in			Conductor Fractur			e 10 d 0		
			208,200	Polarity		Bipolar				Crimp/Weld/Bond				
	Advisories		None	Steroid		Yes				Insulation Breach Other		7 15		
ial	l Placement													
ten	m Longevity Study	/ Results			Qualifying Complications 3 Total									
	Number of Leads Enr	rolled in Study	1,3	387	Failure to Capture 1									
			Cumulative Months of Follow-Up 29,085											
		-	29,0)85			odgement	2						
		of Follow-Up)85 214			odgement	2						
10	Cumulative Months of Number of Leads Act	of Follow-Up					odgement	2						
	Cumulative Months of Number of Leads Act	of Follow-Up					odgement	2						
9	Cumulative Months of Number of Leads Act	of Follow-Up					odgement	2						
9	Cumulative Months of Number of Leads Act	of Follow-Up			4	Lead Disk	odgement	2	8	9	10			
9	Cumulative Months of Number of Leads Act	of Follow-Up tive in Study	1,:		4	Lead Disk			8	9	10			
9	Cumulative Months of Number of Leads Act	of Follow-Up tive in Study 2 plant	3		4 4 4 yr	Lead Disk			8	9	10			
9	Cumulative Months of Number of Leads Act	of Follow-Up tive in Study 2 plant /r 2	1, 1, 3	214		Lead Disk			8	9	10			


Ventricular Placement

ysten	n Longevity	Study Result	ts		Qu	alifying Com	plications	2 Tota	I				
	Number of Leads Enrolled in Study Cumulative Months of Follow-Up Number of Leads Active in Study			1,073 Failure to Capture 26,878 926					2				
8	00												
8	80	1		3		5	6				10		
	Vears Aft	er Implant	Z	2	4	5	6	1	8	9	10		
		1 yr	2 yr	3 yr	4 yr	at 57 mo							
9	%	99.8	99.8	99.8	99.8	99.8							
	#	632	473	329	156	39							
	Effective Sample Size												

4092 CapSure SP Novus

Product Characteristics

			rioddet endraete	istics			
	US Market Release	Sep-98	Serial Number Prefix	LEP		US Returned Product Ana	lysis
	Registered US Implants	159,100	Type and/or Fixation	Transvenous, Vent., Ti	ines	Conductor Fracture	6
	Estimated Active US Implants	83,200	Polarity	Bipolar		Crimp/Weld/Bond	0
	Advisories	None	Steroid	Yes		Insulation Breach	18
						Other	/
Syster	m Longevity Study Results		Qua	alifying Complications	17 Total		
	Number of Leads Enrolled in Study	1,14	7	Conductor Fracture	3	Impedance Out of Range	1
	Cumulative Months of Follow-Up	60,53	5	Extra Cardiac Stimulation	1	Lead Dislodgement	4

Product Characteristics

4523 CapSure SP

US Market Release Aug-91 Serial Number Prefix ZE **US Returned Product Analysis Registered US Implants** 11,200 Type and/or Fixation Transvenous, Atrial-J, Tines **Conductor Fracture** 1 Estimated Active US Implants 2,900 Polarity Unipolar Crimp/Weld/Bond 0 **Insulation Breach** 2 Advisories Steroid Yes None Other 1 System Longevity Study Results **Qualifying Complications** 4 Total Number of Leads Enrolled in Study 121 Impedance Out of Range 1 2 Cumulative Months of Follow-Up 6,686 Lead Dislodgement Number of Leads Active in Study 13 Oversensing 1 100 Lead Survival Probability (%) 90 80 2 3 5 9 0 4 6 7 8 10 Years After Implant 2 yr 1 yr at 27 mo % 98.1 98.1 98.1 # 51 50 95 Effective Sample Size

4524 CapSure SP **Product Characteristics** US Market Release Oct-91 Serial Number Prefix LAR **US Returned Product Analysis** Registered US Implants 101,800 Type and/or Fixation Transvenous, Atrial-J, Tines **Conductor Fracture** 1 Estimated Active US Implants Crimp/Weld/Bond 0 29,600 Polarity Bipolar Insulation Breach 33 Advisories None Steroid Yes Other 13 System Longevity Study Results **Qualifying Complications** 6 Total Number of Leads Enrolled in Study 911 Failure to Capture 3 Cumulative Months of Follow-Up 26,763 Failure to Sense 2 Number of Leads Active in Study 53 Lead Dislodgement 1 100 Lead Survival Probability (%) 90 80 2 3 4 5 6 8 9 10 0 7 Years After Implant 1 yr 2 yr 3 yr 4 yr 5 yr 6 yr 7 yr 8 yr 9 yr % 99.6 99.2 99.2 98.4 98.4 98.4 98.4 98.4 98.4 # 682 138 124 112 99 89 81 50 69 Effective Sample Size

4533 CapSure Z

Product Characteristics

1995	cupsuic	-		1100		instics						
	US Market Relea	se	Not US released	Serial	Number Prefix	LCB					d Product Ana	lysis
	Registered US Im	nplants	NA	Type a	nd/or Fixation	Transv	enous, Atrial-J, ⁻	Tines			actor Fracture	1
	Estimated Active	e US Implants	NA	Polarit	у	Unipo	lar				p/Weld/Bond lation Breach	0
	Advisories		None	Steroi	d	Yes					Other	0
öyster	n Longevity St	udy Results			Qu	alifying Cor	nplications	4 Total				
	Number of Lead	s Enrolled in St	udy	206		Failu	ire to Capture	1			Oversensing	1
	Cumulative Mon	ths of Follow-U	Jp 9,9	973		Fa	ilure to Sense	1				
	Number of Lead	s Active in Stuc	ly	16		Lead I	Dislodgement	1				
10	00											
8 10												
, ility	90											
ab	30											
lo lo	0	1	2 3		4	5	6	7	8	9	10	
ival	Years After	Implant				-	-		-	-		
Lead Survival Probability (%)		1 yr	2 yr	3 yr	4 yr	5 yr	бyr	at 75 mo				
pad	%	100.0	99.4	98.4	97.2	97.2	97.2	97.2				
Ľ	#	176		88	78	66	52	49				
	Effective Sam	ple Size										

4558M Screw-In **Product Characteristics** US Market Release Nov-94 Serial Number Prefix LDC **US Returned Product Analysis Registered US Implants** 20,000 Type and/or Fixation Transvenous, Atrial-J, Screw-in **Conductor Fracture** 1 Crimp/Weld/Bond Estimated Active US Implants 4,900 Polarity Bipolar 1 Insulation Breach 16 Advisories None Steroid No Other 1 **Qualifying Complications** System Longevity Study Results 13 Total Number of Leads Enrolled in Study 539 **Electrical Abandonment** 1 Impedance Out of Range 2 18,075 Cumulative Months of Follow-Up Failure to Capture 3 Insulation (not further defined) 3 Number of Leads Active in Study 23 Failure to Sense 2 Oversensing 2 100 Lead Survival Probability (%) 90 80 2 5 8 9 0 3 4 6 7 10 Years After Implant 3 yr 5 yr 7 yr 8 yr 9 yr 1 yr 2 yr 4 yr бyr % 99.3 99.3 99.3 99.3 99.3 97.2 95.9 95.9 91.1 # 353 125 111 99 82 75 50 106 62 **Effective Sample Size**

4568 CapSureFix

Product Characteristics US Market Release Serial Number Prefix LDD Jan-97 **US Returned Product Analysis Registered US Implants** 69,800 Type and/or Fixation Transvenous, Atrial-J, Screw-in **Conductor Fracture** 2 Crimp/Weld/Bond 0 **Estimated Active US Implants** 28,800 Polarity Bipolar Insulation Breach 22 Advisories None Steroid Yes Other 6 **Qualifying Complications** System Longevity Study Results 33 Total Number of Leads Enrolled in Study 656 Failure to Capture Lead Dislodgement 9 18 Cumulative Months of Follow-Up 29,584 Failure to Sense 3 Medical Judgment 1 Number of Leads Active in Study 190 2 Impedance Out of Range 100 Lead Survival Probability (%) 90 80 2 3 5 8 9 0 4 6 7 10 Years After Implant 2 yr 5 yr 7 yr 1 yr 3 yr 4 yr бyr at 93 mo 93.9 % 96.8 96.4 95.2 94.6 93.9 93.2 93.2 # 496 399 338 284 239 158 85 54 **Effective Sample Size**

4574 CapSure Sense

Product Characteristics

39

Jun-02	Serial Number Prefix	BBE	US Returned Product Analy	/sis
45,900	Type and/or Fixation	Transvenous, Atrial-J, Tines	Conductor Fracture	3
33,700	Polarity	Bipolar	Crimp/Weld/Bond	0
None	Steroid	Yes		1
	45,900 33,700	45,900Type and/or Fixation33,700Polarity	45,900Type and/or FixationTransvenous, Atrial-J, Tines33,700PolarityBipolar	45,900 Type and/or Fixation Transvenous, Atrial-J, Tines Conductor Fracture 33,700 Polarity Bipolar Linsulation Breach

System Longevity Study Results

Number of Leads Enrolled in Study

Qualifying Complications 0 Total

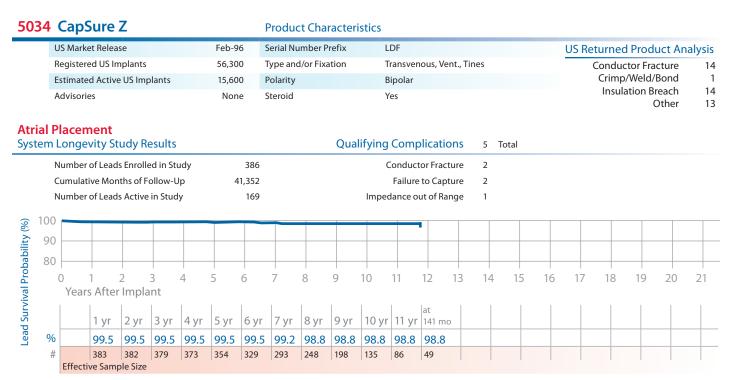
	C	umulative Mon	ths of Follow-U	р	869							
	Ν	umber of Leads	Active in Study	y	35							
(9	100											
robability (%)	90	Survival estim	ate not available	e due to insuffic	ient sample size	2						
oilit												
bal	80											_
Prc	() 1		2 3	3 4	4	5	6 7	7 8	3 9) 1	0
ival		Years After	Implant									
Surv			at 0 mo									
Lead	%		100.0									
Ľ	#		39									
		Effective Samp	ole Size									

4592 CapSure SP Novus

Product Characteristics

	US Market Releas	se	Oct-	98 Seria	l Number Prefix	LER			US R	eturned Product An	alysis
	Registered US Im	nplants	78,1	00 Type	and/or Fixation	Transv	venous, Atrial-J, T	ines		Conductor Fracture	-
	Estimated Active	e US Implants	43,3	00 Polar	ity	Bipola	r			Crimp/Weld/Bond	(
	Advisories		No	ne Sterc	pid	Yes				Insulation Breach Other	
/stem	Longevity St	udy Results			Qu	alifying Cor	nplications	5 Total			
	Number of Leads	s Enrolled in Stu	ıdy	283		Failu	ure to Capture	2			
	Cumulative Mon	ths of Follow-U	р	13,360		Fa	ilure to Sense	1			
	Number of Leads	s Active in Stud	у	86		Lead I	Dislodgement	2			
100	0							_			
2 j											
× 90	0										
90 90 80											
81	0	1	2	2		5	6	7	Q	9 10	
8			2	3	4	5	6	7	8	9 10	
9 8	0	Implant								at	
	0 Years After		2 2 yr	3 3 yr	4 4 yr	5 5 yr	6 6 yr	7 7 7 yr	8 8 yr		
Ĩ	0 Years After	Implant								at	

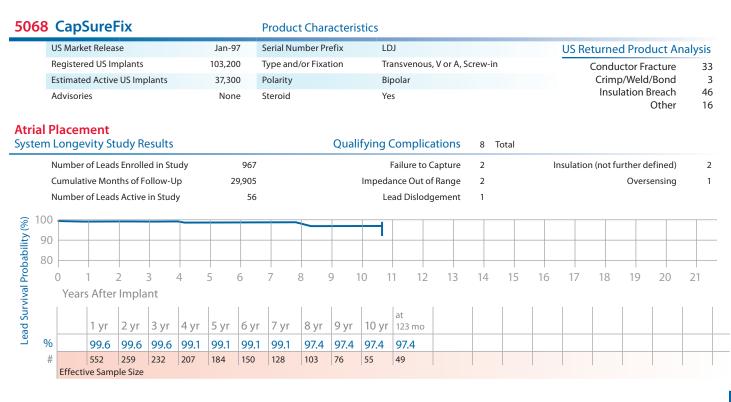
5023, 5023M CapSure SP


Product Characteristics

23,	5025		арэс	re 2	P			Produc	t Char	acteris	STICS											
ι	JS Marke	t Releas	se			Nov-8	8	Serial Nu	imber Pi	refix	SX	or LAS						US Re	eturne	d Prod	luct Ar	nalysis
F	Registere	d US Im	nplants			9,90	0 -	Type and	l/or Fixa	tion	Tra	insveno	us, Ver	nt., Tin	es				Condu	ctor Fra	cture	6
E	Estimate	d Active	US Imp	olants		2,20	0	Polarity			Un	ipolar							Crimp	/Weld/	Bond	0
/	Advisorie	S				Non	e s	Steroid			Ye	s							Insul	ation B		1
																					Other	(
tem	Longe	ity St	udy Re	esults						Quali	fying (Compl	icatio	ons	19	Total						
1	Number	of Leads	s Enrolle	ed in Stu	udy		1,354				Co	onducto	r Fract	ure	2			Im	pedanc	e Out of	Range	3
(Cumulati	ve Mon	ths of Fo	ollow-U	Jp	7	2,823				Extra Ca	rdiac St	imulat	ion	4							
1	Number	of Leads	s Active	in Stud	İy		445				F	ailure t	o Capt	ure	10							
100																						
100												1										
90				-			-															
80					+									_								
	0	1 3	2	3	4	5	6	7	8	9	10 1	1 1	2	13	14	15	16	17	18	19	20	21
	Years	After	Impla	nt																		
		1 yr	2 yr	3 yr	4 yr	5 yr	6 yr	7 yr	8 yr	9 yr	10 yr	11 yr										
%		99.7	99.7	99.5	99.4	99.4	98.8	97.5	97.5	97.1	96.2	96.2										
#		1,077	818	761	698	622	500	374	260	173	102	48										
	Effectiv	ve Samp	le Size										1									

5024, 5024M CapSure SP

Product Characteristics US Market Release Mar-90 Serial Number Prefix SY or LAT **US Returned Product Analysis Registered US Implants** 201,600 Type and/or Fixation Transvenous, Vent., Tines **Conductor Fracture** 50 Crimp/Weld/Bond 10 52,000 Estimated Active US Implants Polarity Bipolar Insulation Breach 46 Advisories None Steroid Yes Other 39 System Longevity Study Results **Qualifying Complications** 57 Total Number of Leads Enrolled in Study 8,154 **Conductor Fracture** 3 Insulation (not further defined) 5 Cumulative Months of Follow-Up 326,440 Extra Cardiac Stimulation 2 Lead Dislodgement 5 Number of Leads Active in Study 529 Failure to Capture 28 Oversensing 5 **Unspecified Clinical Failure** Failure to Sense 2 1 Impedance Out of Range 3 Other 2 Insulation (ESC) 1 100 90 -ead Survival Probability (%) 80 5 0 2 3 4 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 1 Years After Implant 2 yr 3 yr 4 yr 5 yr 1 yr 6 yr 7 yr 8 yr 9 yr 10 yr 11 yr 12 yr 13 yr 14 yr 15 yr 16 yr ^{at} 201 mo 99.6 % 99.5 99.0 98.8 98.6 98.4 98.3 98.2 98.2 97.9 97.9 96.2 96.2 96.2 99.3 99.2 99.1 # 6,128 2,101 1,996 1,893 1,788 1,410 1,179 1,618 960 736 561 406 285 200 120 80 51 **Effective Sample Size**


Ventricular Placement

stem	Longe	evity St	udy Re	esults						Qua	alifyir	ng Co	mplio	ation	s 11	Tota	al							
1	Number	ofLead	s Enrolle	ed in Stu	ıdy		1,210					Cond	luctor	Fractur	e 1					Lea	d Dislo	dgeme	ent	
(Cumula	tive Mon	ths of F	ollow-U	р	3	1,836					Fail	ure to	Captur	e 7	,								
1	Number	ofLead	s Active	in Stud	у		30					F	ailure	to Sens	e 2									
100																							1	
90																								
80																								
	0	1	 2	3	4	5	6	7	8	9	10	11	17	2 13	۲ ۲	4	15	16	17	18	19 19	2 2	20	2
		s After							at															
		1 yr	2 yr	3 yr	4 yr	5 yr	6 yr	7 yr	93 mo												_	_	_	
%		99.7	99.4	98.2	97.5	97.5	97.5	96.3	94.5															
#		887	170	145	131	106	82	56	50															
	Effect	ive Samp	ole Size																					

5054 CapSure Z Novus **Product Characteristics** US Market Release Jun-98 Serial Number Prefix LEH **US Returned Product Analysis** Registered US Implants 88,900 Type and/or Fixation Transvenous, Vent., Tines **Conductor Fracture** 5 Estimated Active US Implants 44,300 Crimp/Weld/Bond 1 Polarity Bipolar Insulation Breach 13 Steroid Advisories None Yes Other 6 **Atrial Placement** Longevity Study Results **Qualifying Complications** 2 Total Number of Leads Enrolled in Study 424 Failure to Capture Lead Dislodgement 1 1 Cumulative Months of Follow-Up 29,216 Number of Leads Active in Study 225 100 90 80 Lead Survival Probability (%) 2 5 8 9 10 0 3 4 6 7 Years After Implant at 2 yr 7 yr 8 yr 1 yr 3 yr 4 yr 5 yr бyr 99 mo % 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5 # 409 384 357 320 283 205 137 65 44 **Effective Sample Size**

Ventricular Placement

Number o	of Leads Enrolled in	Study	967		Fail	ure to Capture	6		Lead Dislodge	ement
Cumulativ	ve Months of Follow	v-Up	32,969		Fa	ailure to Sense	1			
Number o	of Leads Active in St	tudy	163		Impedance	e Out of Range	1			
100							-			
90										
80										
0	1	2	3	4	5	6	7	8	9	10
Years	After Implant									
	1 yr	2 yr	3 yr	4 yr	5 yr	бyr	7 yr	8 yr	at 102 mo	
%	99.5	99.4	99.4	99.0	99.0	97.5	97.5	97.5	97.5	
#	656	341	295	264	221	166	134	72	47	

Ventricular Placement

Syste	em l	ongevity Stu	udy Results			Qı	ualifying Cor	nplications	6 Total				
		lumber of Leads fumulative Mont			1,362 36,207			uctor Fracture ure to Capture	1 3		Lead Dislod	gement 1	
		lumber of Leads			108	In	sulation (not fu		1				
1 (%) ty (%)	00 90												
obabilit	80												
Lead Survival Probability (%) 	(0 1 Years After	Implant	2	3	4	5	б	7	8	9	10	
ad Surv			1 yr	2 yr	3 yr	4 yr	5 yr	6 yr	7 yr	8 yr	9 yr	at 111 mo	
Le	%		99.8	99.6	99.3	98.9	98.9	98.9	98.3	98.3	98.3	98.3	
	#		700	324	287	241	218	187	155	113	64	54	
		Effective Samp	le Size										

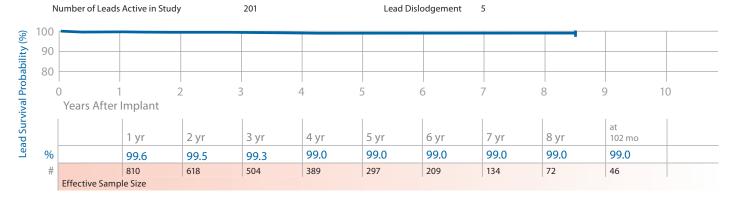
	US Market Rele	ase	Aug-0	00 Seri	al Number Prefix	PJN			US R	eturned Product	Analysi
	Registered US	mplants	1,163,30		e and/or Fixation	Trans	svenous, V or A, Se	crew-in	0011	Conductor Fracture	
	Estimated Acti	ve US Implants	797,60	00 Pola	arity	Bipo	ar			Crimp/Weld/Bond	
	Advisories		Nor	ne Ster	oid	Yes				Insulation Breach Othe	
	Placement Longevity S	itudy Results			Qua	alifying Co	mplications	18 Total			
	Number of Lea	ds Enrolled in Stu	udy	2,706		Card	liac Perforation	1	In	pedance Out of Rang	e 2
	Cumulative Mo	onths of Follow-U	lp 1'	17,468		Cond	ductor Fracture	1	Insulatio	on (not further defined	l) 1
	Number of Lea	ds Active in Stud	у	1,095		Extra Card	iac Stimulation	2		Lead Dislodgemer	it 4
	Number of Leads Active in Study					Fai	lure to Capture	6		Oversensin	g 1
10) 9)											
8											
	0	1	2	3	4	5	6	7	8	9 10	
	Years Afte	0 1 2 Years After Implant		1			1	1			
		1 yr	2 yr	3 yr	4 yr	5 yr	6 yr	7 yr	8 yr	at 102 mo	
	6	99.7	99.6	99.4	99.1	99.1	99.0	99.0	99.0	99.0	
9											

