

# Cardiac Rhythm Disease Management Product Performance Report

Important Patient Management Information for Physicians

2009

First Edition – Issue 60







# A Message from the Vice President

Dear Customer,

At Medtronic, product quality and reliability have been and will continue to be a priority. For over 25 years, Medtronic has compiled and produced product performance reports with one primary goal, to provide you with the product information you need to best care for your patients.

Our commitment to you is best expressed in Medtronic's mission: "To strive without reserve for the greatest possible reliability and quality in our products; to be the unsurpassed standard of comparison and to be recognized as a company of dedication, honesty, integrity, and service." To this end, we continually explore new ways to expand, improve, and learn from our product performance systems and measures.

Our quality goals cannot be reached alone. We welcome your collaboration, insight, and recommendations. Please contact our Technical Services Department at 1 (800) 723-4636 with your feedback comments and any questions.

Your participation and assistance in returning explanted products are also critical. Returned products are tested and evaluated so that we can fully measure the performance of our devices. Please refer to the instructions on page 2 for assistance in returning products to the Medtronic CRDM Returned Product Analysis Laboratory.

As we constantly strive to exceed your expectations, we thank you for your dedication to improving and saving the lives of those suffering from cardiac rhythm disorders.

With appreciation and warm regards,

Tim Samsel

Vice President, Quality and Regulatory

Medtronic Cardiac Rhythm Disease Management

Medtronic, Inc.

#### **Contact Information**

We invite our customers to use these telephone numbers to call with suggestions, inquiries, or specific problems related to our products.

#### **US Technical Services Department**

Phone: 1 (800) 723-4636 (Tachy)

1 (800) 505-4636 (Brady)

1 (800) 824-2362 Fax:

www.medtronic.com/corporate/contact.jsp

#### International Technical Centers

Europe (Heerlen NL) +31-45-566-8844 Japan (Tokyo) +81-3-5753-4116

For questions related to this CRDM Product Performance Report, please call US Technical Services at the number above, or write to:

> Timothy Smith Medtronic, Inc. 8200 Coral Sea Street NE MS MVN61 Mounds View, MN 55112 USA

Email: tim.smith@medtronic.com

For questions related to returning explanted product or returning product that shows signs of malfunction, please contact:

Outside the United States:

Your Medtronic representative or international technical center at the number above.

Within the United States:

Your Medtronic representative or

CRDM Returned Product Analysis Laboratory

Medtronic, Inc.

7000 Central Avenue NE MS RCE172 Minneapolis, MN 55432-3576 USA

1 (800) 328-2518, ext. 44800

Email: crdm.returnedproduct@medtronic.com

#### **Editorial Staff**

#### Independent Physician Quality Panel

Angelo Auricchio, MD, Lugano, Switzerland Hugh Calkins, MD, Baltimore, MD Steven J. Compton, MD, Anchorage, AK John P. DiMarco, MD, PhD, Charlottesville, VA Kevin Hackett, MD, Columbus, OH Mariell Jessup, MD, Philadelphia, PA R. Hardwin Mead, MD, Palo Alto, CA

Tim Samsel, Vice President, CRDM Quality and Regulatory

#### Authors

Timothy Smith, Senior Principal Product Performance Engineer, CRDM, Product Performance Reporting Corrine Buchanan, Senior Clinical Trial Leader Mike Lenarz, Senior Statistician, CRDM Scott McRae, Statistician, CRDM Tim Hamann, Graphic Designer, CRDM

#### Medtronic Review Board

David Steinhaus, MD, Vice President and Medical Director, CRDM Lonny Stormo, Vice President, CRDM, Therapy Delivery Subu Mangipudi, Director, Product Vigilance and Reliability

#### Trademarks of Medtronic, Inc.

Adapta® InSync III Protect™ AT500® InSync Sentry® Attain® Intrinsic® CapSure® Jewel® CapSure Sense® Kappa® CapSureFix® Capture Legend® Management® Marquis® CareLink® Maximo® Concerto® Medtronic CareAlert® Consulta™ Medtronic EnPulse® CareLink® EnRhythm® Micro Jewel EnTrust® Micro Minix GEM® Minix InSync® Minuet InSync ICD®  $MVP^{\otimes}$ InSync Marquis™ Onyx® InSync II Marquis™ Patient Alert™  $InSync\ III\ Marquis^{\scriptscriptstyle{TM}}$ Preva InSync Maximo® Prevail® InSync II