Ventricular Placement

Sys	tem	Longevity St	udy Results			Q	ualifying Co	mplications	10 Total				
		Number of Leads Cumulative Mon Number of Leads	ths of Follow-U	þ	1,527 60,524 495		Con	diac Perforation ductor Fracture ilure to Capture	1 1 3	Ir	mpedance Ou	re to Sense it of Range odgement	1 2 2
y (%)	10(_			
billit	9(D C											
Lead Survival Probability	8(D C											
alP		0	1	2	3	4	5	6	7	8	9	10	
ırviv		Years After	Implant										
d SL			1 yr	2 yr	3 yr	4 yr	5 yr	бyr	7 yr	8 yr			
Lea	%	6	99.6	99.4	99.3	99.0	99.0	99.0	99.0	99.0			
	i	#	1,082	861	742	591	437	284	159	44			
		Effective Samp	ole Size										

5092 CapSure SP Novus

Product Characteristics

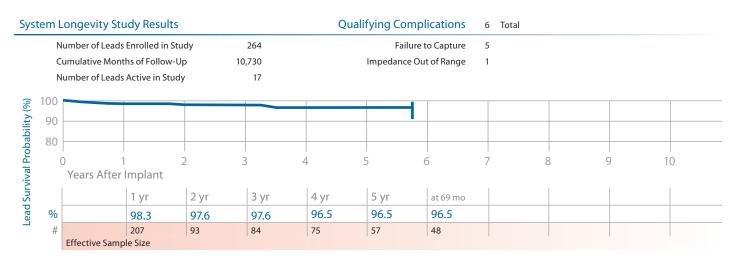

US Market Release	Jun-98	Serial Number Prefix	LET	US Returned Product Analy	ysis
Registered US Implants	118,400	Type and/or Fixation	Transvenous, Vent., Tines	Conductor Fracture	5
Estimated Active US Implants	62,000	Polarity	Bipolar	Crimp/Weld/Bond	0
Advisories	None	Steroid	Yes	Insulation Breach Other	30 12

System Longevity Study Results

Number of Leads Enrolled in Study

Cumulative Months of Follow-Up

Qualifying Complications7Total1,170Extra Cardiac Stimulation144,165Failure to Capture1201Lead Dislodgement5



		4M C				Mar-9	0	Serial Nu	ımber F	refix	>	(V or LA	V						Poturn	od Pro	oduct	Analy	cie
		red US In				60,60		Type and				Transver		rial-J. Ti	nes			051			racture		10
		ed Active	•	olants		19,50		Polarity	.,			Bipolar	,								d/Bond		2
	Advisor					Non		Steroid				/es							Ins	ulation	Breach Othei		12 8
stem	Longe	evity St	udy R	esults						Qua	lifying	Comp	olicatio	ons	39 Tc	otal							
	Number of Leads Enrolled in Stud Cumulative Months of Follow-Up				udy		4,497				(Conduc	tor Fract	ture	1			Insulati	on (not	further	defined	4)	2
	Cumulative Months of Follow-Up				lp	19	8,894					Failure	to Cap	ture	22				Lea	ad Dislo	dgemer	nt	4
I	Cumulative Months of Follow-Up Number of Leads Active in Study				у		459					Failu	ire to Se	ense	4					Ove	rsensin	g	2
	Number of Leads Active in Study									Impeo	dance O	ut of Ra	nge	1						Othe	er	1	
100																							
90																	-						
80																							
	0	1	2	3	4	5 (б	7	8	9	10 1	1 1	2 1	3 1	4	15 1	16	17	18	19	20	21	
	Year	s After	Impla	int																			
		1 yr	2 yr	3 yr	4 yr	5 yr	бyr	7 yr	8 yr	9 yr	10 vr	11 vr	12 vr	13 vr	14 vr	15 yr							
%		99.8	99.7	99.3	99.0	98.9	98.8		97.8	97.4	97.0	96.8	96.8	96.8	96.8								
#			1,470	1,375	1,285	1,182	1,057	907	753	611	472	355	258	166	105	52							
			ole Size																				

5534 CapSure Z

Product Characteristics

US Market Release	Feb-96	Serial Number Prefix	LDG	US Returned Product Anal	ysis
Registered US Implants	26,300	Type and/or Fixation	Transvenous, Atrial-J, Tines	Conductor Fracture	3
Estimated Active US Implants	8,500	Polarity	Bipolar	Crimp/Weld/Bond	0
Advisories	None	Steroid	Yes	Insulation Breach Other	5

	US Market Release	Jun-98	Serial Number F	Prefix LEJ			US Returne	d Product Ana	alysis
	Registered US Implants	57,200	Type and/or Fix	ation Transvenous, Atrial-J	, Tines		Condu	ctor Fracture	
	Estimated Active US Implants	31,200	Polarity	Bipolar				/Weld/Bond	
	Advisories	None	Steroid	Yes			Insul	ation Breach Other	1
em	n Longevity Study Results			Qualifying Complications	4	Total			
	Number of Leads Enrolled in Stu	idy 34	14	Failure to Capture	1			Oversensing	
	Cumulative Months of Follow-U	p 10,08	37	Impedance Out of Range	1				
	Number of Leads Active in Study	y 4	47	Lead Dislodgement					
		y A	47						
	0	y .	47						
100	0		47						
100 90		2 3	47			8	9	10	
100 90				Lead Dislodgement	1	8	9	10	
100 90		2 3		Lead Dislodgement	1	8	9	10	
100 90	0 0 0 10 0 1 Years After Implant 1 yr	2 3 2 yr 3	4	Lead Dislodgement	1	8	9	10	

5568 CapSureFix **Product Characteristics** US Market Release Jan-97 Serial Number Prefix LDN **US Returned Product Analysis** Registered US Implants Conductor Fracture 77,100 Type and/or Fixation Transvenous, Atrial-J, Screw-in 6 Estimated Active US Implants Crimp/Weld/Bond 0 47,700 Polarity Bipolar Insulation Breach 13 Advisories None Steroid Yes Other 15 System Longevity Study Results **Qualifying Complications** 12 Total 1,052 Lead Dislodgement Number of Leads Enrolled in Study **Conductor Fracture** 3 1 36,086 5 Cumulative Months of Follow-Up Failure to Capture Oversensing 1 Number of Leads Active in Study 183 Failure to Sense 2 100 Lead Survival Probability (%) 90 80 0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Years After Implant at 5 yr 7 yr 9 yr 6 yr 8 yr 2 yr 3 yr 4 yr 1 yr 111 mo % 99.3 98.9 98.1 97.0 97.0 99.8 99.3 97.0 97.0 97.0 160 # 711 384 346 247 200 130 98 57 51 **Effective Sample Size**

	CapSure S	SP NOVUS	>		Product	t Characteri	stics						
ι	US Market Releas	se	Ju	n-98	Serial Nur	nber Prefix	LEU			US R	eturned Pro	duct Ana	lysi
F	Registered US Im	nplants	29	,800	Type and/	or Fixation	Transver	nous, Atrial-J, T	ines		Conductor I		
E	Estimated Active	e US Implants	18	,500	Polarity		Bipolar				Crimp/Wel		
/	Advisories		Ν	lone	Steroid		Yes				Insulation	Other	
tem	Longevity St	udy Results				Qua	lifying Com	olications	4 Total				
1	Number of Leads	s Enrolled in Stu	udy	670			Failure	to Capture	2				
(Cumulative Mon	ths of Follow-L	Jp	28,246			Lead Dis	lodgement	2				
	Number of Leads	s Active in Stud	ły	162									
ſ	indimoer of Leads												
100													
100													
100 90													
100 90 80												10	
100 90 80	0	1	2	3		1	5	6	7	8	9	10	
100 90 80		1	2	3		4	5	6	7	8	9	10	
100 90 80	0	1 Implant							7	at	9	10	
100 90 80	0 Years After	1 Implant 1 yr	2 yr	З у	٧r	4 yr	5 yr	бyr	7 7 7 yr	at 93 mo	9	10	
100 90 80	0 Years After	1 Implant			ır .3				7 7 99.3 71	at	9	10	

5594 CapSure SP Novus **Product Characteristics** US Market Release Serial Number Prefix LFD **US Returned Product Analysis** Jun-01 Registered US Implants 12,400 Type and/or Fixation Transvenous, Atrial-J, Tines **Conductor Fracture** 3 Estimated Active US Implants 8,900 Polarity Bipolar Crimp/Weld/Bond 0 Insulation Breach 3 Advisories Steroid None Yes Other 0 System Longevity Study Results **Qualifying Complications** 0 Total

Number of Leads Enrolled in Study 1,330 Cumulative Months of Follow-Up Number of Leads Active in Study

20

13

100		1		1							
	Survival estim	ate not available	e due to insuffic	ient sample size	2						
90											
80											
	0	1 7) :	2 /	1 5	5 6	-	7 S	2 0) 1(0
	0	1 2		-	т ~	, 0	, , ,		, ,	, IV	0
	Years After I	mplant									
											1
		at 0 mo									
%		100.0									
#		20									
	Effective Sampl	e Size									

940 CapSureFix		Product Characteris	tics		
US Market Release	Oct-98	Serial Number Prefix	ТСР	US Returned Product Ana	alysis
Registered US Implants	25,500	Type and/or Fixation	Transvenous, A or V, Screw-in	Conductor Fracture	10
Estimated Active US Implants	9,300	Polarity	Bipolar	Crimp/Weld/Bond	0
Advisories	None	Steroid	Yes	Insulation Breach	13

Number of	Leads Enrolled ir	n Study	816		Con	ductor Fracture	1		Ove	ersensing
Cumulative	Months of Follo	w-Up	40,238			Failure to Sense	3			
Number of	Leads Active in S	tudy	119		Lead	l Dislodgement	1			
00										
90										
80										
0	1	2	3	4	5	6	7	8	9	10
Years A	fter Implant									
	1 yr	2 yr	3 yr	4 yr	5 yr	бyr	7 yr	8 yr	9 yr	at 114 mc
%	99.7	99.6	98.3	98.0	98.0	98.0	98.0	98.0	98.0	98.0
		506	413	331	277	237	196	146	102	60

4

Other

		20 yr														
		18 yr														
		16 yr														
		14 yr			95.6 +1.8/-2.8 at 153 mo				91.3 +2.9/-4.1 at 147 mo							
		12 yr			95.6 +1.8/-2.8				91.3 +2.9/-4.1	92.6 +3.1/-5.4 at 138 mo						
		10 yr			96.3 +1.4/-2.2	98.0 +1.6/-9.1 at 105 mo	93.3 +3.4/-6.7 at 105 mo		94.6 +1.4/-2	94.3 +2/-2.9						98.1 +.7/-1.2 at 102 mo
		8 yr			96.8 +1.2/-1.9	99.8 +.1/7	94.8 +2.7/-5.5		95.7 +1.1/-1.6	95.9 +1.3/-1.8						98.1 +.7/-1.2
		7 yr			97.0 +1.2/-1.8	99.8 +.1/7	96.0 +2.1/-4.4		96.8 +.8/-1.2	96.6 +1/-1.5						98.1 +.7/-1.2
		6 yr			98.0 +.8/-1.4	99.8 +.1/7	96.0 +2.1/-4.4	98.1 +1.3/-3.9	96.9 +.8/-1.1	97.3 +.9/-1.2	100.0 at 57 mo	99.0 +.8/-2.7	99.5 +.4/-1.6			98.1 +.7/-1.2
		5 yr	99.6 +.3/-2.2 at 54 mo	100.0 at 54 mo	98.4 +.7/-1.3	99.8 +.1/7	96.8 +1.8/-3.9	98.1 +1.3/-3.9	97.2 +.8/-1	97.8 +.7/-1.1	100.0	99.0 +.8/-2.7	99.5 +.4/-1.6	99.7 +.2/7 at 57 mo	99.8 +.1/7	98.1 +.7/-1.2
ity (%)		4 yr	99.6 +.3/-2.2	100.0	98.4 +.7/-1.3	99.8 +.1/7	97.5 +1.5/-3.5	98.1 +1.3/-3.9	97.8 +.6/9	98.2 +.6/-1	100.0	99.0 +.8/-2.7	99.5 +.4/-1.6	99.7 +.2/7	99.8 +.1/-07	98.4 +.6/-1.1
Device Survival Probability (%)	ant	3 yr	99.6 +.3/-2.2	100.0	98.6 +.6/-1.2	99.8 +.1/7	98.1 +1.2/-3	98.1 +1.3/-3.9	98.1 +.5/8	98.7 +.5/8	100.0	99.0 +.8/-2.7	99.5 +.4/-1.6	99.7 +.2/7	99.8 +.1/7	98.7 +.5/-1
Survival I	ears After Implant	2 yr	99.6 +.3/-2.2	100.0	99.2 +.4/9	99.8 +.1/7	99.4 +.4/-1.4	98.1 +1.3/-3.9	98.7 +.4/6	98.7 +.5/8	100.0	99.0 +.8/-2.7	99.5 +.4/-1.6	99.7 +.2/7	99.8 +.1/7	98.8 +.5/9
Device (Years Af	1 yr	99.6 +.3/-2.2	100.0	99.8 +.2/6	99.9 +.1/5	99.4 +.4/-1.4	98.1 +1.3/-3.9	98.9 +.4/5	99.3 +.3/6	100.0	99.0 +.8/-2.7	99.7 +.3/-1.5	99.8 +.2/4	99.8 +.1/7	98.9 +.5/8
sdtnoM γbut2 ni c			7,880	7,105	66,921	30,002	22,063	9,899	120,127	87,850	5,930	11,223	19,367	29,085	26,878	60,535
su		(TilenQ IqmoD	-	0	21	4	10	œ	66	39	0	2	4	ŝ	7	17
۲but2 ni ع	evitoA	sbeəJ	200	133	323	20	39	59	517	425	83	167	322	1,214	926	447
pə	lloın∃	sbeəJ	278	210	1,158	1,215	539	171	2,413	1,799	102	212	415	1,387	1,073	1,147
əssələ	rket B	IBM 2U	Aug-05	Aug-05	Aug-91	Oct-91	Not US released	Jan-97	Mar-96	Mar-96	Jun-02	Jun-02	Jun-02	Feb-04	Feb-04	Sep-98
)êL	վառվշ	Atrial	Vent	Vent	Vent	Vent	Atrial	Atrial	Vent	Vent	Atrial	Vent	Atrial	Vent	Vent
		vlimeA	SelectSecure	SelectSecure	CapSure SP	CapSure SP	CapSure Z	CapSureFix	CapSureFix	CapSureFix	CapSure Sense	CapSure Sense	CapSure Sense	CapSureFix Novus	CapSureFix Novus	CapSure SP Novus
		ləboM dmuN	3830	3830	4023	4024	4033	4067	4068	4068	4073	4074	4074	4076	4076	4092

continued

118 Medtronic CRDM Product Performance Report www.CRDMPPR.medtronic.com

Lead Survival Summary (95% Confidence Interval)

			əssələ	pəl	γbut2 ni e	sue	ہ but2 ni q) مرابع	Device	Survival	Device Survival Probability (%)	ity (%)										
)êr	rket R	Enroll	evitoA			Years A	ears After Implant	ant											
dmuN IsboM	γlime٦	կառվշ	₽W SU	sbsəd	sbsəd	Pilen IqmoD		1 yr	2 yr	3 yr	4 yr	5 yr	6 yr	7 yr	8 yr	10 yr	12 yr	14 yr	16 yr	18 yr	20 yr
4523	CapSure SP	Atrial	Aug-91	121	13	4	6,686	98.1 +1.4/-5.3	98.1 +1.4/-5.3	98.1 +1.4/-5.3 at 27 mo											
4524	CapSure SP	Atrial	Oct-91	911	53	9	26,763	99.6 +.3/-0.7	99.2 +.5/-1.2	99.2 +.5/-1.2	98.4 +1.1/-3.3	98.4 +1.1/-3.3	98.4 +1.1/-3.3	98.4 +1.1/-3.3	98.4 +1.1/-3.3	98.4 +1.1/-3.3 at 108 mo					
4533	CapSure Z	Atrial	Not US released	206	16	4	9,973	100.0	99.4 +.5/-3.5	98.4 +1.2/-5.1	97.2 +1.9/-6	97.2 +1.9/-6	97.2 +1.9/-6	97.2 +1.9/-6 at 75 mo							
4558M	Screw-In	Atrial	Nov-94	539	23	13	18,075	99.3 +.5/-1.4	99.3 +.5/-1.4	99.3 +.5/-1.4	99.3 +.5/-1.4	99.3 +.5/-1.4	97.2 +1.8/-5.4	95.9 +2.5/-6.3	95.9 +2.5/-6.3	91.1 +4.6/-9.3 at 108 mo					
4568	CapSureFix	Atrial	Jan-97	656	190	33	29,584	96.8 +1.2/-1.8	96.4 +1.3/-1.9	95.2 +1.5/-2.3	94.6 +1.7/-2.5	93.9 +1.9/-2.7	93.9 +1.9/-2.7	93.2 +2.2/-3.2	93.2 +2.2/-3.2 at 93 mo						
4574	CapSure Sense	Atrial	Jun-02	39	35	0	869	100.0 at 0 mo													
4592	CapSure SP Novus	Atrial	Oct-98	283	86	Ŋ	13,360	98.2 +1.1/-3	98.2 +1.1/-3	98.2 +1.1/-3	98.2 +1.1/-3	97.4 +1.5/-3.9	97.4 +1.5/-3.9	97.4 +1.5/-3.9	97.4 +1.5/-3.9	97.4 +1.5/-3.9 at 99 mo					
5023, 5023M	CapSure SP	Vent	Nov-88	1,354	445	19	72,823	99.7 +.2/5	99.7 +.2/6	99.5 +.3/7	99.4 +.3/8	98.8 +.6/-1.1	98.8 +.6/-1.1	97.5 +1/-1.8	97.5 +1/-1.8	96.2 +1.7/-3	96.2 +1.7/-3 at 132 mo				
5024, 5024M	CapSure SP	Vent	Mar-90	8,154	529	57	326,440	99.5 +.1/2	99.5 +.2/1	99.2 +.2/3	99.2 +.3/4	99.1 +.3/4	99.0 +.3/5	98.8 +.4/5	98.6 +.4/5	98.3 +.5/-7	98.0 +.7/1	97.9 +1/-1.4	96.8 +1.6/-2.8	96.2 +1.6/-2.8 at 201 mo	
5033	CapSure Z	Vent	Feb-96	1,899	236	26	79,848	99.7 +.2/4	99.6 +.2/4	98.7 +.6/-1.2	98.5 +.7/-1.3	98.1 +.8/-1.5	97.4 +1.1/-1.7	96.8 +1.2/-2	96.2 +1.4/-2.1	95.3 +1.6/-2.5	94.7 +1.8/-2.8	94.7 +1.8/-2.8 at 153 mo			
5034	CapSure Z	Atrial	Feb-96	386	169	Ω.	41,352	99.5 +.4/-1.6	99.5 +.4/-1.6	99.5 +.4/-1.6	99.5 +.4/-1.6	99.5 +.4/-1.6	99.5 +.4/-1.6	99.2 +.5/-1.8	98.8 +.8/-1.9	98.8 +.8/-1.9	98.8 +.8/-1.9 at 141 mo				
5034	CapSure Z	Vent	Feb-96	1,210	30	11	31,836	99.7 +.2/6	99.4 +.3/8	98.2 +1.1/-2.9	97.5 +1.4/-3.5	97.5 +1.4/-3.5	97.5 +1.4/-3.5	96.3 +2.1/-5	94.5 +3.1/-7.3 at 93 mo						
5054	CapSure Z Novus	Atrial	Jun-98	424	225	2	29,216	99.5 +.4/-1.4	99.5 +.4/-1.4	99.5 +.4/-1.4	99.5 +.4/-1.4	99.5 +.4/-1.4	99.5 +.4/-1.4	99.5 +.4/-1.4	99.5 +.4/-1.4	97.5 +.4/-1.4 at 99 mo					
5054	CapSure Z Novus	Vent	Jun-98	967	163	6	32,969	99.5 +.3/8	99.4 +.3/9	99.4 +.3/9	99.0 +.6/-1.4	99.0 +.6/-1.4	97.5 +1.3/-2.9	97.5 +1.3/-2.9	97.5 +1.3/-2.9	97.5 +1.3/-2.9 at 102 mo					

Lead Survival Summary continued

Source: Medtronic Device Registration and Returned Product Analysis Data as of January 31, 2010

continued

		~													
	-	20 yr													
		18 yr													
		16 yr							96.8 +1/-1.4 at 180 mo						
	_	14 yr							96.8 +1/-1.4						
		12 yr							96.8 +1/-1.4						
	_	10 yr	97.5 +1.3/-2.9 at 102 mo	8.3 +1/-2.6 at 111 mo	99.3 +.5/-2.2 at 114 mo.	99.0 +.4/7 at 102 mo		99.0 +.6/-1.1 at 102 mo	97.0 +.9/-1.3			97.0 +1.5/-3.1 at 111 mo			98.0 +1/-1.6 at 114 mo.
		8 yr	97.5 +1.3/-2.9	98.3 +1/-2.6	99.3 +.5/-2.2	99.0 +.4/7	99.0 +.5/9	99.0 +.6/-1.1	97.8 +.7/-1.1			97.0 +1.5/-3.1	99.3 +.4/-1.3 at 93 mo		98.0 +1/-1.6
	_	7 yr	97.5 +1.3/-2.9	98.3 +1/-2.6	99.3 +.5/-2.2	99.0 +.4/7	99.0 +.5/9	99.0 +.6/-1.1	98.5 +.5/8			97.0 +1.5/-3.1	99.3 +.4/-1.3		98.0 +1/-1.6
	_	6 yr	97.5 +1.3/-2.9	98.9 +.7/-1.8	99.3 +.5/-2.2	99.0 +.4/7	99.0 +.5/9	99.0 +.6/-1.1	98.8 +.4/7	96.5 +2/-4.9 at 69 mo		97.0 +1.5/-3.1	99.3 +.4/-1.3		98.0 +1/-1.6
	-	5 yr	99.0 +.6/-1.4	98.9 +.7/-1.8	99.3 +.5/-2.2	99.1 +.4/5	99.0 +.5/9	99.0 +.6/-1.1	98.9 +.4/7	96.5 +2/-4.9		98.1 +1/-2.4	99.3 +.4/-1.3		98.0 +1/-1.6
lity (%)	-	4 yr	99.0 +.6/-1.4	98.9 +.7/-1.8	99.3 +.5/-2.2	99.1 +.4/5	99.0 +.5/9	99.0 +.6/-1.1	99.0 +.4/6	96.5 +2/-4.9	96.7 +2.2/-6	98.9 +.7/-1.5	99.3 +.4/-1.3		98.0 +1/-1.6
Device Survival Probability (%)	lant	3 yr	99.4 +.3/9	99.3 +.5/-1.4	99.3 +.5/-2.2	99.4 +.3/4	99.3 +.4/7	99.3 +.4/9	99.3 +.3/5	97.6 +1.4/-3.3	98.0 +1.4/-4.8	99.3 +.4/-1.1	99.3 +.4/-1.3		98.3 +.8/-1.6
Survival	Years After Implant	2 yr	99.4 +.3/-0.9	99.6 +.3/8	99.8 +.2/-1.4	99.6 +.2/3	99.4 +.3/6	99.5 +.3/8	99.7 +.2/2	97.6 +1.4/-3.3	99.0 +.8/-2.8	99.3 +.4/-1.1	99.3 +.4/-1.3		99.6 +.3/-1
Device	Years A	1 yr	99.5 +.3/8	99.8 +.1/6	99.8 +.2/-1.4	99.7 +.1/4	99.6 +.2/5	99.6 +.2/7	99.8 +.1/3	98.3 +1.1/-2.7	100.0	99.8 +.1/7	99.7 +.2/-1.1	100.0 at 0 mo	99.7 +.2/8
sdtnoM Months	əvitalı 1U-wol	umu⊃ lo∃ ło	29,905	36,207	24,560	117,468	60,524	44,165	198,894	10,730	10,087	36,086	28,246	1,330	40,238
su	ρniγî oitsoilo		80	9	9	18	10	7	39	9	4	12	4	0	1
γbut2 ni s			56	108	118	1,095	495	201	459	17	47	183	162	13	119
pə	iloın∃ i	sbsəJ	967	1,362	508	2,706	1,527	1,170	4,497	264	344	1,052	670	20	816
əseələ	A text	W SN	Jan-97	Jan-97	Jun-98	Aug-00	Aug-00	Jun-98	Mar-90	Feb-96	Jun-98	Jan-97	Jun-98	Jun-01	Oct-98
	ıper	medD	Atrial	Vent	Atrial	Atrial	Vent	Vent	Atrial	Atrial	Atrial	Atrial	Atrial	Atrial	Atrial
	Â	lims7	CapSureFix	CapSureFix	SureFix	CapSureFix Novus	CapSureFix Novus	CapSure SP Novus	CapSure SP	CapSure Z	CapSure Z Novus	CapSureFix	CapSure SP Novus	CapSure SP Novus	CapSureFix
ronic CRDI	ŀ	amuN JmuN	5068	5068	5072	5076	5076	5092	5524, 5524M	5534	5554	5568	5592	5594	69 00 and F

Lead Survival Summary continued

US Returned Product Analysis Summary

CapSure SP Aug-91 41,200 8,700 17 0 3 8 4024 CapSure SP Oct-91 222,300 51,200 26 0 125 41 4033 CapSure Z Not US released NA NA 0 0 0 0 4067 CapSureFix Jan-97 1,000 39,800 39 0 91 15 4073 CapSureFix Mar-96 124,900 39,800 10 0 0 0 4074 CapSure Sense Jun-02 71,600 49,300 1 1 9 3 4076 CapSure SPNovus Sep-98 159,100 83,200 6 0 18 7 4523 CapSure SP Aug-91 11,200 2,900 1 0 2 1 4524 CapSure SP Aug-91 10,800 2,8000 2 0 2 6 4524 <thcapsure sp<="" th=""> Nor-94 2</thcapsure>	Model Number	Family	US Market Release	Estimated US Implants	Estimated US Active	Conductor Fracture	Crimp/Weld/ Bond	Insulation Breach	Other
Add CapSure SP Oct-91 22.2300 51,200 26 0 125 41 4033 CapSure FX Not US released NA NA 0 0 0 0 4067 CapSureFix Jan-97 1,000 300 1 0 0 1 4068 CapSureFix Mar-96 124,900 39,800 39 0 91 15 4073 CapSure Sense Jun-02 71,600 400 0 0 0 0 4074 CapSure Sense Jun-02 71,600 49,300 1 0 2 1 4075 CapSure SPNovus Sep-98 159,100 83,200 6 0 18 7 4523 CapSure SP Aug-91 1,200 2,900 1 0 33 13 4534 CapSure SP Nor.94 20,000 4,900 1 1 16 1 4544 CapSure SP Nor.9	3830	SelectSecure	Aug-05	15,300	13,000	2	0	3	2
Addition CapSure Z Not US released NA NA 0 0 0 4067 CapSureFix Jan-97 1.000 300 1 0 0 1 4068 CapSureFix Mar-96 124,900 39,800 39 0 91 15 4073 CapSure Sense Jun-02 600 400 0 0 0 0 4074 CapSure Sense Jun-02 71,600 49,300 1 1 9 3 4076 CapSure SP Novus Sep-98 159,100 83,200 6 0 18 7 4523 CapSure SP Oct-91 11,000 2,900 1 0 33 13 4524 CapSure SP Oct-91 10,1080 2,900 1 1 16 1 4524 CapSure SP Not US released NA NA 1 0 0 33 13 4524 CapSure SP Not	4023	CapSure SP	Aug-91	41,200	8,700	17	0	3	8
4067CapSureFixJan-971,00030010014068CapSureFixMar-96124,90039,80039091154073CapSure SenseJun-02600400000004074CapSure SenseJun-0271,60049,30011934076CapSure SPNovusFeb-04257,000208,2001007154092CapSure SPAug-9111,2002,9001033134523CapSure SPOct-91101,80029,60010004558CapSure ZNot US releasedNANA10004558Screw-InNov-9420,0004,900111614568CapSure FixJan-9769,80033,700301005023,5023MCapSure SPNov-889,9002,200601035034CapSure ZFeb-965,30015,6001411413145054CapSure ZFeb-965,30015,6001411413145054CapSure ZFeb-965,30015,600141136165034CapSure ZFeb-965,30015,600141141316165054CapSure ZNov-98<	4024	CapSure SP	Oct-91	222,300	51,200	26	0	125	41
Adoff CapSureFix Mar-96 124,900 39,800 39 0 91 15 4073 CapSure Sense Jun-02 600 400 0 0 0 0 4074 CapSure Sense Jun-02 71,600 49,300 1 1 9 3 4076 CapSure Sense Jun-02 71,600 49,300 1 0 7 15 4092 CapSure SP Novus Sep-98 159,100 83,200 6 0 18 7 4523 CapSure SP Aug-91 11,200 29,000 1 0 23 13 4533 CapSure SP Oct-91 101,800 29,600 1 1 16 1 4534 CapSure SP Not US release NA NA 1 0 22 6 4574 CapSure SPN Nor-94 20,000 43,300 3 0 1 0 5023,5023M CapSure SPN Novus </td <td>4033</td> <td>CapSure Z</td> <td>Not US released</td> <td>NA</td> <td>NA</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>	4033	CapSure Z	Not US released	NA	NA	0	0	0	0
4073CapSure SenseJun 02600400000004074CapSure SenseJun 0271,60049,30011934076CapSure Fix NovusFeb-04257,000208,2001007154092CapSure SP NovusSep-98159,10083,200601874523CapSure SPAug-9111,2002,90010214524CapSure SPOct-91101,80029,600110004558MScrew-inNov-9420,0004,9001116114568CapSure SenseJun-0245,90033,700301004574CapSure SenseJun-0245,90033,7003010015023, 6023MCapSure SPNov-889,9002,20060103315024, 5023MCapSure ZFeb-962,400600100333<	4067	CapSureFix	Jan-97	1,000	300	1	0	0	1
Advint CapSure Sense Jun-02 71,600 49,300 1 1 9 3 4076 CapSure Fix Novus Feb-04 257,000 208,200 10 0 7 15 4092 CapSure SP Novus Sep-98 159,100 83,200 6 0 18 7 4523 CapSure SP Aug-91 11,200 2,900 1 0 2 1 4524 CapSure Z Not US released NA NA 1 0 0 0 4538 CapSure Z Not US released NA NA 1 1 16 1 4568 CapSure Sense Jun-02 45,900 33,700 3 0 1 0 4574 CapSure SP Novus Oct-98 78,100 43,300 3 0 1 0 5023,5023M CapSure SP Nov-88 9,900 2,200 50 10 46 39 5034 CapSure	4068	CapSureFix	Mar-96	124,900	39,800	39	0	91	15
CapSure Eix Novus Feb-04 257,000 208,200 10 0 7 15 4092 CapSure SP Novus Sep-98 159,100 83,200 6 0 18 7 4523 CapSure SP Aug-91 11,200 2,900 1 0 2 1 4524 CapSure SP Oct-91 101,800 29,600 1 0 33 13 4533 CapSure Z Not US released NA NA 1 0 0 0 4558M Screw-in Nov-94 20,000 4,900 1 1 16 1 4568 CapSure Fix Jan-97 69,800 28,800 2 0 22 6 4574 CapSure SP Novus Oct-98 78,100 43,300 3 0 1 0 0 3 5023, 5023M CapSure SP Nov-88 9,900 2,200 6 0 1 0 3 3 6<	4073	CapSure Sense	Jun-02	600	400	0	0	0	0
CapSure SP Novus Sep-98 159,100 83,200 6 0 18 7 4523 CapSure SP Aug-91 11,200 2,900 1 0 2 1 4524 CapSure SP Oct-91 101,800 29,600 1 0 33 13 4533 CapSure Z Not US released NA NA 1 0 0 0 4558M Screw-in Nov-94 20,000 4,900 1 1 16 1 4568 CapSure SP Jan-97 69,800 28,800 2 0 22 6 4574 CapSure SP Novus Oct-98 78,100 43,300 3 0 5 1 0 0 3 1 0 5 1 0 0 3 1 0 1 0 0 3 3 1 1 1 1 1 1 1 1 1 1 1 <	4074	CapSure Sense	Jun-02	71,600	49,300	1	1	9	3
4523CapSure SPAug-9111,2002,90010214524CapSure SPOct-91101,80029,6001033134533CapSure ZNot US releasedNANA100004558MScrew-inNov-9420,0004,9001116114568CapSure FixJan-9769,80028,800202264574CapSure SenseJun-0245,90033,70030515023,5023MCapSure SPNov-889,9002,20060105024, 5024MCapSure ZFeb-962,400600103346395033CapSure ZFeb-9656,30015,600141141314135054CapSure Z NovusJun-988,9004,4300511414135054CapSure FixJan-97103,20037,30033346165072Sure FixJun-989,1004,400203114145074CapSure SP NovusJun-9818,6001021285054CapSure FixJun-986,60019,5001021285054CapSure SP NovusJun-986,6001003555554CapSure SP Novus<	4076	CapSureFix Novus	Feb-04	257,000	208,200	10	0	7	15
Caperine Display Display <thdisplay< th=""> Display <thdisplay< th=""></thdisplay<></thdisplay<>	4092	CapSure SP Novus	Sep-98	159,100	83,200	6	0	18	7
CapSure Z Not US released NA NA 1 0 0 0 4533 CapSure Z Not US released NA NA 1 0 0 0 4558M Screw-in Nov-94 20,000 4,900 1 1 16 1 4568 CapSureFix Jan-97 69,800 28,800 2 0 22 6 4574 CapSure Sense Jun-02 45,900 33,700 3 0 1 0 4592 CapSure SP Novus Oct-98 78,100 43,300 3 0 5 1 5023, 5023M CapSure SP Nov-88 9,900 2,200 6 0 1 0 3 5033 CapSure Z Feb-96 2,400 600 1 0 0 3 5054 CapSure Z Feb-96 56,300 15,600 14 1 14 13 5054 CapSure Fix Jun-98	4523	CapSure SP	Aug-91	11,200	2,900	1	0	2	1
A558M Screw-in Nov-94 20,000 4,900 1 1 16 1 4568 CapSureFix Jan-97 69,800 28,800 2 0 222 6 4574 CapSure Sense Jun-02 45,900 33,700 3 0 1 0 4592 CapSure SP Novus Oct-98 78,100 43,300 3 0 5 1 5023,5023M CapSure SP Nov-88 9,900 2,200 6 0 1 0 5024,5024M CapSure Z Feb-96 2,400 600 1 0 0 3 5033 CapSure Z Feb-96 56,300 15,600 14 1 14 13 5054 CapSure Z Novus Jun-98 88,900 44,300 5 1 13 6 5072 SureFix Jan-97 103,200 37,300 33 3 46 16 5074 CapSure SP Novus	4524	CapSure SP	Oct-91	101,800	29,600	1	0	33	13
A5568 CapSureFix Jan-97 69,800 28,800 2 0 22 6 4574 CapSure Sense Jun-02 45,900 33,700 3 0 1 0 4592 CapSure SP Novus Oct-98 78,100 43,300 3 0 5 1 5023, 5023M CapSure SP Nov-88 9,900 2,200 6 0 1 0 5024, 5024M CapSure SP Mar-90 201,600 52,000 50 10 46 39 5033 CapSure Z Feb-96 56,300 15,600 14 1 14 13 5054 CapSure Z Novus Jun-98 88,900 44,300 5 1 13 6 5072 SureFix Jun-98 9,100 4,400 2 0 4 1 5076 CapSureFix Novus Aug-00 1,163,300 797,600 188 0 181 144 5092 C	4533	CapSure Z	Not US released	NA	NA	1	0	0	0
Atsra CapSure Sense Jun-02 45,900 33,700 3 0 1 0 4592 CapSure SP Novus Oct-98 78,100 43,300 3 0 5 1 5023, 5023M CapSure SP Nov-88 9,900 2,200 6 0 1 0 5024, 5024M CapSure SP Mar-90 201,600 52,000 50 10 46 39 5033 CapSure Z Feb-96 2,400 600 1 0 3 5034 CapSure Z Feb-96 56,300 15,600 14 1 14 13 5054 CapSure Z Novus Jun-98 88,900 44,300 5 1 13 6 5076 CapSureFix Jan-97 103,200 37,300 33 3 46 16 5076 CapSureFix Novus Aug-00 1,163,300 797,600 188 0 181 144 5092 CapSure SP Novus<	4558M	Screw-in	Nov-94	20,000	4,900	1	1	16	1
Affire CapSure SP Novus Oct-98 78,100 43,300 3 0 5 1 5023, 5023M CapSure SP Nov-88 9,900 2,200 6 0 1 0 5024, 5024M CapSure SP Mar-90 201,600 52,000 50 10 46 39 5033 CapSure Z Feb-96 2,400 600 1 0 0 3 5034 CapSure Z Feb-96 56,300 15,600 14 1 14 13 5054 CapSure Z Novus Jun-98 88,900 44,300 5 1 13 6 5068 CapSure Fix Jan-97 103,200 37,300 33 3 46 16 5072 SureFix Jun-98 9,100 4,400 2 0 41 144 5092 CapSure Fix Novus Aug-00 1,163,300 797,600 188 0 181 144 5092	4568	CapSureFix	Jan-97	69,800	28,800	2	0	22	6
Social CapSure SP Nov-88 9,900 2,200 6 0 1 0 So23, 5023 M CapSure SP Mar-90 201,600 52,000 50 10 46 39 So33 CapSure Z Feb-96 2,400 600 1 0 0 3 S034 CapSure Z Feb-96 56,300 15,600 14 1 14 13 S054 CapSure Z Novus Jun-98 88,900 44,300 5 1 13 6 S068 CapSureFix Jan-97 103,200 37,300 33 3 46 16 S076 SureFix Jun-98 9,100 4,400 2 0 41 14 S076 CapSure SP Novus Jun-98 18,400 62,000 5 0 30 12 S524, 5524M CapSure SP Novus Jun-98 57,200 31,200 3 0 5 5 S554 CapSure Z Novus	4574	CapSure Sense	Jun-02	45,900	33,700	3	0	1	0
S024, S024M CapSure SP Mar-90 201,600 52,000 50 10 46 39 S033 CapSure Z Feb-96 2,400 600 1 0 0 3 S034 CapSure Z Feb-96 56,300 15,600 14 1 14 13 S054 CapSure Z Novus Jun-98 88,900 44,300 5 1 13 6 S068 CapSureFix Jan-97 103,200 37,300 33 3 46 16 S072 SureFix Jan-97 103,200 37,300 188 0 181 144 S076 CapSureFix Novus Aug-00 1,163,300 797,600 188 0 181 144 S092 CapSure SP Novus Jun-98 118,400 62,000 5 0 30 12 S524, S524M CapSure SP Mar-90 60,600 19,500 10 2 12 8 S534	4592	CapSure SP Novus	Oct-98	78,100	43,300	3	0	5	1
5033 CapSure Z Feb-96 2,400 600 1 0 0 3 5034 CapSure Z Feb-96 56,300 15,600 14 1 14 13 5054 CapSure Z Novus Jun-98 88,900 44,300 5 1 13 6 5068 CapSureFix Jan-97 103,200 37,300 33 3 46 16 5072 SureFix Jun-98 9,100 4,400 2 0 4 1 5076 CapSureFix Novus Aug-00 1,163,300 797,600 188 0 181 144 5092 CapSure SP Novus Jun-98 118,400 62,000 5 0 30 12 5524, 5524M CapSure Z Mar-90 60,600 19,500 10 2 12 8 5554 CapSure Z Feb-96 26,300 8,500 3 0 5 5 5554 CapSure Z Novus Jun-98 57,200 31,200 6 0 13 15	5023, 5023M	CapSure SP	Nov-88	9,900	2,200	6	0	1	0
S034 CapSure Z Feb-96 56,300 15,600 14 1 14 13 5054 CapSure Z Novus Jun-98 88,900 44,300 5 1 13 6 5068 CapSureFix Jan-97 103,200 37,300 33 3 46 16 5072 SureFix Jun-98 9,100 4,400 2 0 4 1 5076 CapSureFix Novus Aug-00 1,163,300 797,600 188 0 181 144 5092 CapSure SP Novus Jun-98 118,400 62,000 5 0 30 12 5524, 5524M CapSure SP Mar-90 60,600 19,500 10 2 12 8 5554 CapSure Z Feb-96 26,300 8,500 3 0 13 15 5558 CapSure Z Jun-98 57,200 31,200 6 0 10 4 5592 CapSure SP Novus Jun-98 29,800 18,500 1 0 3 0 <td>5024, 5024M</td> <td>CapSure SP</td> <td>Mar-90</td> <td>201,600</td> <td>52,000</td> <td>50</td> <td>10</td> <td>46</td> <td>39</td>	5024, 5024M	CapSure SP	Mar-90	201,600	52,000	50	10	46	39
5054 CapSure Z Novus Jun-98 88,900 44,300 5 1 13 6 5068 CapSureFix Jan-97 103,200 37,300 33 3 46 16 5072 SureFix Jun-98 9,100 4,400 2 0 4 1 5076 CapSureFix Novus Aug-00 1,163,300 797,600 188 0 181 144 5092 CapSure SP Novus Jun-98 118,400 62,000 5 0 30 12 5524, 5524M CapSure Z Feb-96 26,300 8,500 3 0 5 5 5554 CapSure Z Feb-96 26,300 8,500 3 0 5 5 5554 CapSure Z Novus Jun-98 57,200 31,200 6 0 13 15 5592 CapSure SP Novus Jun-97 77,100 47,700 6 0 3 0 5594 Ca	5033	CapSure Z	Feb-96	2,400	600	1	0	0	3
Social CapSureFix Jan-97 103,200 37,300 33 3 46 16 5072 SureFix Jun-98 9,100 4,400 2 0 4 1 5076 CapSureFix Novus Aug-00 1,163,300 797,600 188 0 181 144 5092 CapSure SP Novus Jun-98 118,400 62,000 5 0 30 12 5524, 5524M CapSure Z Feb-96 26,300 8,500 3 0 5 5 5534 CapSure Z Feb-96 26,300 8,500 3 0 5 5 5554 CapSure Z Novus Jun-98 57,200 31,200 6 0 10 4 5568 CapSure SP Novus Jun-97 77,100 47,700 6 0 13 15 5592 CapSure SP Novus Jun-01 12,400 8,900 3 0 3 0	5034	CapSure Z	Feb-96	56,300	15,600	14	1	14	13
Sore SureFix Jun-98 9,100 4,400 2 0 4 1 5072 SureFix Novus Aug-00 1,163,300 797,600 188 0 181 144 5092 CapSure SP Novus Jun-98 118,400 62,000 5 0 30 12 5524, 5524M CapSure SP Mar-90 60,600 19,500 10 2 12 8 5534 CapSure Z Feb-96 26,300 8,500 3 0 5 5 5554 CapSure Z Novus Jun-98 57,200 31,200 6 0 10 4 5568 CapSure Fix Jan-97 77,100 47,700 6 0 13 15 5592 CapSure SP Novus Jun-98 29,800 18,500 1 0 3 0 5594 CapSure SP Novus Jun-01 12,400 8,900 3 0 3 0	5054	CapSure Z Novus	Jun-98	88,900	44,300	5	1	13	6
5076 CapSureFix Novus Aug-00 1,163,300 797,600 188 0 181 144 5092 CapSure SP Novus Jun-98 118,400 62,000 5 0 30 12 5524, 5524M CapSure SP Mar-90 60,600 19,500 10 2 12 8 5534 CapSure Z Feb-96 26,300 8,500 3 0 5 5 5554 CapSure Z Novus Jun-98 57,200 31,200 6 0 10 4 5568 CapSure Fix Jan-97 77,100 47,700 6 0 13 15 5592 CapSure SP Novus Jun-98 29,800 18,500 1 0 3 0 5594 CapSure SP Novus Jun-01 12,400 8,900 3 0 3 0	5068	CapSureFix	Jan-97	103,200	37,300	33	3	46	16
Sope CapSure SP Novus Jun-98 118,400 62,000 5 0 30 12 S524, 5524M CapSure SP Mar-90 60,600 19,500 10 2 12 8 S534 CapSure Z Feb-96 26,300 8,500 3 0 5 5 S554 CapSure Z Novus Jun-98 57,200 31,200 6 0 10 4 S568 CapSure Fix Jan-97 77,100 47,700 6 0 13 15 S592 CapSure SP Novus Jun-01 12,400 8,900 3 0 3 0	5072	SureFix	Jun-98	9,100	4,400	2	0	4	1
S524, 5524M CapSure SP Mar-90 60,600 19,500 10 2 12 8 5534 CapSure Z Feb-96 26,300 8,500 3 0 5 5 5554 CapSure Z Novus Jun-98 57,200 31,200 6 0 10 4 5568 CapSure Fix Jan-97 77,100 47,700 6 0 13 15 5592 CapSure SP Novus Jun-98 29,800 18,500 1 0 3 0 5594 CapSure SP Novus Jun-01 12,400 8,900 3 0 3 0	5076	CapSureFix Novus	Aug-00	1,163,300	797,600	188	0	181	144
5534 CapSure Z Feb-96 26,300 8,500 3 0 5 5 5554 CapSure Z Novus Jun-98 57,200 31,200 6 0 10 4 5568 CapSure Fix Jan-97 77,100 47,700 6 0 13 15 5592 CapSure SP Novus Jun-98 29,800 18,500 1 0 3 0 5594 CapSure SP Novus Jun-01 12,400 8,900 3 0 3 0	5092	CapSure SP Novus	Jun-98	118,400	62,000	5	0	30	12
S554 CapSure Z Novus Jun-98 57,200 31,200 6 0 10 4 5568 CapSureFix Jan-97 77,100 47,700 6 0 13 15 5592 CapSure SP Novus Jun-98 29,800 18,500 1 0 3 0 5594 CapSure SP Novus Jun-01 12,400 8,900 3 0 3 0	5524, 5524M	CapSure SP	Mar-90	60,600	19,500	10	2	12	8
S558 CapSureFix Jan-97 77,100 47,700 6 0 13 15 S592 CapSure SP Novus Jun-98 29,800 18,500 1 0 3 0 S594 CapSure SP Novus Jun-01 12,400 8,900 3 0 3 0	5534	CapSure Z	Feb-96	26,300	8,500	3	0	5	5
5592 CapSure SP Novus Jun-98 29,800 18,500 1 0 3 0 5594 CapSure SP Novus Jun-01 12,400 8,900 3 0 3 0	5554	CapSure Z Novus	Jun-98	57,200	31,200	6	0	10	4
5594 CapSure SP Novus Jun-01 12,400 8,900 3 0 3 0	5568	CapSureFix	Jan-97	77,100	47,700	6	0	13	15
	5592	CapSure SP Novus	Jun-98	29,800	18,500	1	0	3	0
6940 CapSureFix Oct-98 25,500 9,300 10 0 13 4	5594	CapSure SP Novus	Jun-01	12,400	8,900	3	0	3	0
	6940	CapSureFix	Oct-98	25,500	9,300	10	0	13	4