Protect™

Prodigy

Relia™ Secura™ SelectSecure®

Sensia® Sensing Assurance Sigma® Spectraflex Sprint™ Sprint Fidelis® Sprint Quattro® Sprint Quattro Secure® SureFix® Target Tip® Tenax Thera®-i Transvene Versa® Virtuoso®

Quick Look™

# **CRDM Product Performance Report**

Introduction 4
Method for Estimating CRT, ICD, and IPG Device Performance 9

#### CRT Cardiac Resynchronization Therapy 13

CRT Survival Summary 20 CRT Reference Chart 22

#### ICD Implantable Cardioverter Defibrillators 23

ICD Survival Summary 34 ICD Reference Chart 37 ICD Connector Styles 39

#### **IPG** Implantable Pulse Generators 40

IPG Survival Summary 69 IPG Reference Chart 77

#### Leads

Method for Estimating Lead Performance 80

Left-Heart Leads 83 Lead Survival Summary 86 US Returned Product Analysis Summary 86 Reference Chart 86

Defibrillation Leads 87 Lead Survival Summary 95 US Returned Product Analysis Summary 96

US Returned Product Analysis Summar Reference Chart 97 Pacing Leads 98

Lead Survival Summary 130 US Returned Product Analysis Summary 134 Reference Chart 136

#### Epi/Myocardial Pacing Leads 138

Lead Survival Summary 141 US Returned Product Analysis Summary 142 Reference Chart 142

VDD Single Pass Pacing Leads 143 Lead Survival Summary 144 US Returned Product Analysis Summary 144 Reference Chart 144

## ICD and CRT-D Charge Time Performance 145

#### Advisories 151

(in order of communication date, from most recent to oldest)

#### **Performance Notes** 160

Clinical Management of VCM near Elective Replacement 160
Ensuring the Accuracy of Battery Longevity Estimates 161
Interactions between Cardiac Pacing and Ventricular Arrhythmia Initiation 162
AT500 Pacing System Follow-Up Protocol 163
Insertion of the Lead into the Device 164
GEM II DR/VR and GEM III DR/VR/AT ICD Battery Discharge Behavior 165
General Follow-Up and Replacement of ICD Leads 166
Clinical Management of High Voltage Lead System Oversensing 167
Tests and Observations for Clinical Assessment of Chronic Pacing Leads 168

#### Index 169

# Issue 60 Date cutoff for this edition is January 31, 2009

2009 First Edition

This report is available online at www.CRDMPPR.medtronic.com

## Introduction

All product performance reports are not created equal. For 26 years, Medtronic has monitored performance via both returned product analysis and multicenter clinical studies.

This Product Performance Report (PPR) presents device survival estimates, advisory summaries, performance notes, and other information pertinent to assessing the performance of Medtronic implantable pulse generators (IPGs), implantable cardioverter defibrillators (ICDs), cardiac resynchronization therapy (CRT) devices, and implantable pacing and defibrillation leads.

This Product Performance Report has been prepared in accordance with International Standard ISO 5841- 2:2000(E).

The survival estimates provided in this report are considered to be representative of worldwide performance.

#### **Survival Estimates**

Medtronic Cardiac Rhythm Disease Management (CRDM) uses both returned product analysis and multicenter clinical studies to monitor performance.

Medtronic, like other companies, monitors CRT, ICD, and IPG device performance using returned product analysis. We also monitor CRT, ICD, and IPG device performance using an active multicenter clinical study. Medtronic CRDM is unique in the industry in that we track CRT, ICD, and IPG device survival using both methods.

Returned product analysis is a passive approach to assessing product performance. This approach provides a suitable measure of product performance only when a significant number of explanted products are returned to the manufacturer. Returned product analysis provides a measure of hardware performance, but not necessarily the total clinical performance (e.g., the incidence of complications such as infection, erosion, muscle stimulation, etc. are not estimated).

The survival estimates provided in this report for CRT, ICD, and IPG devices are based on returned product analysis. This approach is suitable because a significant number of explanted generators are returned for analysis.