US Reports of Acute Lead Observations

Model Number	Family	Estimated US Implants	Cardiac Perforation	Conductor Fracture	Lead Dislodgement	Failure to Capture	Oversensing	Failure to Sense		Impedance Abnormal	Extracardiac Stimulation	Unspecified
3830	SelectSecure	15,300	5	0	10	7	1	1	1	0	0	0
4023	CapSure SP	41,200	0	1	3	3	1	0	3	0	1	0
4024	CapSure SP	222,300	15	11	51	107	0	15	1	8	2	16
4067	CapSure Fix	1,000	1	0	0	0	0	0	0	0	0	0
4068	CapSure Fix	124,900	5	3	30	28	0	5	1	2	1	1
4074	CapSure Sense	71,600	4	0	7	18	0	0	0	1	0	0
4076	CapSure Fix Novus	257,000	16	2	33	21	0	6	1	6	2	1
4092	CapSure SP Novus	159,100	1	5	12	19	0	0	0	2	0	1
4523	CapSure SP	11,200	0	0	2	2	0	1	0	0	0	0
4524	CapSure SP	101,800	0	2	23	16	0	5	2	1	0	8
4558M	Screw-in	20,000	2	0	4	3	0	1	0	2	0	0
4568	CapSure Fix	69,800	3	1	4	6	0	1	0	2	0	1
4574	CapSure Sense	45,900	0	0	10	2	1	3	0	0	0	2
4592	CapSure SP Novus	78,100	0	0	10	5	0	2	0	1	0	2
5023, 5023M	CapSure SP	9,900	0	1	2	0	1	0	0	0	0	1
5024, 5024M	CapSure SP	201,600	11	7	26	48	1	10	5	3	3	9
5033	CapSure Z	2,400	0	0	1	0	0	0	0	0	0	0
5034	CapSure Z	56,300	4	6	15	31	0	3	2	0	0	10
5054	CapSure Z Novus	88,900	1	1	5	17	0	2	2	0	0	9
5068	CapSure Fix	103,200	15	3	21	32	0	5	1	2	0	2
5072	SureFix	9,100	0	0	2	0	0	0	0	1	0	0
5076	CapSure Fix Novus	1,163,300	65	9	194	127	12	24	6	16	7	16
5092	CapSure SP Novus	118,400	2	1	21	24	0	5	2	2	1	7
5524, 5524M	CapSure SP	60,600	1	4	15	11	0	9	2	0	0	8
5534	CapSure Z	26,300	0	0	4	3	0	1	0	0	2	4
5554	CapSure Z Novus	57,200	0	1	17	15	0	0	0	0	0	3
5568	CapSure Fix	77,100	3	0	13	11	0	3	1	1	1	1
5592	CapSure SP Novus	29,800	0	0	15	2	0	0	0	0	0	1
5594	CapSure SP Novus	12,400	0	0	0	0	0	0	0	0	0	2
6940	CapSure Fix	25,500	0	0	5	1	0	0	0	0	0	1

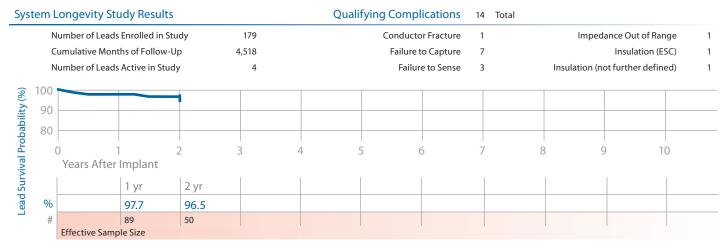
Report Cutoff Date: January 31, 2010

Reference Chart

Model Number	Family	Туре	Insulation	Conductor Material	Tip Electrode	Connector Type
3830	SelectSecure	Transvenous V or A Screw-In	Polyurethane/Silicone (55D,4719)	MP35N 5 Filars/ Cable	1.8 mm Helix/Steroid	IS-1 BI
4023	CapSure SP	Transvenous Ventricular Tines	Polyurethane (55D)	MP35N 4 Filars	Porous Platinized/ Steroid	IS-1 UNI
4024	CapSure SP	Transvenous Ventricular Tines	Polyurethane (55D)	MP35N 4/5 Filars	Porous Platinized/ Steroid	IS-1 BI
4033	CapSure Z	Transvenous Ventricular Tines	Polyurethane (55D)	MP35N 2 Filars	CapSure Z Platinized/Steroid	IS-1 UNI
4067	CapSureFix	Transvenous V or A Screw-In	Polyurethane (80A)	MP35N 3 Filars	1.8 mm Helix/Steroid	IS-1 UNI
4068	CapSureFix	Transvenous V or A Screw-In	Polyurethane (80A/55D)	MP35N 4/3 Filars	1.8 mm Helix/Steroid	IS-1 BI
4073	CapSure Sense	Transvenous Ventricular Tines	Polyurethane (55D)	MP35N 5 Filars	TiN Coated Platinum Iridium/Steroid	IS-1 UNI
4074	CapSure Sense	Transvenous Ventricular Tines	Polyurethane/Silicone (55D, 4719)	MP35N 5/5 Filars	TiN Coated Platinum Iridium/ Steroid	IS-1 BI
4076	CapSureFix Novus	Transvenous V or A Screw-In	Polyurethane/Silicone (55D, 4719)	MP35N 4/6 Filars	TiN Coated Platinum Alloy/Steroid	IS-1 BI
4092	CapSure SP Novus	Transvenous Ventricular Tines	Polyurethane/Silicone (55D/4719)	MP35N 6/4 Filars	Porous Platinized/ Steroid	IS-1 BI
4523	CapSure SP	Transvenous Atrial-J Tines	Polyurethane (55D)	MP35N 2 Filars	Porous Platinized/ Steroid	IS-1 UNI
4524	CapSure SP	Transvenous Atrial-J Tines	Polyurethane (55D)	MP35N 4/5 Filars	Porous Platinized/ Steroid	IS-1 BI
4533	CapSure Z	Transvenous Atrial-J Tines	Polyurethane (55D)	MP35N 2 Filars	CapSure Z Platinized/Steroid	IS-1 UNI
4558M	Screw-In	Transvenous Atrial-J Screw-In	Polyurethane (80A/55D)	MP35N 6/3 Filars	1.8 mm Helix/Steroid	IS-1 BI
4568	CapSureFix	Transvenous Atrial-J Screw-In	Polyurethane (80A/55D)	MP35N 6/3 Filars	1.8 mm Helix/Steroid	IS-1 BI
4574	CapSure Sense	Transvenous Atrial -J Tines	Polyurethane/Silicone (55D,4719)	MP35N 5/5 Filars	TiN Coated Platinum Iridium	IS-1 BI
4592	CapSure SP Novus	Transvenous Atrial-J Tines	Polyurethane/Silicone (55D/4719)	MP35N 6/3 Filars	Porous Platinized/ Steroid	IS-1 BI
5023, 5023M	CapSure SP	Transvenous Ventricular Tines	Silicone	MP35N 4 Filars	Porous Platinized/ Steroid	5 mm (5023) IS-1 UNI (5023M)
5024, 5024M	CapSure SP	Transvenous Ventricular Tines	Silicone	MP35N 4/5 Filars	Porous Platinized/ Steroid	3.2 mm Low Profile (5024) IS-1 BI (5024M)
5033	CapSure Z	Transvenous Ventricular Tines	Silicone	MP35N 4 Filars	CapSure Z Platinized/Steroid	IS-1 UNI
5034	CapSure Z	Transvenous Ventricular Tines	Silicone	MP35N 4/5 Filars	CapSure Z Platinized/Steroid	IS-1 BI
5054	CapSure Z Novus	Transvenous Ventricular Tines	Silicone (4719)	MP35N 5/5 Filars	CapSure Z Porous/Platinized/ Steroid	IS-1 BI
5068	CapSureFix	Transvenous V or A Screw-In	Silicone	MP35N 4/3 Filars	1.8 mm Helix/Steroid	IS-1 BI
5072	SureFix	Transvenous V or A Screw-In	Silicone	MP35N 4/5 Filars	1.8 mm Helix/Steroid	IS-1 BI
5076	CapSureFix Novus	Transvenous V or A Screw-In	Silicone (4719)	MP35N 4/6 Filars	Porous Platinized/ Steroid	IS-1 BI
5092	CapSure SP Novus	Transvenous Ventricular Tines	Silicone (4719)	MP35N 5/5 Filars	Porous Platinized/ Steroid	IS-1 BI
5524, 5524M	CapSure SP	Transvenous Atrial-J Tines	Silicone	MP35N 6/5 Filars	Porous Platinized/ Steroid	3.2 mm Low Profile (5524) IS-1 Bl (5524M)
5534	CapSure Z	Transvenous Atrial-J Tines	Silicone	MP35N 4/5 Filars	CapSure Z Platinized/Steroid	IS-1 BI

continued

Reference Chart continued


Model Number	Family	Туре	Insulation	Conductor Material	Tip Electrode	Connector Type
5554	CapSure Z Novus	Transvenous Atrial-J Tines	Silicone (4719)	MP35N 6/5 Filars	CapSure Z Porous Platinized/ Steroid	IS-1 BI
5568	CapSureFix	Transvenous Atrial-J Screw-In	Silicone	MP35N 6/3 Filars	1.8 mm Helix/Steroid	IS-1 BI
5592	CapSure SP Novus	Transvenous Atrial-J Tines	Silicone (4719)	MP35N 6/5 Filars	Porous Platinized/ Steroid	IS-1 BI
5594	CapSure SP Novus	Transvenous Atrial-J Tines	Silicone (4719)	MP35N 6/5 Filars	Platinized Platinum/ Steroid	IS-1 BI
6940	CapSureFix	Transvenous A or V Screw-In	Silicone	MP35N 3/6 Filars	Platinum Alloy	IS-1 BI

Epi/Myocardial Pacing Leads

4951, 4951M Spectraflex

Product Characteristics

US Market Release	Oct-81	Serial Number Prefix	TF or LBJ	US Returned Product An	alysis
Registered US Implants	23,100	Type and/or Fixation	Myocardial Stab-in, V or A, Peds	Conductor Fracture	56
Estimated Active US Implants	2,300	Polarity	Unipolar	Crimp/Weld/Bond	0
Advisories	None	Steroid	No	Insulation Breach Other	39 29

	Registered US Implants Estimated Active US Implants Advisories Longevity Study Results Number of Leads Enrolled in Study Cumulative Months of Follow-Up Number of Leads Active in Study			o-96	Serial Number Prefix	LBT		US Return	ned Product An	alysis
	Registered US Im	18	,700	Type and/or Fixation	Epicardial Suture-On \	/ or A	Cond	ductor Fracture	105	
	Registered US Implants Estimated Active US Implants Advisories Em Longevity Study Results Number of Leads Enrolled in Stu Cumulative Months of Follow-Up Number of Leads Active in Study		9	,200	Polarity	Unipolar			mp/Weld/Bond	1
	Advisories		Ν	lone	Steroid	Yes		Ins	sulation Breach Other	26 2
ten	n Longevity Stu	udy Results			Qual	fying Complications	8 Total			
	Number of Leads	Enrolled in Stu	udy	207	,	Conductor Fracture	3		Oversensing	2
	Cumulative Months of Follow-Up Number of Leads Active in Study		lp	5,354	Ļ	Failure to Capture	2			
	1			41		Failure to Sense 1				
	Cumulative Months of Follow-Up		у	41		Failure to Sense	1			
10	_	Active in Stud	y	41		Failure to Sense	1			
10 9	0	Active in Stud	y	41	۲ –					
10 9 8	00	Active in stud	y	41	7					
10 9 8	00			41				3 9	10	
10 9 8			2		7			3 9	10	
10 9 8			2	3	4			3 9	10	
9		Implant			4 yr at 42 mo			3 9	10	

Epi/Myocardial Pacing Leads continued

68	CapSure	Epi		Pro	oduct Charact	eristics					
	US Market Rele	ase	Sep	-99 Ser	ial Number Prefix	LEN			US R	eturned Product	t Analysi
	Registered US I	mplants	18,	300 Тур	e and/or Fixation	Epica	rdial Suture-On	V or A		Conductor Fractu	ire 1
	Estimated Activ	ve US Implants	11,9	900 Pol	arity	Bipol	ar			Crimp/Weld/Bor	
	Advisories		No	one Ste	roid	Yes				Insulation Brea Oth	
tem	n Longevity S	tudy Result	S		Qu	ualifying Co	mplications	22 Total			
	Number of Lead	ds Enrolled in S	tudy	608		Conc	luctor Fracture	5	Im	pedance Out of Ran	ige
	Cumulative Mo	nths of Follow	·Up	27,547		Fai	ure to Capture	6	Insulatio	on (not further define	ed)
	Number of Lead	ds Active in Stu	ıdy	360		F	ailure to Sense	4		Oversensi	ing
10(0										
90	-										
8(0										
	0	1	2	3	4	5	6	7	8	9 10	0
	Years Afte	er Implant									
		1 yr	2 yr	3 yr	4 yr	5 yr	6 yr	7 yr	8 yr	at 102 mo	
%	6	99.6	97.6	96.5	95.3	94.3	93.0	93.0	93.0	89.9	
ł	#	487	381	289	219	163	123	85	59	49	
	Effective San	nple Size									

	Screw-in			Product Characte	ristics					
	US Market Rele	ase	Dec-92	Serial Number Prefix	LAQ			US Retur	ned Product Ar	nalysis
	Registered US I	mplants	36,900	Type and/or Fixation	Myocardial Screw-in	Vent.		Cor	ductor Fracture	(
	Estimated Activ	e US Implants	14,200	Polarity	Unipolar				imp/Weld/Bond	(
	Advisories		None	Steroid	No			Ir	isulation Breach Other	ļ
vsten	n Longevity S	tudy Results		Qu	alifying Complications	13	Total			
	Number of Leads Enrolled in Study		udy 24	3	Failure to Capture	10				
	Cumulative Mo	nths of Follow-U	lp 5,53	б	Oversensing	2				
	Number of Leads Active in Study		у 4	3 Impedance Out of Range		1				
10	0									
9	0		1							
8	80									
0	0	1	2 3	4	5 6	7	8	9	10	
) 10 9 8	Years Afte		Ζ Σ	4	5 0	/	0	9	10	
		1 yr	2 yr							
ç	%	96.7	93.7							
	#	124	49							

Epi/Myocardial Pacing Leads continued

(95% Confidence Interval)
Summary
Survival
Lead

		ə		۲pn														
		seələ	pə	lS ni s			Device S	Device Survival Probability (%)	robabili	ty (%)								
		rket R	Enroll	əvitəA	oitsoil		Years Af	Years After Implant	Int									
ləboM dmuN	(lime7	۶M SU	speəJ	sbsəJ	filenØ IqmoD	lumu⊃ Ilo∃ fo	1 yr	2 yr	3 yr	4 yr	5 yr	6 yr	7 yr	8 yr	10 yr	12 yr	14 yr	16 yr
4951, 4951M	Spectraflex	Oct-81	179	4	14	4,518	97.7 +1.6/-4.8	96.5 +2.2/-5.8										
4965	CapSure Epi	Sep-96	207	41	80	5,354	98.9 +.8/-3.2	97.8 +1.5/-5	96.3 +2.4/-6.9	92.6 +4.3/-9.5 at 42 mo								
4968	CapSure Epi	Sep-99	608	360	22 2	22 27,547	99.6 +.3/-1	97.6 +1.1/-1.9	96.5 +1.4/-2.3	95.3 +1.8/-2.7	94.3 +2.1/-3.3	93.0 +2.5/-3.8	93.0 +2.5/-3.8	93.0 +2.5/-3.8	89.9 +4.1/-6.8 at 102 mo			
5071	(No brand name)	Dec-92	243	43	13	5,536	96.7 +1.8/-4	93.7 +3.1/-5.9										

Epi/Myocardial Pacing Leads continued

US Returned Product Analysis Summary

Model Number	Family	US Market Release	Estimated US Implants	Estimated US Active	Conductor Fracture	Crimp/Weld/ Bond	Insulation Breach	Other
4951, 4951M	Spectraflex	Oct-81	23,100	2,300	56	0	39	29
4965	CapSure Epi	Sep-96	18,700	9,200	105	1	26	2
4968	CapSure Epi	Sep-99	18,800	11,900	12	0	5	0
5071	Screw-in	Dec-92	36,900	14,200	6	0	1	5

Source: Returned Product Analysis Data as of January 31, 2010

US Reports of Acute Lead Observations

Model Number	Family	Estimated US Implants	Cardiac Perforation	Conductor Fracture	Lead Dislodgement	Failure to Capture	Impedance Abnormal	Extracardiac Stimulation	Unspecified
4951, 4951M	Spectraflex	23,100	1	1	0	13	0	0	2
4965	CapSure Epi	18,700	0	0	1	2	2	0	0
4968	CapSure Epi	18,800	1	0	3	2	0	0	0
5071	Screw-in	36,900	1	0	0	17	3	1	1

Report Cutoff Date: January 31, 2010

Reference Chart

Model Number	Family	Туре	Insulation	Conductor Material	Tip Electrode	Connector Type
4951, 4951M	Spectraflex	Myocardial Stab-In V or A/Peds	Polyurethane (80A)	MP35N 4 Filars	Barb	5 mm (4951) IS-1 UNI (4951M)
4965	CapSure Epi	Epicardial Suture-On V or A	Silicone	MP35N 5 Filars	Porous Platinized/ Steroid	IS-1 UNI
4968	CapSure Epi	Epicardial Suture V or A	Silicone	MP35N 5 Filars	Porous Platinized/ Steroid	IS-1 B1
5069	(No brand name)	Myocardial Screw-In	Silicone	MP35N Multifilars	3-Turn Helix	IS-1 UNI
5071	(No brand name)	Myocardial Screw-In Ventricular	Silicone	MP35N Multifilars	2-Turn Helix	IS-1 UNI

VDD Single Pass Pacing Leads

	US Market Rel	ease	Mar-96	Serial Number Prefix	LCL, LCN	I, LCM		US Retur	ned Product An	alysi
	Registered US	Implants	5,400	Type and/or Fixation	Transve	nous, Atr-Vent.,	lines		ductor Fracture	
	Estimated Act	ive US Implants	1,500	Polarity	Quadrip	olar			imp/Weld/Bond	
	Advisories		None	Steroid	Yes			In	sulation Breach Other	
sten	n Longevity	Study Results		Qua	lifying Com	plications	1 Total			
	Number of Lea	ads Enrolled in Study	38	3	Fail	ure to Sense	1			
	Cumulative M	onths of Follow-Up	751							
	Number of Lea	ads Active in Study	C)						
10										
10		timate not available d	ue to insufficie	ent sample size						
0										
. <u>c</u>										
. <u>c</u> 8	30									
		1 2	3	4	5	6	7	8	9	10
	0	1 2 er Implant	3	4	5	6	7	8	9	10
. <u>c</u> 8	0	1 2 er Implant	3	4	5	6	7	8	9	10
3	0		3	4	5	6	7	8	9	10

5038	3 CapSure	VDD-2		Produ	uct Characte	eristics						
	US Market Releas	se	Sep-98	Serial N	lumber Prefix	LEE, L	EG, or LEF		U	S Returned P	roduct Ana	alysis
	Registered US Im	plants	8,500	Type ar	nd/or Fixation	Transv	venous, Atr-Vent	.,Tines		Conducto	r Fracture	3
	Estimated Active	US Implants	3,700	Polarity	y	Quad	ripolar			•	eld/Bond	1
	Advisories		None	Steroid	l	Yes				Insulatio	on Breach Other	1 1
Syster	n Longevity St	udy Results			Qu	alifying Cor	mplications	5 Total				
	Number of Leads	s Enrolled in Stu	ıdy	552		Cond	uctor Fracture	2				
	Cumulative Mon	ths of Follow-U	p 16,	995		Fail	ure to Capture	1				
	Number of Leads	Active in Stud	ý	58		Fa	ailure to Sense	2				
8 10	00											
lit	90											
abi												
Prob	30											
Lead Survival Probability (%)	0 Years After		2 3		4	5	6	7	8	9	10	
d Su		1 yr	2 yr	3 yr	4 yr	5 yr	бyr	at 75 mo				
Lea	%	99.8	99.8	99.8	98.3	97.4	97.4	97.4				
	#	419	171	147	120	97	57	50				
	Effective Samp	ole Size										

Leads

VDD Single Pass Pacing Leads continued

Lead Survival Summary (95% Confidence Interval)

Source: System Longevity Study

Data as of January 31, 2010

US Returned Product Analysis Summary

Model Number	Family	US Market Release	Estimated US Implants	Estimated US Active	Conductor Fracture	Crimp/Weld/ Bond	Insulation Breach	Other
5032	CapSure VDD	Mar-96	5,400	1,500	6	0	7	0
5038	CapSure VDD-2	Sep-98	8,500	3,700	3	1	1	1

Source: Returned Product Analysis Data as of January 31, 2010

US Reports of Acute Lead Observations

Model Number	Family	Estimated US Implants	Lead Dislodgement	Failure to Capture	Failure to Sense	Extracardiac Stimulation
5032	CapSure VDD	5,400	1	4	1	0
5038	CapSure VDD-2	8,500	0	1	0	1

Report Cutoff Date: January 31, 2010

Reference Chart

Model Number	Family	Туре	Insulation	Conductor Material	Tip Electrode	Connector Type
5032	CapSure VDD	Transvenous V and A Tines	Silicone	MP35N 5/6/1 Filars	Porous Platinized/ Steroid	Atr. IS-1 BI, Vent. IS-1 BI
5038	CapSure VDD-2	Transvenous Ventricular Tines	Silicone	MP35N	Porous Platinized/ Steroid	Atr. IS-1 BI, Vent. IS-1 BI

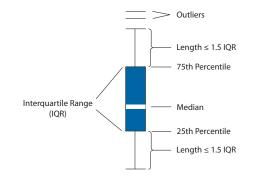
ICD and CRT-D Charge Time Performance

Medtronic continues its commitment to providing updated information on charge time performance.

Introduction

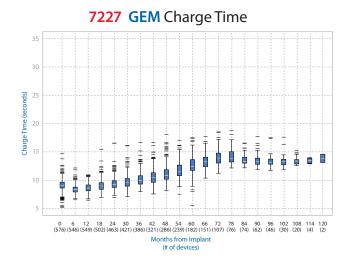
Information on charge time performance of Medtronic products is presented in this section of the CRDM Product Performance Report. Medtronic implemented the collection of charge time data on July 1, 1999. The data are collected via our ongoing active clinical study of long-term system performance called the System Longevity Study. The study protocol requests device data be routinely taken and sent to Medtronic at no more than 6-month intervals.

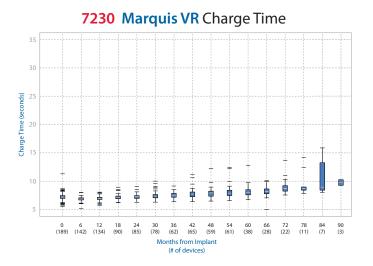
In our analysis performed for this report, only charge times resulting from full energy charges are considered. To ensure consistent reporting across devices, the charge time reported at implant represents the last charge time available from date of implant. When more than one charge time is available in a 6-month interval, a conservative approach has been adopted whereby only the maximum charge time in each 6-month interval is reported. As charge time is directly proportional to the time elapsed since the last capacitor reformation, charges occurring within 15 days of a previous charge are excluded. This precludes the reporting of overly optimistic results.


Data from over 20,000 devices contribute to the charge time data in this report. By tracking and reporting this charge time data, Medtronic is able to ascertain the actual performance of its charging circuitry. The insight gained through this information is applied to Medtronic's ongoing efforts to provide charge times that are short and consistent over the life of the product.

Data Presentation

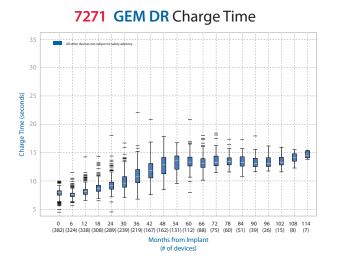
Charge time data for ICD and CRT-D models are presented using boxplots at 6-month intervals. The shaded box on the plots represents the middle half of the data – the Interquartile Range (IQR). The white line in the middle of each box is the median charge time. The top of the box representing the IQR is the third quartile or the 75th percentile (i.e., 75% of all charge times fall below this line), whereas the bottom of the box represents the first quartile or the 25th percentile. Vertical lines are drawn from the quartiles to the farthest value not more than 1.5 times the interquartile range. Any values more extreme than the vertical lines are considered outliers.

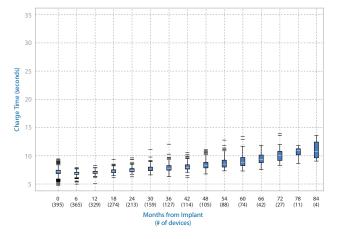

Results

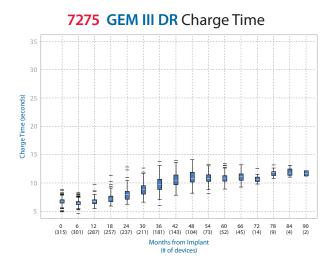

The graph below shows the overall maximums, minimums, and medians for Medtronic ICD and CRT-D products, beginning with the 7221 Micro Jewel.

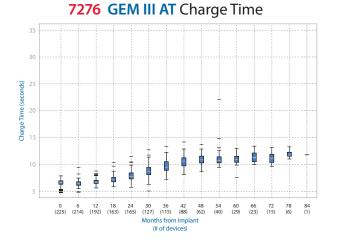
Medtronic CRT-D and ICD Charge Time Performance

27 20 25	-																																	
Charge Time (Seconds) 20 10 10 20			Ŧ	Ţ	Ŧ	Ŧ	Ţ	-1	I	Ţ	I	I	1	Ŧ	Ţ			-	-1			I	_	Ŧ	Ŧ	±	Ŧ	Ŧ	Ŧ	Ŧ	-	_	_	_
Model	Micro Jewel 7221	Micro Jewel II 7223	GEM 7227	GEM DR 7271	GEM II DR 7273	GEM II VR 7229	Jewel AF 7250	GEM II DR 7275	GEM III VR 7231	GEMIII AT 7276	InSync ICD 7272	Marquis DR 7274	Marquis VR 7230	InSync Marquis 7277	nSync III Marquis 7279	InSync II Marquis 7289	Maximo VR 7232	Maximo DR 7278	Onyx 7290	InSync Sentry 7299	InSync Maximo 7303	Intrinsic 7288	InSync III Protect 7285	InSync Sentry 7297	InSync Maximo 7304	EnTrust D153ATG/D153DRG	EnTrust D154VRC	EnTrust D154ATG/D154DRG	Concerto C154DWK, C164AWK, C174AWK	Virtuoso D154AWG/D164AWG	Virtuoso D154VWC/D164VWC	Consulta D224TRK/D234TRK	Secura VR D224VRC/D234VRC	Secura DR D224DRG/D234DRG
elease Date Months of Follow-Up	1996 90	1996 90	1998 120	1998 114	1999 66	1999 96	2000 78	2000 90	2000 96	2001 84	2002 84	2002 84	2002 90	2003 66	2003 66		2003 72	2003 72	2004 54	2004 54	2004 54	2004 60	2004 42	2004 54	2005 54	2005 54	2005 42	2005 54	2006 36	2006 36	2006 36	2008 6	2008 6	2008 12
Number of Samples	1,612	1,528	5,074	3,040	1,472	1,032	72	2,235	1,265	1,465	708	2,327	1,074	280	406	454	650	1,016	60	817	381	561	24	418	135	38	331	854	1,450	761	402	7	4	123

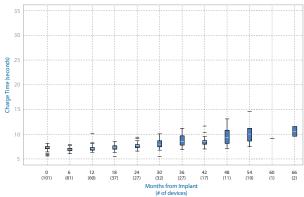


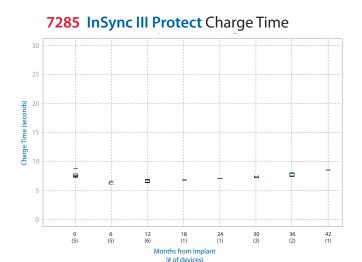

7231 GEM III VR Charge Time Time (seconds) Charge T Ī Ì ţ ļ İ Ď Ē 10 Ī Ē Ī Ī Ē É Ē Ŧ
 0
 6
 12
 18
 24
 30
 36
 42
 48
 54
 60
 66
 72
 78
 84
 90
 96

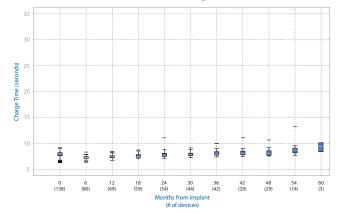

 (209)
 (175)
 (162)
 (136)
 (112)
 (98)
 (70)
 (57)
 (49)
 (37)
 (38)
 (34)
 (30)
 (22)
 (18)
 (13)
 (5)
 Months from Implant (# of devices)

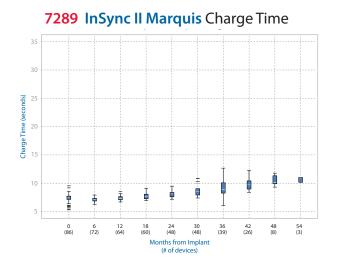

7232 Maximo VR Charge Time (S Time (Charge 1 ₫ F É Ē Ē Ē Ē <u>+</u> ₫ 24 30 36 76) (63) (50) Months from Implant (# of devices) 72 (1) 12 (77) 18 (75) 24 (76) 42 (31) 54 (25) 60 (11) 66 (1) 0 (114) 6 (93) 48 (33)

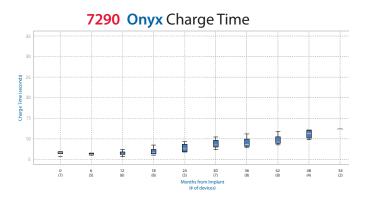
7274 Marquis DR Charge Time



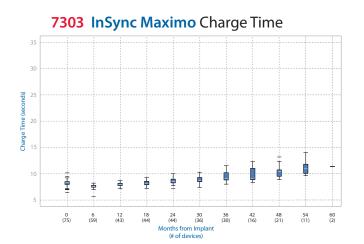


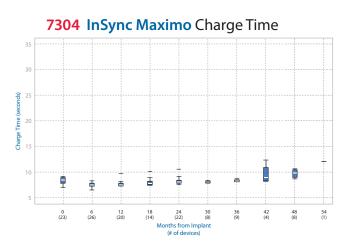

7278 Maximo DR Charge Time (sp 25 Charge Time (sec 20 ſ ¢ Ī Ē Ē Ţ Ē Ē ₫ 훌 42 (58) 72 (1) 24 (100) 30 (94) 36 (63) 48 (50) 66 (7) 0 (185) 6 (160) 12 (130) 18 (116) 54 (36) 60 (16) Months from Implant (# of devices)

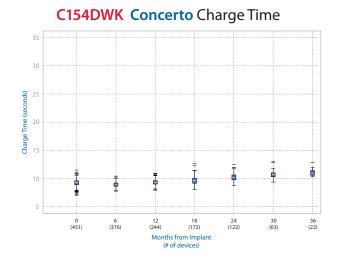

7279 InSync III Marquis Charge Time

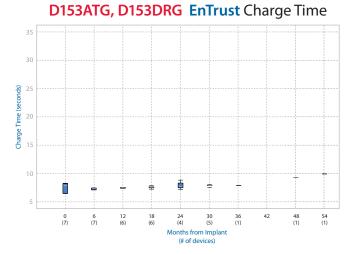


7288 Intrinsic Charge Time

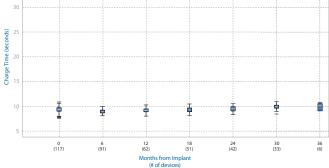





7297 InSync Sentry Charge Time Time (seconds) Charge T _ Ē Ē ≣ ŧ Ē Ē 5 0 (80) 12 (45) 18 (43) 54 (11) 6 (58) 24 (51) 30 (32) 36 (36) 42 (34) 48 (28) Months from Implant (# of devices)

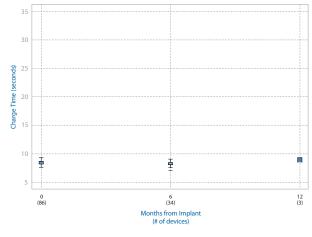

7299 InSync Sentry Charge Time (sp Time Charge ē Ī Ē ļ Ē Ē Ē 12 (130) 24 (105) 54 (1) 0 (170) 6 (125) 30 (77) 36 (61) 42 (25) 48 (11) 18 (112) Months from Implant (# of devices)

134 Medtronic CRDM Product Performance Report www.CRDMPPR.medtronic.com

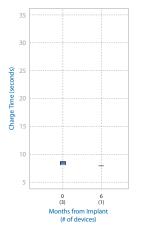


D154AWG Virtuoso Charge Time

D154ATG, D154DRG EnTrust Charge Time 30 (spue Charge Time (se Ē Ŧ ₫ ę Ē Í Ē ŧ ¢ ₽ 12 (128) 24 (89) 54 (5) 0 (175) 6 (125) 18 (119) 30 (86) 36 (74) 42 (41) 48 (12) Months from Implant (# of devices


D154VRC EnTrust Charge Time Charge Time (seconds) ₫ φ ₫ ŧ Ī Ī 0 (62) 42 (5) 6 (48) 12 (54) 18 (42) 36 (24) 24 (52) 30 (44) Months from Implant (# of devices)

D154VWC Virtuoso Charge Time


Source: System Longevity Study Data as of January 31, 2010

D224DRG, D234DRG Secura DR Charge Time

D234VRC Secura VR Charge Time

Advisories

EnRhythm Pacemakers

Original Date of Advisory: February 2010

Low Battery Voltage Displayed at Device Interrogation

Product

All EnRhythm pacemakers.