Lead performance is monitored differently. In contrast to CRT, ICD, and IPG devices, a very small percentage of leads are returned to the manufacturer due to the difficulty of explanting them. For leads, an active clinical study provides more accurate survival estimates compared to estimates based solely on returned product analysis.

Survival estimates for leads are based on clinical observations recorded via Medtronic CRDM's System Longevity Study. This multicenter clinical study is

designed to record clinical observations representative of the total clinical experience. Therefore, the lead survival estimates include both lead hardware failure and lead-related medical complications, and do not differentiate a lead hardware failure from other clinical events such as exit block, perforation, dislodgement, or concurrent pulse generator failure.

The actuarial life table method is applied to the data collected for CRT, ICD, and IPG devices and leads to provide the survival estimates included in this report. A general introduction to understanding this method of survival analysis is given later in this introduction.

#### **ICD Charge Times**

Since May 2000, Medtronic has provided important information on charge time performance of ICDs. The information provided in this report shows how ICD charge time can vary during the time a device is implanted. The information is presented in graphical format showing charge time as a function of implant time. The data for charge times are collected from devices enrolled in the System Longevity Study.

#### **Advisory Summaries**

This Product Performance Report includes summaries of all advisories applicable to the performance of the products included in the report. An advisory is added to the report when any product affected by the advisory remains in service and at risk of experiencing the behavior described in the advisory. The advisory will remain in the report until Medtronic estimates no product affected by the advisory remains active, or the risk of experiencing the behavior described in the advisory has passed.

For most advisories, the products subject to the advisory retain essentially the same survival probability as the products of the same model(s) not affected by the advisory. For those advisories where the survival probabilities of the affected and non-affected populations do differ significantly, Medtronic will provide separate survival data for each population. The separate survival data will remain in the report until Medtronic estimates no affected product remains in active service.

#### Performance Notes

This report concludes with a number of Performance Notes developed by Medtronic to provide additional product performance information relevant to follow-up practice and patient management.

Medtronic urges all physicians to return explanted products and to notify Medtronic when a product is no longer in use, regardless of reason for explant or removal from use.

#### How You Can Help

Medtronic urges all physicians to return explanted products and to notify Medtronic when a product is no longer in use, regardless of the reason for explant or removal from use. The procedures for returning products vary by geographic location.

Mailer kits with prepaid US postage are available for use within the United States to send CRTs, ICDs, IPGs, and leads to Medtronic's CRDM Returned Product Analysis Lab. These mailers are sized to accommodate the devices and leads from a single patient or clinical event and are designed to meet postal regulations for mailing biohazard materials.

If the product being returned is located outside the United States, please contact your local Medtronic representative for instructions.

Medtronic also requests the return of explanted products from non-clinical sources, such as funeral homes, and will assume responsibility for storage and disposal of the product once received. For return of larger quantities of explanted products than the mailer can accommodate, Medtronic has handling and shipping guidelines available upon request.

Both mailers and guidelines can be requested by contacting the Returned Product Lab. For information on how to contact the Lab, refer to Contact Information on page 2 of this report.

We continually strive to improve this CRDM Product Performance Report. In keeping with this philosophy, we ask for your suggestions on the content and format of this report, as well as any information you have regarding the performance of Medtronic products. For information on how to comment on this report, see Contact Information on page 2 of this report.

#### Overview of Survival Analysis

Medtronic uses the Cutler-Ederer actuarial life table method to estimate the length of time over which devices and leads will perform within performance limits established by Medtronic. This probability to perform within performance limits over time is called the *survival probability*.

Devices and leads are followed until an *event* occurs where the device or lead ceases to operate within performance limits. The length of time from implant to the event is recorded for each individual device and lead in the *population sample*. The population sample for CRT, ICD, and IPG devices is made up of patients whose devices are registered as implanted in the United States. For leads, the population sample is the patients enrolled in our multicenter, international prospective System Longevity Study.

For IPGs and ICDs, the events can be normal battery depletion or a device malfunction. For leads, the events are complications as defined for the study.

The actuarial life table method allows Medtronic to account for devices and leads removed from service for reasons unrelated to performance. Devices and leads removed for these reasons are said to be *suspended*. Examples include devices and leads:

- still in service at the time the analysis is performed
- removed to upgrade the device or lead
- no longer in service due to the death of the patient for reasons unrelated to the device or leads
- implanted in patients who are lost to follow-up

For each suspension, the device or lead has performed within performance limits for a period of time, after which its performance is unknown.