Advisory

Two specific battery issues with EnRhythm pacemakers have been identified and both will be addressed by a Medtronic software update available mid-2010. EnRhythm devices were commercially released in 2005, and these devices have been implanted for less than 5 years.

First Issue

As of February 2010, Medtronic had received 62 reports (out of approximately 110,000 devices worldwide) indicating that the battery voltage at device interrogation was lower than the battery voltage that is tracked by the device to provide data for the elective replacement indicator (ERI) notification. The lower voltage measurement has caused confusion and occasionally has resulted in unnecessary explants.

Medtronic's investigation has shown that none of these reports have resulted in loss of therapy. Importantly, the ERI notification, which uses the nightly battery measurement, is unaffected and accurate. Medtronic has identified the root cause as higher than expected battery resistance.

Medtronic's internal testing has shown that there is no current risk for compromised therapy delivery. If the software update referenced above is not implemented, there will be a potential risk of loss of device functionality in a small percent (less than 0.08% 6 years post-implant) of devices. The software update will eliminate this risk.

Patient Management Recommendations

Medtronic recommends physicians continue to use the ERI notification to determine time for device replacement. At this time, no other action, reprogramming, or change in the frequency of follow-up is recommended.

Second Issue

Through internal accelerated testing, Medtronic has identified a second issue that projects battery voltage could decrease sooner than expected due to a slightly increased rate of lithium depletion. This issue has not been clinically observed and is not expected to occur for another 4 years (approximately 9 years post-implant). If the software update referenced above is not implemented, there may be a potential risk for loss of therapy at or near ERI in a small number of devices. The software will eliminate this issue by changing ERI criteria.

Summary

The software update will eliminate any potential future risk of the two battery issues described above by changing the ERI criteria. This update will reduce longevity of these devices by approximately 10-15%, but the expected average longevity will still be 8.5 to 10.5 years depending on device settings.¹ At this time, no other action, reprogramming, or change in the frequency of patient follow-up is recommended. Your Medtronic representative will notify you when the software update is available, following regulatory approval.

 1 The 8.5 year estimate represents a high use scenario (DDD, 100% pacing in atrium and ventricle with 3.0 V output in both chambers). The 10.5 year estimate represents a typical use scenario for a sinus node dysfunction patient with the MVP function ON (AAI(R) <=> DDD(R), 50% pacing in atrium and 5% pacing in ventricle with 3.0 V output in both chambers).

Concerto CRT-D and Virtuoso ICD Original Date of Advisory: September 2009

Potential Reduced Device Longevity

Product

A subset of Concerto CRT-D and Virtuoso ICD devices may not meet expected device longevity. Specific model and serial numbers of affected devices are available online at: http://cvsnlist.medtronic.com/

Advisory

A subset of Concerto CRT-D and Virtuoso ICD devices may not meet expected device longevity due to gradually increasing current drain caused by low voltage capacitor degradation. This issue may present in the affected devices as reaching the Recommended Replacement Time (RRT) earlier than projected. This issue does not compromise device functionality or affect therapy delivery.

Based on information from returned devices, Medtronic expects that affected devices will continue to provide at least 3 months of normal device function between RRT and End of Service (EOS) as described in device labeling.

A total of 8,900 devices worldwide are affected by this advisory. An estimated 6,300 of these devices were active at the time of the original advisory communication.

Concerto and Virtuoso devices in the affected subset were manufactured primarily in 2006 and can be traced to a specific subset of low voltage capacitors.

Patient Management Recommendations

After consultation with Medtronic's Independent Physician Quality Panel, Medtronic offers the following recommendations for patients with devices in the affected subset:

Physicians should continue routine follow-up sessions at least every 3 months in accordance with product labeling. Physicians should verify that the Low Battery Voltage RRT alert is programmed to "On-High." This provides an audible, alternating tone when the device reaches RRT. These devices are shipped with this alert programmed nominally to "On-High."

Physicians may consider monitoring patients through CareLink. The CareLink home monitor can be used to automatically notify the clinician when the device reaches RRT.

Status Update

As of January 31, 2010, 1,344 devices out of approximately 8,900 devices worldwide have been confirmed as having exhibited this capacitor degradation. To date, there have been no related confirmed failures in Concerto and Virtuoso devices outside of this subset, including devices that were manufactured during the same time.

Out of the initial advisory population of 8,900 worldwide, approximately 3,000 remain implanted. Approximately 2,400 of these are in the United States.

Initial Affected Population	Number of Confirmed Advisory Related Events	Estimated Remaining Active Population	Current Malfunction Rate (Confirmed Malfunctions over total population)
8,900 Implanted worldwide (7,000 United States)	1,344 Worldwide (1,148 United States)	3,000 Worldwide (2,400 United States)	15% Worldwide (16% United States)

Kappa 600/700/900 Pacemakers Sigma 100/200/300 Pacemakers Original Date of Advisory: May 2009

Potential Separation of Interconnect Wires

Product

A specific subset of Kappa and Sigma series pacemakers may fail due to separation of interconnect wires from the hybrid circuit. Specific model and serial numbers of affected devices are available online at: <u>http://kappasigmasnlist.medtronic.com</u>

Advisory Population

Specific subsets of Kappa and Sigma series pacemakers may fail at a higher than expected rate due to separation of wires that connect the electronic circuit to other pacemaker components (e.g., battery, connector). This may present clinically as loss of rate response, premature battery depletion, loss of telemetry, or no output.

Some patients, whose devices experience a wire separation resulting in a loss of pacing output, will experience a return of bradycardia symptoms (e.g., fainting or lightheadedness). In rare cases involving pacemaker dependent patients, loss of pacing output may result in death or serious injury.

Since 1997, there have been over 1.7 million Kappa and Sigma devices implanted worldwide. . At the time of the original advisory communication, an estimated 15,200 Kappa and 6,100 Sigma devices affected by the advisory remained implanted and active. These devices were manufactured primarily between November 2000 and November 2002. Most of these devices have been implanted in patients for five years or longer and may be nearing normal elective replacement time.

There is no provocative testing that can predict which specific devices may fail, and no device programming can mitigate this issue if it occurs.

Patient Management Recommendations

We realize that each patient requires unique clinical consideration and we support your judgment in caring for your patients. After consultation with Medtronic's Independent Physician Quality Panel, Medtronic offers the following recommendations for patients:

- Physicians should advise their patients to seek medical attention immediately if they experience symptoms (e.g., fainting or lightheadedness).
- Physicians should consider device replacement for patients who are both pacemaker dependent and who have been implanted with a device in the affected subsets. Medtronic will offer a supplemental device warranty if the device is not already at elective replacement time.
- Physicians should continue routine follow-up in accordance with standard practice for those patients who are not pacemaker dependent.

Status Update

Advisory Population

Patient management recommendations remain

unchanged. As of January 31, 2010, Medtronic has observed 415 Kappa devices and 205 Sigma devices with this failure mechanism from the Kappa and new Sigma device subsets. This represents 0.71% (Kappa) and 1.37% (Sigma) of the original affected implant population.

Three hundred eighty six (386) of the Kappa devices (0.66%) and 157 of the Sigma devices (1.05%) were returned with information indicating a problem with the patient's pacing system prior to explant. The remaining 29 Kappa devices (0.05%) and 48 Sigma devices (0.32%) were returned with no information indicating a potential malfunction while implanted or with insufficient information to determine the state of the device at explant. Lacking definite information indicating proper operation until explant, these remaining devices are conservatively categorized as having experienced interconnect wire separation while implanted.

Our modeling predicts failure rates of 1.1% (Kappa) and 4.8% (Sigma) over the remaining lifetime of these pacemakers due to this issue.

Out of the initial advisory population of 58,300 Kappa devices and 14,900 Sigma devices worldwide, approximately 7,400 Kappa devices and 4,000 Sigma devices remain implanted. Of these, approximately 2,200 Kappa and 1,000 Sigma devices are in the United States.

Continued Vigilance

Included in the advisory communication was information about an additional subset of Kappa devices where we have observed a much lower rate of occurrence of this issue. Approximately 75,000 devices of this subset remain active. We have observed a failure rate of approximately 0.06% in this subset and our modeling predicts a failure rate of 0.12% over the remaining device life. After review with our Independent Physician Quality Panel, we do not recommend any specific actions for this group of devices. We will continue to monitor performance and inform you if any specific patient management recommendations are warranted.

continued

Kappa 600/700/900 Pacemakers

Sigma 100/200/300 Pacemakers Original Date of Advisory: May 2009

Potential Separation of Interconnect Wires, continued

Initial Affected Population	Number of Confirmed Advisory Related Events	Estimated Remaining Active Population	Current Malfunction Rate (Confirmed Malfunctions over total population)	Predicted Malfunction Rate Over the Remaining Life of the Devices Still Implanted Population
Kappa Pacemakers				
58,300 Implanted Worldwide (est.) (17,600 United States)	386 Worldwide (206 United States) with information indicating a clinical presentation. An additional 29 worldwide (19 US) without information indicating a clinical presentation or with insufficient information to determine the state of the device at explant.	7,400 Worldwide (2,200 United States)	0.71% Worldwide 1.28% (United States)	1.1%
Sigma Pacemakers	·			
14,900 Implanted Worldwide (est.) (3,700 United States)	157 Worldwide (34 United States) with information indicating a clinical presentation. An additional 48 worldwide (11 US) without information indicating a clinical presentation or with insufficient information to determine the state of the device at explant.	4,000 Worldwide (1,000 United States)	1.37% Worldwide 1.21% (United States)	4.8%

6930, 6931, 6948, 6949 Sprint Fidelis Defibrillation Leads

Original Date of Advisory: October 2007

Potential Conductor Wire Fracture

Product

All Model 6930, 6931, 6948, and 6949 implantable defibrillation leads

Advisory

There are two primary locations where chronic conductor fractures have occurred on Sprint Fidelis leads: 1) the distal portion of the lead, affecting the anode (ring electrode) and 2) near the anchoring sleeve tie-down, predominantly affecting the cathode (helix tip electrode), and occasionally the high voltage conductor. These two locations account for approximately 90% of the chronic fractures identified in Returned Product Analysis (RPA). The remaining 10% of chronic fractures occurred in the DF-1 connector leg and the proximal portion of the RV coil. High voltage conductor fractures could result in the inability to deliver defibrillation therapy. Anode or cathode conductor fractures (at either location) may present clinically as increased impedance, oversensing, increased interval counts, multiple inappropriate shocks, and/or loss of pacing output.

Patient Management Recommendations

Medtronic recommends you consider the following as part of routine follow-up for each patient:

- To reduce the risk of inappropriate detection and therapy due to oversensing, program VF detection for initial Number of Intervals to Detect (NID) to nominal settings (8/24) or longer at physician discretion and Redetect NID to nominal settings (12/16)
- Turn ON Patient Alert for RV Pacing, RV Defibrillation, and SVC Defibrillation impedance. For Concerto, Virtuoso, Consulta, Secura and Maximo II devices enrolled on the Medtronic CareLink Network, turn ON the Medtronic CareAlert Notifications for these same parameters.
- To optimize effectiveness of the lead impedance alert:
 - Review V. Pacing Lead Performance Trend to determine typical chronic impedance value for the patient (typical values for Fidelis leads should be 350-1,000 ohms)
 - Program lead impedance alert threshold for RV Pacing to 1,000 ohms, if the typical chronic impedance for the patient is ≤ 700 ohms, or
 - Program lead impedance alert threshold for RV Pacing to 1,500 ohms, if the typical chronic impedance for the patient is > 700 ohms
 - Program lead impedance alert threshold for RV Defibrillation and SVC Defibrillation to 100 ohms

Status Update

Sprint Fidelis lead performance continues to be in line with the information provided in the October 2007, May 2008 and March 2009 advisory communications. In consultation with the Independent Physician Quality Panel, our patient management recommendations are as follows:

- When a lead fracture is suspected or confirmed, we strongly recommend prompt patient attention. Patients should contact their physician without delay if they experience unexpected shocks.
- The Lead Integrity Alert (LIA[†]) is expected to provide 3 days advance notice prior to inappropriate therapy to 76% of the patients with lead fractures. As a result, we strongly recommend that all Sprint Fidelis patients who have the ability to upgrade to Lead Integrity Alert do so promptly.

- The risk of prophylactic intervention appears to be greater than the risk of serious injury resulting from lead fracture even for pacemaker dependent patients, except in select individual patient circumstances as determined by the physician
- Special circumstances may apply to device change-out or upgrade procedures when a lead fracture has not occurred. At least four options are available, each of which carries risks and benefits that should be taken into consideration:
 - Leave a properly performing lead intact; this is likely to be the best choice for the majority of patients
 - Place a new ICD lead without extraction of the existing lead
 - Place a pace sense lead without the extraction of the existing lead. This option reflects the observation that approximately 90% of Fidelis failures are related to fractures in the pace sense circuit. It is unknown what the failure rate of the high voltage conductor would be should a pace sense conductor failure occur in the existing Sprint Fidelis lead.
 - Unusual patient circumstances may warrant extracting and implanting a new ICD lead. Factors to consider when making this decision include patient life expectancy, age, and comorbidities, number of implanted leads and duration of implant, and patient preference. Medtronic's Independent Physician Quality Panel recommends that if a lead requires removal, the procedure be performed by a physician with extensive lead extraction experience.

As of January 31, 2010, of the initial implant population of 204,000 in the United States, approximately 133,000 remain implanted. According to System Longevity Study results, lead survival is estimated to be 94.2 (+1.7/-2.3) at 57 months. As the implanted population ages and the sample size increases for each time interval, the accuracy of the estimated survival probability will increase as shown by tighter confidence intervals.

As part of our commitment to keep you informed about Sprint Fidelis lead performance, Medtronic publishes the quarterly System Longevity Study's all-cause lead survival curve and the CareLink dataset lead survival curve for the Model 6949 lead at: <u>www.medtronic.com/fidelis</u>. Semi-annual updates will also continue to be provided in the Product Performance Report. Additional information about the Sprint Fidelis lead is available at: <u>www.medtronic.com/fidelis</u>.

Lead Integrity Alert[†]

Medtronic has released Lead Integrity Alert (LIA) software. LIA was designed to provide patients more advance notice via an audible sound of a potential lead fracture that could result in an unnecessary shock.

Data show that with LIA, approximately 76% of the patients with Sprint Fidelis leads are expected to receive 3 or more days advance warning of a potential lead fracture that could result in an unnecessary shock.

Upon hearing the alert, patients should contact their physician without delay.

LIA can be downloaded into nearly all Medtronic implantable cardioverter defibrillators (ICDs) and cardiac resynchronization therapy defibrillators (CRT-Ds) implanted worldwide.

Sigma Implantable Pulse Generators

Original Date of Advisory: November 2005

Potential Separation of Interconnect Wires

Product

A specific subset of Sigma series pacemakers may fail due to separation of interconnect wires from the hybrid circuit. Specific model and serial numbers of affected devices are available online at: http://SigmaSNList.medtronic.com.

Advisory

This subset of Sigma series pacemakers that may fail due to separation of interconnect wires from the hybrid circuit may present clinically as loss of rate response, premature battery depletion, intermittent or total loss of telemetry, or no output.

Separation of redundant interconnect wires has been observed on hybrid terminal blocks. Device failure occurs only where both interconnect wires separate from a hybrid terminal block. In October 2005, testing and analysis identified the root cause of these failures and the affected population. Hybrid circuits used in this subset of devices were cleaned during manufacturing with a particular cleaning solvent that could potentially reduce the strength of the interconnect wire bond over time.

No provocative testing can predict which devices may fail.

Patient Management Recommendations

Recommendation for the management of patients who have pacemakers affected by this advisory were changed in May 2009. Current recommendations are:

We realize that each patient requires unique clinical consideration and we support your judgment in caring for your patients. After consultation with Medtronic's Independent Physician Quality Panel, Medtronic offers the following recommendations for patients in the 2005 Sigma advisory:

• Physicians should advise their patients to seek medical attention immediately if they experience symptoms (e.g., fainting or lightheadedness).

- Physicians should consider device replacement for patients who are both pacemaker dependent and who have been implanted with a device in the affected subsets. Medtronic will offer a supplemental device warranty if the device is not already at elective replacement time.
- Physicians should continue routine follow-up in accordance with standard practice for those patients who are not pacemaker dependent.

Status Update

Patient management recommendations remain unchanged. As of January 31, 2010, 522 devices out of approximately 40,000 devices worldwide have been confirmed as having experienced interconnect wire separation.

Two hundred thirty seven (237) of the Sigma devices (0.57%) were returned with information indicating a problem with the patient's pacing system prior to explant. The remaining 285 Sigma devices (0.70%) were returned with no information indicating a potential malfunction while implanted or with insufficient information to determine the state of the device at explant. Lacking definite information indicating proper operation until explant, these remaining devices are conservatively categorized as having experienced interconnect wire separation while implanted.

Our original modeling predicted a failure rate from 0.17% to 0.30% over the remaining lifetime of these pacemakers. However, updated modeling now predicts a failure rate of 3.9% over the remaining device life.

Out of the initial advisory population of 40,000 worldwide, approximately 11,000 remain implanted. Approximately 2,700 of these are in the United States.

Initial Affected Population	Number of Confirmed Advisory Related Events	Estimated Remaining Active Population	Current Malfunction Rate (Confirmed Malfunctions over total population)	Predicted Malfunction Rate Over the Remaining Life of the Devices Still Implanted Population
40,000 Implanted Worldwide (est.) (9,900 United States)	237 Worldwide (54 United States) with information indicating a clinical presentation.An additional 285 worldwide (54 US) without information indicating a clinical presentation or with insufficient information to determine the state of the device at explant.	11,000 Worldwide (2,700 United States)	1.3% Worldwide 1.1% (United States)	3.9%

7274 Marquis DR 7278 Maximo DR 7230 Marguis VR

7232 Maximo VR

7277 InSync Marquis 7289 InSync II Marquis 7279 InSync III Marquis 7285 InSync III Protect

Original Date of Advisory: February 2005

Potential Premature Battery Depletion Due to Battery Short

Product

The specific subset of Marquis family ICD and CRT-D devices having batteries manufactured prior to December 2003 is affected. Devices manufactured with batteries produced after December 2003 are not affected. Specific model and serial numbers of affected devices are available online at: http://MarguisSNList.medtronic.com.

Advisory

Medtronic Marquis family of ICD and CRT-D devices having batteries manufactured prior to December 2003 may experience rapid battery depletion due to a specific internal battery short mechanism. Battery design changes were implemented in December 2003 that eliminate the possibility of this internal shorting mechanism.

Highly accelerated bench testing indicated the rate of this shorting mechanism may increase as the battery is depleted. As of February 2005, the rate of shorting was approximately 1 in 10,000 (0.01%); bench test data indicated the rate may increase to between 0.2% and 1.5% over the second half of device life.

No provocative testing can predict which of these devices will experience this issue. Once a short occurs, battery depletion can take place within a few hours to a few days. After depletion the device ceases to function. It is also possible that as the battery depletes quickly, patients may experience temporary warmth in the area surrounding the ICD.

Patient Management Recommendations

We recommend you consider the following patient management options:

Conduct quarterly (i.e., every 3 months) follow-up procedures

- Inform patients that should they experience warmth in the area surrounding the ICD to seek follow-up care promptly
- Program Low Battery Voltage ERI Patient Alert to "On-High." This will result in an audible, alternating tone in the limited circumstances where a battery depletes slowly over a number of days. Data indicates most shorts will occur rapidly and will not be detected by this feature.
- · Provide a hand-held magnet to patients to check device status and program the Low Battery Voltage ERI Patient Alert to "On-High." Device operation may be monitored periodically (e.g., daily) by patients placing the magnet over the device for 1-2 seconds. If the device is functional, a steady tone will sound for approximately 20 seconds. If no tone is heard, follow-up care should be sought promptly.

Status Update

The Marquis Family device performance related to the battery shorting mechanism continues to be within Medtronic's engineering projections. As of January 31, 2010, 171 Marquis Family devices have been confirmed as having this internal battery shorting mechanism. One hundred (100) of these devices were returned from the United States.

Out of the initial advisory population of 87,000 worldwide, approximately 16,000 remain implanted. Approximately 14,000 of these are in the United States.

The Patient Management Recommendations set forth in the advisory remain unchanged.

Initial Affected Population	Number of Confirmed Advisory Related Events	Estimated Remaining Active Population	Current Malfunction Rate (Confirmed Malfunctions over total population)	Predicted Malfunction Rate Over the Remaining Life of the Devices Still Implanted Population
87,000 Implanted Worldwide (76,000 United States)	171 Worldwide (100 United States)	16,000 Worldwide (14,000 United States)	0.20% Worldwide (0.13% United States)	Consistent with Medtronic projections, the observed rate of shorting may increase to between 0.2% and 1.5% over the second half of device life.

Kappa 600, 700 Dual Chamber (D, DR, and VDD) IPGs

Original Date of Advisory: March 15, 2002

Potential Fractured Power Supply Wires

Product

A specific subset of Kappa 700/600 dual chamber (D, DR, and VDD) implantable pulse generators has been identified by serial numbers. Hospitals and Physicians were notified. Specific model and serial numbers of affected devices are available by calling US Technical Services at 1 (800) 505-4636.

Advisory

As of March 15, 2002, Medtronic observed 53 related failures (0.02%) in over 255,000 Kappa 700/600 dual chamber (D, DR, and VDD) series devices sold worldwide. Medtronic voluntarily communicated this information to physicians because these failures had been observed in patients having submuscular implants.

These devices have presented with an electrical reset, intermittent output, or no output. Our investigation identified the root cause as fractured wires supplying power to the pacemaker. This has been directly correlated to submuscular placement of these devices. Submuscular implant locations (e.g., subpectoral, abdominal, etc.) can result in additional stress and repetitive flexing on the implanted device causing excessive fatigue on these wires. Of the estimated 4,000 devices implanted submuscular, approximately 200 (5%) may experience this failure. These stresses on the implanted device are unique to submuscular implant sites and do not exist with subcutaneous implants.

Patient Management Recommendations

While there is no provocative testing or time dependency that will predict which submuscular placed device will fail, certain electrical resets may be an indicator that a wire fracture has occurred. Normal electrical resets can occur as a result of electrosurgical procedures such as cautery and ablation or from defibrillation therapy. If none of the normal causes of electrical reset can be confirmed, or if a device serial number presents as "000000" following an electrical reset, this may be an indicator of a wire fracture.

For patients who have submuscular implants of devices within the designated serial number range and who are pacemaker dependent with no underlying rhythm, replacement of the device should be considered. Medtronic will provide the replacement device free of charge under the terms of its warranty program if a device is replaced in these patients.

For patients having subcutaneous implants, no change to your current patient care and follow-up is advised.

Status

5,900 remain implanted.

Patient management recommendations remain unchanged. As of January 31, 2010, 320 out of approximately 180,000 distributed (0.18% incidence) Kappa family devices worldwide have been confirmed as having fractured power supply wires. One hundred sixty-five (165) of these devices were returned from the United States. Out of the initial implant population of 121,000 in the United States, approximately

Initial Affected Population	Number of Confirmed Advisory Related Events	Estimated Remaining Active Population	Current Malfunction Rate	Predicted Malfunction Rate Over the Remaining Life of the Devices Still Implanted Population
180,00 Active Worldwide at time of advisory (121,000 United States)	320 Worldwide (165 United States)	9,000 Worldwide (5,900 United States)	0.18% Worldwide (0.14% United States)	0.03%

Minix and Minix ST IPGs

Original Date of Advisory: May 6, 1991

Potential Delayed Restoration of Permanent Settings

Product

All Models of the Minix and Minix ST families of implantable pulse generators

Advisory

Possibility of delayed restoration of permanent pacing mode and parameters, after the magnet or programming head is removed under certain conditions.

Patient Management Recommendations

To eliminate any potential risk associated with temporary programming, depress the INTERROGATE key and verify successful interrogation before moving the programming head away from the pulse generator. The delay condition can also be terminated by repositioning the programming head and depressing the EMERGENCY VVI key.

Status

Device performance related to this advisory continues to be within Medtronic's engineering projections. Patient management recommendations remain unchanged. Out of the initial implant population of 65,000 in the United States, approximately 3,500 remain implanted. The devices affected by this advisory are nearing the end of their expected longevity.

Performance Notes

Potential Malfunction of CRT, ICD, and IPG Products due to Anomalies in MOSFET Integrated Circuit Technology

Medtronic has detected a specific pattern of MOSFET IC malfunctions in its Concerto, Virtuoso and EnRhythm family of devices. As of July 2009, Medtronic has confirmed twenty-eight (28) malfunctions related to this pattern out of 115,000 EnRhythm and 233,000 Concerto/Virtuoso products distributed worldwide. Reliability analysis of this pattern shows the probability of occurrence decreases with time and, to date over 90% of the malfunctions related to the pattern have occurred within the first twelve months after implant. With process improvements in place, Medtronic expects few, if any, additional malfunctions related to this pattern.

The pattern involves metal-oxide-semiconductor fieldeffect transistors (MOSFET). A MOSFET is an electronic circuit used to amplify or switch electronic signals. MOSFETs have been used in the electronics industries for decades and MOSFET technology is the most widely used type of integrated circuit. Medtronic uses this technology in the circuitry of its CRT, ICD, and IPG products. Each product contains thousands of MOSFETs in its electronic circuitry.

Each MOSFET depends on a layer of insulating material to electrically isolate its components. The integrity of this insulating layer is important to the operation of the MOSFET. Variation in the thickness of the insulating layer can cause the MOSFET to operate in an undesirable manner. Process variations for electronic circuits can affect the integrity of the insulating material, and can lead to MOSFET malfunction. Medtronic's quality system strives to control process variation and detect undesired anomalies that are characteristic of all MOSFET manufacturing. In addition, Medtronic's post-market vigilance activities monitor malfunctions and may implement screening and testing improvements when a pattern of related malfunctions is identified. The pattern with the Concerto, Virtuoso and EnRhythm models has presented clinically as high lead impedance, sensing difficulty, loss of pacing therapy and/or early battery depletion due to higher than normal battery drain. The degree of battery drain varies case by case, such that the time from the onset to battery depletion has ranged from several days to several months. If not detected by normal patient follow-up procedures, the use of patient alerts or CareLink remote monitoring, the battery will fully deplete, leaving the patient without therapy.

As of March 2009, Medtronic has implemented additional electrical screening and stress tests to address this specific pattern for products being sold.

Since these rates of malfunction are low and the probability of occurrence decreases with time, Medtronic recommends physicians continue following patients in accordance with standard practice.

Clinical Management of VCM near Elective Replacement

Background

Medtronic Technical Services has received reports of devices going to ERI or end of life (EOL) sooner than expected after a normal follow-up in which the device longevity was projected to be approximately 18 months. It has been noted that these cases typically involve Kappa 700 devices where Ventricular Capture Management set the ventricular lead to high output (5 V, 1 ms), which occurs by device design when a high threshold is measured. It is important for physicians and allied professionals to understand VCM behavior as it relates to longevity so that they can, in turn, understand how this affects management of the device and follow-up visits as VCM equipped IPGs near the end of their expected longevity.

Device Longevity and VCM Behavior

Ventricular Capture Management is a feature that uses evoked response sensing to determine the stimulation threshold needed to capture the ventricular chamber. Proper detection of the evoked response is crucial to the VCM algorithm determining an accurate capture threshold. There are rare conditions, however, during which the VCM algorithm will not be able to measure the evoked response accurately.¹ When this occurs, for safety reasons the VCM algorithm will reprogram the output to 5 V, 1 ms until the subsequent VCM measurement.

If the device has considerable remaining longevity, these occasional excursions to high output do not substantially affect remaining longevity. However, if the device has less than approximately 18 months remaining longevity, there is the possibility that the high output condition caused by the 5 V, 1 ms output will drain the battery and trigger ERI.

When ERI is declared by the device, VCM is disabled and the outputs are left at 5 V, 1 ms until the device is reprogrammed at an in-office follow-up. This increased current drain of a high output condition will speed depletion of the device, possibly resulting in the device getting to the EOL (battery voltage ≤ 2.15 V).

Please note that the following parameter changes occur when the device goes to ERI:

m 11		1	D	01	TDT
Table:	IPG T	herapy	Parameter	Changes at	ERI

Parameter	Value
Pacing Mode	VVI
Lower Rate	65 bpm
Single Chamber Hysteresis	OFF
Sleep Function	OFF
Ventricular Capture Management	OFF
Atrial Sensing Assurance	OFF
Ventricular Sensing Assurance	OFF

Kappa 700 is Medtronic's first-generation VCM algorithm, which has a relatively higher incidence of evoked response undersensing compared to subsequent algorithms, resulting in more frequent high output conditions. Therefore, Kappa 700 products are the primary focus of this note. It should be noted that IPGs equipped with the second-generation VCM algorithm (Kappa 900, EnPulse, Adapta/Versa/Sensia, and Relia) have not been observed with evoked response undersensing in the general population, though the items listed in "Follow-Up Considerations" may also be used on these devices.

Follow-Up Considerations

- Estimated longevity in the event the device goes to high output can be determined by the following steps. This allows the clinician to determine follow-up frequency if he or she is concerned the device may go to ERI due to high output.
 - Program the ventricular channel to 5 V, 1 ms
 - Navigate to Data/Battery and Lead Measurements
 - When the message stating "Warning Old Data" is displayed, select "Yes" to measure battery voltage and lead impedance at the new ventricular outputs
 - An updated remaining longevity estimate will be calculated on the elevated outputs. Note the "Minimum Remaining Longevity." Clinical decisions can be based on this value.
 - Program the Amplitude and Pulse Widths back to their original values before leaving the session
- If the capture trends and lead impedance trends are stable, VCM can be programmed to "Monitor Only" for the remaining device life. This should be considered only if remaining longevity is 18 months or less.
- Follow-up frequency can be increased for those patients who do not have stable capture or lead impedance trends. This can be done via a CareLink Home Monitor, or in-office.

¹ Medtronic, Inc. (2001). Medtronic Kappa 700/600 Series Pacemaker Reference Guide (Chapter 4, p. 27). Can be retrieved from http://manuals.medtronic.com.

Ensuring the Accuracy of Battery Longevity Estimates

Purpose of This Information

This article is intended to help the clinician understand how Medtronic estimates CRT-D, ICD, and IPG device longevity and Medtronic's performance against these estimates.

Device Longevity and Battery Depletion

The device service life ends when the usable battery capacity is depleted. The time to battery depletion depends on three factors:

- The amount of electrical energy expended in providing therapy to the patient
- The amount of energy consumed by the electronic circuitry to perform the functions of the device (e.g., operating the microprocessor, telemetry, memory, and charging component)
- The energy capacity of the battery

Medtronic has developed a statistical model for device longevity that accounts for each of these factors, and has validated the model with real time clinical performance. During the development of its products, Medtronic engineers characterize device longevity using this model. Testing begins during development and continues after market release to ensure the accuracy of device longevity estimates.

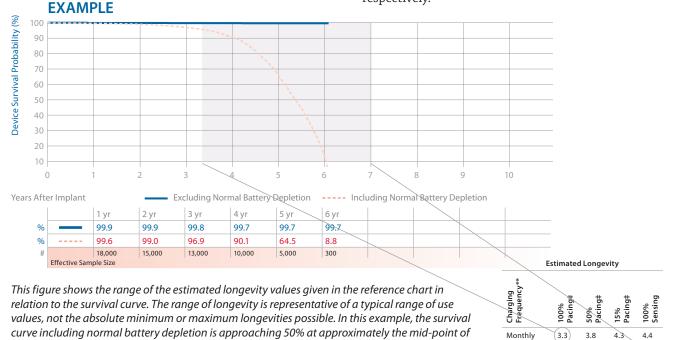
Using Survival Curves to Assess Longevity

The survival curves in the Product Performance Report represent the composite experience of thousands of devices over a wide range of programming options and patient use conditions. While the curves are useful for understanding the overall performance of a population of devices, they cannot be used to accurately predict the longevity of a specific device in a specific patient. To get a longevity prediction for a specific device, the longevity model must be used. The model is available by contacting Medtronic's Technical Services Department.

Because the survival curves are an aggregate result, the Reference pages in the Product Performance Report include several longevity estimates for a range of use conditions. These longevity estimates are mean values calculated for the parameters given. This range of longevity estimates can be compared to the survival curve including normal battery depletion to assess the overall clinical performance of a device model against the original longevity estimates.

If most of a device model's population is being used at nominal parameters and conditions, the time at which the survival curve including normal battery depletion equals 50% should approximate the midpoint in the range of longevity estimates.

If devices tend to be used at conditions that consume more or less energy than nominal, then the time at which the survival curve equals 50% should tend toward the lower or higher end of the range of longevity estimates, respectively.


Quarterly

Semiannual

4.2

4.5

5.0

the range of longevity values.

6.3

7.0

5.8

6.5

Interactions between Cardiac Pacing and Ventricular Arrhythmia Initiation

Purpose of This Information

This article is intended to provide information for consideration when programming pacemaker operation in ICDs and pacemakers.

Background

Right ventricular pacing has been associated with increased risk of appropriate therapy for ventricular tachycardia (VT) and ventricular fibrillation (VF) in ICD patients.¹ Abrupt changes in ventricular cycle lengths (short-long-short, S-L-S) may precede initiation of VT/VF in some instances. S-L-S sequences may be permitted in all forms of cardiac pacing. The pause lengths depend upon pacing mode and lower rate programming.²⁻⁴ Because pauses may be associated with VT/VF initiation, pause suppression algorithms have been developed in ICDs. Although pause suppression may have utility in specific patients with repolarization abnormalities and pause dependent VT, it has not been shown to reduce arrhythmia incidence in the general ICD population.⁵ Conversely, S-L-S sequences may occur with ventricular pacing in a variety of ways, including atrial tracking of premature atrial contractions (PACs) or by terminating pauses with ventricular paced beats.⁶ In some patients, the ectopic depolarization pattern of a ventricular paced beat may be pro-arrhythmic, independent of pause timing. These observations have further enforced the desire to reduce unnecessary ventricular pacing.

Clinical Trial Observations

Medtronic-sponsored clinical trials were retrospectively analyzed to further understand pause-mediated (i.e., S-L-S) scenarios prior to VT/VF. S-L-S onset scenarios were observed in a minority of patients in all pacing modes. Pacemaker interactions prior to VT/VF are dependent on patient conditions, as well as the technical aspects of pacing operation (i.e., pacing mode, lower rate, and AV interval). Because a very low frequency of ventricular pacing is observed during Managed Ventricular Pacing (MVP)⁷⁻⁹ or VVI 40 pacing modes, ¹⁰ the long interval tended to terminate with a ventricular sense. In DDD mode, the long interval tended to be terminated by a ventricular pace. Long intervals of > 1,000 ms prior to VT/VF were rare in MVP mode. In these analyses, only an association between cardiac pacing and VT/VF initiation can be observed, causality cannot be established. The ongoing MVP (Managed Ventricular Pacing vs. VVI 40 Pacing) Trial, a 2-year, 1,000-patient prospective, randomized trial in ICD patients may offer more insight into the frequency of VT/ VF across pacing modes.¹¹

Pacemaker Patients

In pacemaker patients, ventricular pacing has been associated with higher incidence of AT/AF and heart failure hospitalization.^{12,13} MVP provides atrial rate support while dramatically reducing ventricular pacing in patients with sinus node dysfunction and transient AV block.⁹ However, as stated in Medtronic reference manuals, depending upon the patient's intrinsic rhythm and conduction, MVP may allow ventricular cycle variation and occasional pauses of up to twice the lower rate.

DDD pacing with long AV intervals may reduce ventricular pacing and may decrease the potential length of pauses compared to MVP. However, DDD with long AV interval programming does not appear to be as effective as AAI-based pacing modes at reducing ventricular pacing,^{13,14} may lead to endless loop tachycardia,^{14,15} and does not completely eliminate pauses. Also, in DDD mode, a higher programmed lower rate or activation of rate response can lead to an increase in AV conduction times and a higher percentage of ventricular pacing. The potential benefits of reducing ventricular pacing must be weighed against the potential for longer ventricular pacemaker mode and lower rate programming, particularly in the setting of frequent AV block and repolarization abnormalities due to congenital Long QT, electrolyte imbalances, and some medications that prolong QT.

Conclusion

Pacemaker operation may interact with VT/VF initiation in a variety of ways. The patient's heart failure status, arrhythmia substrate, medications, and the relative importance of maintaining ventricular synchrony versus ensuring ventricular rate support must be weighed when choosing optimal hardware (ICD vs. pacemaker) and pacemaker programming (pacing mode, lower rate, etc.).

References

¹ Steinberg JS, Fischer A, Wang P, et al. The clinical implications of cumulative right ventricular pacing in the multicenter automatic defibrillator trial II. J Cardiovasc Electrophysiol. April 2005;16(4):359-365.

² Pinski SL, Eguia LE, Trohman RG. What is the minimal pacing rate that prevents torsades de pointes? Insights from patients with permanent pacemakers. PACE. November 2002; 25(11):1612–1615.

³ Goldman DS, Levine PA. Pacemaker-mediated polymorphic ventricular tachycardia. PACE. October 1998; 21(10):1993-1995.

⁴ Gray CJ, Basta M, Sapp JL, Parkash R, Gardner MJ. Inappropriate application of managed ventricular pacing in a patient with Brugada syndrome leading to polymorphic ventricular tachycardia, ventricular fibrillation and implantable cardioverter debrillator shocks. *Heart Rhythm.* 2006, Abstract P1-89.

⁵ Friedman PA, Jalal S, Kaufman S, et al. Effects of a rate smoothing algorithm for prevention of ventricular arrhythmias: results of the Ventricular Arrhythmia Suppression Trial (VAST). *Heart Rhythm.* May 2006;3(5):573-580.

⁶ Himmrich E, Przibille O, Zellerhoff C, et al. Proarrhythmic effect of pacemaker stimulation in patients with implanted cardioverter-defibrillators. *Circulation*. July 15, 2003;108(2):192-197.

⁷ Sweeney MO, Ellenbogen KA, Casavant D, et al. Multicenter, prospective, randomized trial of a new atrial-based Managed Ventricular Pacing Mode (MVP) in dual chamber ICDs. J Cardiovasc Electrophysiol. 2005:16:1-7.

⁸ Sweeney MO, Shea JB, Fox V, et al. Randomized pilot study of a new atrial-based minimal ventricular pacing mode in dual-chamber implantable cardioverter-defibrillators. *Heart Rhythm.* July 2004;1(2):160-167.

⁹ Gillis AM, Pürerfellner H, Israel CW, et al. Reducing unnecessary right ventricular pacing with the managed ventricular pacing mode in patients with sinus node disease and AV block. PACE. July 2006; 29(7):697-705.

¹⁰ Dual-chamber pacing or ventricular backup pacing in patients with an implantable defibrillator: the Dual Chamber and VVI Implantable Defibrillator (DAVID) Trial. JAMA. December 25, 2002;288(24):3115-3123.

- ¹¹ Sweeney MO, Ellenbogen KA, Miller EH, Serfesee L, Sheldon T, Whellan D. The Managed ventricular pacing versus VVI 40 Pacing (MVP) Trial: clinical background, rationale, design, and implementation. J Cardiovasc Electrophysiol. December 2006;17(12):1295-1298.
- ¹² Sweeney MO, Ellenbogen KA, et al. Adverse effect of ventricular pacing on heart failure and atrial fibrillation among patients with normal baseline QRS duration in a clinical trial of pacemaker therapy for sinus node dysfunction. *Circulation*. June 17, 2003;107(23):2932-2937.
- ¹³ Nielsen JC, Kristensen L, Andersen HR, Mortensen PT, Pedersen OL, Pedersen AK. A randomized comparison of atrial and dual-chamber pacing in 177 consecutive patients with sick sinus syndrome: echocardiographic and clinical outcome. J Am Coll Cardiol. August 20, 2003;42(4):614-623.

¹⁴ Nielsen JC, Pedersen AK, Mortensen PT, Andersen HR. Programming a fixed long atrioventricular delay is not effective in preventing ventricular pacing in patients with sick sinus syndrome. *Europace*. April 1999; 1(2):113-120.

¹⁵ Dennis MJ, Sparks PB. Pacemaker mediated tachycardia as a complication of the autointrinsic conduction search function. PACE. June 2004;27(6 Pt 1):824-826.

AT500 Pacing System Follow-Up Protocol

Purpose of This Information

This article is intended to provide clinical guidance regarding follow-up practice and patient management when the AT500 battery voltage approaches the Elective Replacement Indicator (ERI) level of 2.6 volts.

Background

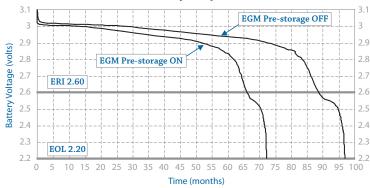
Many AT500 pacing systems are now reaching their ERI voltage level (2.6 volts). This is expected since the battery used has an approximate longevity of 5-6 years under normal conditions (100% DDD pacing, 3 volts, 0.4 ms).