#### An Example

The following example describes the survival analysis method used to establish the survival probability estimates for Medtronic CRDM devices and leads. The example is intended to provide an overview of the analysis process. The definitions of malfunctions and complications, and other details specific to calculating device and lead survival estimates, are provided in the articles Method for Estimating CRT, ICD, and IPG Device Performance (page 9) and Method for Estimating Lead Performance (page 80).

This simple example describes the survival analysis method used to establish the survival probability estimates for Medtronic CRDM devices and leads.

#### Figure 1

Implant times for devices of 16 patients. Gray bars with an orange X indicate devices removed from service due to an event. Blue bars indicate suspended devices.

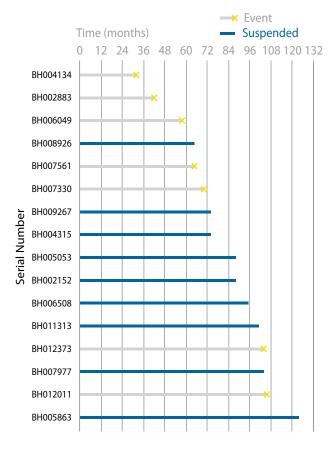



Figure 1 illustrates 16 patients who have implanted devices. The first patient's device (serial number BH004134) operated within performance limits for 32 months. At that time an event occurred. The fourth patient's device (serial number BH008926) did not have an event but is suspended, perhaps because it was still in service at the time of the analysis. This patient had 66 months of implant experience. In this example, Figure 1 shows that seven of the 16 devices suffered events, and nine are suspended.

The first step in the life table method is to divide the implant time into intervals of a specific length. This example will use 12-month intervals. The number of devices entered, suspended, and removed due to an event are counted and summarized, as shown in Table 1. For the first two intervals, all 16 devices survived and none were removed. In the interval (24-36 months), device BH004134 was removed due to an event. Therefore the table entries show that 16 entered the interval, none were suspended, and one was removed due to an event.

For the interval from 36-48 months, only 15 devices entered the interval and one was removed for an event. The remaining intervals are examined and the data entered in columns A, B, and C in like manner. The rest of the columns are filled in using calculations on the data in columns A, B, and C.

The Effective Sample Size (D) is the number of devices with full opportunity to experience a qualifying event in the interval. This is computed by subtracting one half the number suspended in the interval from the number that entered the interval. This calculation more accurately reflects the number of devices that could have experienced a qualifying event than simply using the number that entered the interval. Using the number of devices that enter an interval overestimates the sample size because the suspended devices do not complete the interval. Ignoring the suspended devices underestimates the sample size because suspended devices are not credited with their full service time. Using one half the number of suspended devices effectively splits the difference.

The next column in the table is the *Proportion with Event* (E). This is the proportion of devices that had an event in the interval. It is calculated by dividing the *Number of Events* (C) by the *Effective Sample Size* (D). The number can be interpreted as the estimated rate at which events occur in the time interval.

The Interval Survival Probability (F) is the estimate of probability of surviving to the end of the interval assuming the device was working at the beginning of the interval. It is calculated as 1 minus the Proportion with Event (E). This number can be interpreted as the estimated rate at which events do not occur in the time interval.

The Cumulative Survival Probabilities (G) from the last column of the life table can be plotted versus time intervals in the first column to give a survival curve. Figure 2 shows the survival curve for the data shown in Table 1.