Technical Services has received reports of battery voltage levels below end of life (EOL of 2.2 volts) where EGM prestorage is programmed ON, or higher outputs and/or pacing rates are necessary. It is important for physicians and allied professionals to understand battery depletion characteristics between ERI and EOL so that they, in turn, can understand how this affects management of follow-up visits for the AT500 as this device nears the end of its expected longevity.

AT500 Battery and Longevity Information

In contrast to other IPGs, the AT500 does not change its mode, stimulation rate, or any other parameter when the battery voltage drops below the ERI level of 2.6 volts (with or without magnet applied). The Threshold Margin Test (TMT) is also not available.

Therefore, it is not possible to perform transtelephonic assessment of AT500 battery status. This must be done during an in-clinic follow-up session. A warning will be displayed on the Quick Look screen at the beginning of a programmer (follow-up) session when the ERI battery level occurs. The measured battery voltage will also appear on the programmer display and on printouts.


Battery depletion curves are shown in Figure 1, with special focus on device longevity when programming EGM prestorage ON or OFF.

Medtronic's review of ongoing AT500 battery life test data matches our original longevity modeling and so meets our expectations. However, when using longer durations between follow-up periods (> 3 months), clinicians should consider the following in setting their remaining longevity expectations.

- Enabling the "EGM Pre-storage On" capability will increase current and reduce device longevity by approximately
 9 days for each month pre-storage is ON
- Longevity decreases with an increase in pacing rate, an increase in pacing amplitude or pulse width, a decrease in pacing impedance, a higher ratio of paced to sensed events, or extended use of the Atrial Preference Pacing, EGM prestorage, or Holter Telemetry features

Recommendations

Follow-up frequency should always be accelerated as devices reach ERI voltage levels to ensure device explant/replacement occurs prior to end of life voltage levels. With the wide variety of follow-up schedules being used, Medtronic recommends a 3-month follow-up frequency for the AT500 pacing systems. This is particularly important for patients in whom EGM prestorage is programmed ON, or higher outputs and/or pacing rates are necessary.

AT500 Battery Depletion Curve

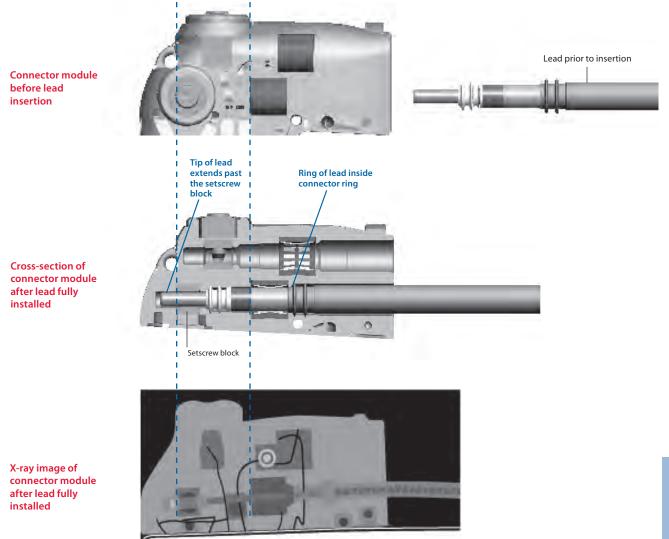
Figure 1

AT500 battery depletion curve for common parameter settings of DDDR, LR 70 ppm, UR 120 ppm, 100% pacing, Atrial – 2 V, 0.4 ms, 600 ohms, Ventricle – 2 V, 0.6 ms, 900 ohms, and EGM Pre-storage ON versus OFF.

Insertion of the Lead into the Device

The implantable system consists of a pulse generator and at least one lead. The system operation depends on proper electrical and mechanical operation. With the advent of internationally recognized connector standards, the challenge of ensuring proper mechanical fit between the lead and device connectors has been simplified, although the international connector standard does not address all aspects of the procedure for connecting a lead to the device.

If the lead connector is not fully installed, oversensing may result as described in the connector problems section of the performance note, "Clinical Management of High Voltage Lead System Oversensing."


Performing the following steps can be used for each lead connection during the implant procedure:

1 Insert the torque wrench into the appropriate setscrew. For easier lead insertion, insert the lead closest to the device first.

- 2 Look down the connector port to verify that the port is not obstructed. If the port is obstructed, retract the setscrew to clear the bore. Take care not to disengage the setscrew from the connector block.
- **3** Push the lead into the connector port until the lead pin is clearly visible beyond the setscrew block.
- **4** Hold the lead in position while tightening the setscrew until the torque wrench clicks.
- 5 Tug gently on the lead to confirm a secure fit.

Current publications may provide additional information on implant procedures used by others, e.g., radiographic evaluation of the terminal pin beyond the terminal post.¹

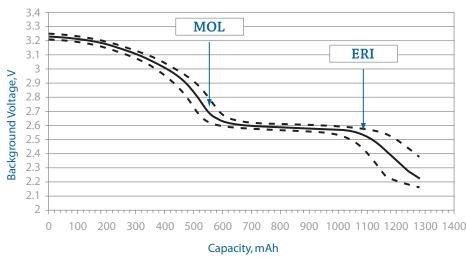
¹ Pickett RA III, Saavedra P, Ali MF, Darbar D, Rottman JN. Implantable cardioverter-defibrillator malfunction due to mechanical failure of the header connection. *J Cardiovasc Electrophysiol*. September 2004;15(9):1095-1099.

GEM II DR/VR and GEM III DR/VR/AT ICD Battery Discharge Behavior

Medtronic manufactured and utilized a unique lithium/ silver vanadium oxide battery in the GEM II/III family of ICDs. This battery has a distinctive voltage discharge with two regions of constant voltage at 3.2 volts and 2.6 volts.

The battery discharge curve (see curve below) is characterized by a significant decrease in the battery voltage approaching middle of life (MOL), followed by a plateau (MOL to ERI) where the battery voltage remains around 2.6 volts. The transition to the plateau could be easily misinterpreted as the battery rapidly approaches ERI, which occurs at 2.55 volts, when the battery may in fact have several users remaining

the battery may in fact have several years remaining until ERI.


It is important to understand that this battery voltage decrease in the GEM II/III family of ICDs is a normal

characteristic of the battery function in these devices and should not create a need for additional follow-up or monitoring.

As a general rule of thumb, the longevity from implant to MOL = MOL to ERI.

The design of the battery in subsequently released models has been modified to present a more linear battery discharge curve.

If you are concerned about early ERI in your patient's device, you can utilize the battery trend measurements stored in the save-to-disk file, which can be accessed and interpreted through the Medtronic Technical Services at 1 (800) 723-4636.

GEM II/III Battery Discharge Curve

General Follow-Up and Replacement of ICD Leads

Implanted leads operate in the challenging biochemical environment of the human body and the body's response to foreign objects. Implanted leads are also subject to mechanical stresses associated with heart motion, body motion, and patient anatomy.

In this environment, pacemaker and defibrillation leads cannot be expected to last forever. Unlike implantable cardioverter defibrillators (ICDs), a lead's longevity cannot be predicted nor are there simple indicators that a lead is approaching the end of its service life. The determination that a lead may be approaching end of service life requires follow-up of the chronically implanted lead and thorough evaluation of lead integrity at ICD replacement.

Follow-Up of Chronically Implanted Leads

The frequency of follow-up for ICD patients will depend on a number of factors including the patient's medical condition, ICD system implant time, hospital/clinic follow-up practice, and Medicare guidelines. In all cases, it is important to assess the functionality of the ICD system and the integrity. For newly implanted leads, it is beneficial to establish a baseline of chronic performance parameters once the lead has stabilized, generally within 6 to 12 months after implant. These performance parameters should include pacing and sensing thresholds and impedance. During routine patient follow-up, these procedures can be used to evaluate lead integrity.

- Measure pacing and sensing threshold and compare to the chronic baseline. Significant increases or decreases may be indicative of lead failure, dislodgement, perforation, exit block, etc.
- Measure pacing impedance where possible and compare to the chronic baseline. Decreases of 30% or more or pacing impedances below 200-250 ohms may be indicative of insulation failure. Sudden and significant increases in pacing impedance may be indicative of conductor fracture.
- High voltage lead circuit impedance should be between 10-75 ohms at system implant. Chronic measurements below 10 and above 200 ohms may be indicative of high voltage lead circuit failure.
- Carefully review ECGs or the nonsustained detection log on Medtronic ICDs for indications of pacing and/or sensing abnormalities such as oversensing, undersensing, and loss of capture
- Elicit and investigate any patient complaints/symptoms that may be suggestive of potential lead failure

Where routine follow-up indicates, additional tools should be used to further evaluate performance. Tools include radiographic data, ICD electrograms, ICD Patient Alert and performance information from the System Longevity Study (SLS).

The final decision on the functional integrity and continued use of an implanted lead must be a matter of medical judgment based on these factors as well as specific patient conditions.

General Criteria for Lead Replacement

The evaluation of a chronically implanted lead is an important part of the decision to continue to use the lead with a new ICD. However, these results alone do not necessarily predict the future integrity of that lead. With the expected longevity of today's ICDs varying between approximately 5 and 10 years, a physician replacing a device should consider a number of factors, including those listed below.

Factors that should be considered in a decision to replace or continue to use include:

- Pacing and sensing thresholds should be evaluated for the potential to maintain acceptable levels
- Pacing impedance should be measured. Bear in mind that pacing impedance below 250 ohms results in excessive battery current drain, which may seriously compromise ICD longevity, regardless of lead integrity.
- The physical appearance of the lead should be examined for insulation cracks, breaches, or other indications of lead wear or degradation
- Medtronic System Longevity Study data should be referenced. Actuarial survival of the lead and the observed lead failure mechanisms are specific factors to consider. Use of a new lead should be considered if failure mechanisms suggest an increased time dependency as suggested in the shape of performance curve for the specific lead model.
- Current publications may provide additional information on the clinical management of leads.¹⁻³ Ultimately, the decision to replace an implanted lead involves medical judgment.
- ¹ Hauser RG, Cannom D, Hayes DL, et al. Long-term structural failure of coaxial polyurethane implantable cardioverter defibrillator leads. *PACE.* June 2002;25(6):879-882.
- ² Ellenbogen KA, Wood MA, Shepard RK, et al. Detection and management of an implantable cardioverter defibrillator lead failure: incidence and clinical implications. *J Am Coll Cardiol.* January 1, 2003;41(1):73-80.
- ³ Hauser RG, Kallinen LM, Almquist AK, Gornick CC, Katsiyiannis WT. Early failure of a small-diameter high-voltage implantable cardioverter-defibrillator lead. *Heart Rhythm.* July 2007;4(7):892-896.

Performance Notes

Clinical Management of High-Voltage Lead System Oversensing

Appropriate sensing by an ICD system refers to the sensing of cardiac events that may or may not require therapy delivery. ICD systems must sense relatively large QRS complexes while avoiding sensing of smaller T waves, yet continue to sense often small variable amplitude ventricular fibrillation. Thus, ICD systems attempt to dynamically adjust sensing of electrical events and discriminate between them based on detection algorithms and programmed settings.

Inappropriate sensing can occur when an ICD system classifies events of non-cardiac origin as QRS/VF events, or senses and counts T and far-field P waves as ventricular depolarizations. This is often referred to as "oversensing," and may result in delivery of inappropriate high-voltage therapies. This is due, in part, to the desire to err on the side of delivering lifesaving high voltage therapy rather than withholding it. Thus, an ICD system that is experiencing oversensing issues will continue to deliver therapeutic shocks as required, but may also subject the patient to unnecessary shocks.

Oversensing can be difficult to manage, in that the precipitating cause of the oversensing can be problematic to isolate. Oversensing can be caused by many factors, including myopotentials/farfield sensing, electromagnetic interference, T wave sensing, connector issues, incomplete or complete conductor fractures, and insulation breaches. While the individual physician must exercise medical judgment in determination of appropriate clinical management of ICD systems, the chart below may assist in the process of causal factor differentiation and possible intervention.

Phenomenon	Causal Factors	Characteristics	Management/Comments
Myopotentials/ Far-field sensing	Diaphragmatic muscle potentials in breathing, wide tip-to-ring (coil on integrated bipolar leads) spacing	Nonphysiological sensed event on EGM, which may confuse detection potentially resulting in false positive shocks	Check R waves for deterioration. Reprogram sensitivity. Try repositioning lead. Consider change-out to true bipolar lead, or if true bipolar lead in use, one with closer tip-to-ring spacing than current lead.
EMI (Electro-Magnetic Interference)	Arc welders, electrical generators, store walk-through security scanners, poorly insulated electrical equipment	Multiple and consecutive short intervals (< 140 ms) independent of underlying sinus beats. Associated with proximity to the EMI source.	Avoid EMI areas. True bipolar leads less susceptible.
T-wave sensing	Drugs, ischemic tissue, exercise, Long QT syndrome, electrolyte imbalance	Sense markers seen on EGM related to T wave. False positive detection.	Check for R wave deterioration and characteristics. If R wave > 3.0 mV, reprogram sensitivity. If R wave < 3.0 mV, reposition/replace lead. Address causal factor (e.g., drugs [if appropriate/medically viable]).
Connector problems	Loose setscrew, cross-threaded setscrew, incomplete lead insertion into header	This is an acute phenomenon seen within 6 months of implant (usually sooner)	Requires invasive check of connections. May be reproducible with pocket manipulation.
Incomplete conductor fracture	One or more filars of a multifilar conductor fracturing while leaving enough filars intact to provide a conduction circuit	Characterized by chaotic oversensing related to motion of the fracture site	Check EGMs and x-rays. Manipulate lead at suspected fracture site if possible as a provocative test. If confirmed, replace lead.
Lead insulation breach	Cuts, tears, metal ion oxidization, abrasion, cold flow, environmental stress cracking	Characterized by cyclical and/or erratic, intermittent, spontaneous oversensing; often post-pace or post-shock can cause false positives	Replace lead. If acute, usually secondary to implant damage/replacement damage. If late, material characteristic.
Oversensing during interrogation with programming head (not wireless telemetry) with complete lead fracture	Interrogation with a programming head in combination with complete lead fracture that creates an open circuit can induce noise on the sensing circuitry inside the ICD can	Nonphysiologic sensed event on EGM. If detection is enabled during interrogation, oversensing may result in inappropriate therapy.	Quickly remove the programming head. CANCEL the interrupted interrogation and manually load the software for the specific device model. Reposition the programmer head over the device and immediately select SUSPEND. Device will resume detection when programming head is removed, or when RESUME is selected. Replace lead.

Technical Services is available at all times to advise clinicians in the troubleshooting and management of Medtronic products. For assistance in the United States, please call 1 (800) 723-4636. In other countries, please contact your local Medtronic representative.

Tests and Observations for Clinical Assessment of Chronic Pacing Leads

Test/Observation	Possible Insulation Failure	Possible Conductor Failure	Possible Other System Failure	Effect on Test/ Observation
Pacing Impedance (Telemetered or Measured Invasively)	Sudden and Significant Decrease	Sudden and Significant Increase	Dislodgement Perforation Electrolyte Imbalance Improper IPG/Lead Connection	Decrease Increase or Decrease Increase or Decrease Increase or Decrease
Pacing Thresholds (Telemetered/Programmed or Measured Invasively)	Sudden and Significant Increase, Especially in Bipolar System	Sudden and Significant Increase	Dislodgement Exit Block Infarct at Electrode Site Perforation Improper IPG/Lead Connection	Increase Increase Increase Increase Increase
Electrograms (Telemetered or Measured Invasively)	Sudden and Significant Decrease in Amplitudes and/ or Slew Rates for P and/or R Waves	Sudden and Significant Decrease or Disappearance of Amplitudes and/or Slew Rates for P and/or R Waves	Dislodgement. Perforation Infarct at Electrode Site Electrolyte Imbalance Improper IPG/Lead Connection	Decrease Decrease Decrease Decrease Decrease
Waveform Analysis (Oscillographs of Pacer Artifact from ECG Electrodes)	Sudden Increase in Ratios of Leading-Edge Voltages to Trailing-Edge Voltages (i.e., over 25% increase)	Intermittent or No Pacer Artifacts (Even in Asynchronous Mode)	Improper IPG/Lead Connection	Intermittent or No Pacer Artifacts (Even in Asynchronous Mode)
Radiographs (Post-Implant, Recent, Current)	Not Discernible	Visual Observation of Conductor/Connector/ Electrode Fracture (Sometimes Discernible)	Dislodgement or Perforation. Improper IPG/Lead Connection.	Sometimes Discernible
Visual Inspection (Invasive)	Insulation Breach and/or Degradation, or Ligature Cut-Through	Not Easily Discernible	Connector Defect or Connector Pulled Apart. Improper IPG/ Lead Connection.	Sometimes Discernible
Pectoral Muscle Stimulation	Sudden Onset, Especially in Bipolar System		Connector Defect in Bipolar or Unipolar. Hypersensitivity to Unipolar Pulse Generator Can. Anti-Stim Coating or Protection Deficient.	
Phrenic Nerve/ Diaphragmatic Stimulation	Sudden Onset in Bipolar or Unipolar Systems		Perforation or Displacement of Atrial Lead (Phrenic Nerve)	
Pacemaker ECG Stimulus Artifact Size and Morphology Change (May Not Be Possible with Digital ECG)	Sudden Onset and Significant Change, Especially in Bipolar System (Increase in Size)	Sudden Changes, Usually a Decrease in Size	Perforation or Dislodgement. Connector Defect. Improper IPG/Lead Connection.	Sometimes Discernible
Oversensing (Intermittent or Continuous)	Sudden Onset, Especially in Bipolar Systems		Physical Contact between the Electrode(s) on the Lead and that of Another Lead. Inappropriate IPG Parameter Setting. Improper IPG/ Lead Connection.	Sometimes Discernible
Undersensing (Intermittent or Continuous)	Sudden Onset in Either Unipolar or Bipolar Systems	Sudden Onset in Either Unipolar or Bipolar Systems	Dislodgement or Perforation. Infarct af Electrode Site. Electrolyte Imbalance. Inappropriate IPG Parameter Setting. Improper IPG/Lead Connection.	
Loss of Capture	See "Pacing Thresholds" Above	See "Pacing Thresholds" Above	See "Pacing Thresholds" Above	

Mailer Kits Available for Returning Product

Medtronic urges all physicians to return explanted products and to notify Medtronic when a product is no longer in use, regardless of reason for explant or removal from use. The procedures for returning products vary by geographic location.

Mailer kits with prepaid US postage are available for use within the United States to send CRT, ICD, IPG, and leads to Medtronic's CRDM Returned Product Analysis Lab. These mailers are sized to accommodate the devices and leads from a single patient or clinical event and are designed to meet US postal regulations for mailing biohazard materials.

If the product being returned is located outside the United States, please contact your local Medtronic representative for instructions.

Medtronic also requests the return of devices from non-clinical sources, such as funeral homes, and will assume responsibility for storage and disposal of the product once received.

Mailer kits can be obtained by contacting the Returned Product Lab.

CRDM Returned Product Analysis Laboratory Phone: 1 (800) 328-2518, ext. 44800 Email: crdm.returnedproduct@medtronic.com

www.medtronic.com

World Headquarters

Medtronic, Inc. 710 Medtronic Parkway Minneapolis, MN 55432-5604 USA Tel: (763) 514-4000 Fax: (763) 514-4879

Medtronic USA, Inc. Toll-free: 1 (800) 328-2518 (24-hour technical support for physicians and medical professionals)

Europe

Medtronic International Trading Sàrl Route du Molliau 31 CH-1131 Tolochenaz Switzerland Tel: (41 21) 802 7000 Fax: (41 21) 802 7900

Canada

Medtronic of Canada Ltd. 6733 Kitimat Road Mississauga, Ontario L5N 1W3 Canada Tel: (905) 826-6020 Fax: (905) 826-6620 Toll-free: 1 (800) 268-5346

Asia Pacific

Medtronic International, Ltd. 16/F Manulife Plaza The Lee Gardens, 33 Hysan Avenue Causeway Bay Hong Kong Tel: (852) 2891 4456 Fax: (852) 2891 6830 enquiryap@medtronic.com

Latin America

Medtronic USA, Inc. Doral Corporate Center II 3750 NW 87th Avenue Suite 700 Miami, FL 33178 USA Tel: (305) 500-9328 Fax: (786) 709-4244