**Table 1** Life Table for Figure 1

|                       | Α                 | В                   | C                   | D                        | E                     | F                                   | G                                     |
|-----------------------|-------------------|---------------------|---------------------|--------------------------|-----------------------|-------------------------------------|---------------------------------------|
| Interval<br>in Months | Number<br>Entered | Number<br>Suspended | Number<br>of Events | Effective<br>Sample Size | Proportion with Event | Interval<br>Survival<br>Probability | Cumulative<br>Survival<br>Probability |
| 0                     | 16                | 0                   | 0                   | 16                       | 0.000                 | 1.000                               | 1.000                                 |
| 0-12                  | 16                | 0                   | 0                   | 16                       | 0.000                 | 1.000                               | 1.000                                 |
| 12-24                 | 16                | 0                   | 0                   | 16                       | 0.000                 | 1.000                               | 1.000                                 |
| 24-36                 | 16                | 0                   | 1                   | 16                       | 0.063                 | 0.938                               | 0.938                                 |
| 36-48                 | 15                | 0                   | 1                   | 15                       | 0.067                 | 0.933                               | 0.875                                 |
| 48-60                 | 14                | 0                   | 1                   | 14                       | 0.071                 | 0.929                               | 0.813                                 |
| 60-72                 | 13                | 1                   | 2                   | 12.5                     | 0.160                 | 0.840                               | 0.683                                 |
| 72-84                 | 10                | 2                   | 0                   | 9                        | 0.000                 | 1.000                               | 0.683                                 |
| 84-96                 | 8                 | 3                   | 0                   | 6.5                      | 0.000                 | 1.000                               | 0.683                                 |
| 96-108                | 5                 | 2                   | 2                   | 4                        | 0.500                 | 0.500                               | 0.341                                 |
| 108-120               | 1                 | 0                   | 0                   | 1                        | 0.000                 | 1.000                               | 0.341                                 |
| 120-132               | 1                 | 1                   | 0                   | 0.5                      | 0.000                 | 1.000                               | 0.341                                 |

#### Definitions:

| A<br>Number<br>Entered                                         | B<br>Number<br>Suspended                                                              | C<br>Number<br>of Events                                      | D<br>Effective<br>Sample Size                                                                                                                                          | E<br>Proportion<br>with Event                                                                                                    | F<br>Interval<br>Survival<br>Probability                                                                                                                                  | G<br>Cumulative<br>Survival<br>Probability                                                                                                                                             |
|----------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Number of<br>devices active at<br>the start of the<br>interval | Number<br>of devices<br>removed from<br>service for<br>reasons other<br>than an event | Number of units<br>removed from<br>service due to<br>an event | Number of units with full opportunity to experience a qualifying event in the interval. Computed by subtracting one half the Number Suspended from the Number Entered. | Proportion of devices that had an event in the interval. Computed by dividing the Number of Events by the Effective Sample Size. | The probability of surviving to the end of the interval, assuming the device was working at the beginning of the interval. Computed as 1 minus the Proportion With Event. | The overall probability of surviving to the end of the interval. Computed by multiplying the Interval Survival Probability by the previous interval's Cumulative Survival Probability. |

Cumulative Survival Probability (G) is the estimate of the unconditional probability of surviving to the end of the interval. It is computed by multiplying the Interval Survival Probability (F) by the previous interval's Cumulative Survival Probability. The probability of surviving to 132 months in the example is estimated for the table to be 0.341, or 34.1%.

The *Cumulative Survival Probabilities* (**G**) of the life table can be plotted versus time intervals in the first column to give a survival curve. Figure 2 shows the survival curve for the data in Table 1.

Cumulative Survival Probability (%)

100 90 80 70 60 50 30 12 24 48 108 120 36 60 72 84 96 Time (months) 36 48 60 72 96 108 120 0 12 84 132 100 93.8 87.5 81.3 68.3 68.3 68.3 34.1 34.1 100 100 34.1 16 16 16 16 15 12.5 0.5 **Effective Sample Size** 

Figure 2 Survival Curve for Data Given in Table 1

#### **Confidence Intervals**

Since survival curves are based on a sample of the device and lead population, they are only estimates of survival. The larger the effective sample size, the more confident the estimate. A confidence interval can be calculated to assess the confidence in an estimate. In the Product Performance Report, Medtronic provides a 95% confidence interval. This can be interpreted as meaning that 95% of the time, the true survival of the device will fall somewhere in the interval.

# Survival Curves in the Product Performance Report

Since the survival estimate can become very imprecise with small effective sample sizes, Medtronic truncates the survival curve when the effective sample size is less than 100 for CRTs, ICDs, and IPGs, and when the number entered is less than 50 for leads. The survival charts in the Product Performance Report show the effective sample size for each year interval where Medtronic has experience. When the effective sample size reaches 100 for CRTs, ICDs, and IPGs or when the number entered reaches 50 for leads, the next data point is added to the survival curve.

Although the report provides tabular data in one-year intervals, the curves are actually computed and plotted using 1-month intervals (for CRT, ICD, and IPG devices) or 3-month intervals (for leads).

A number of references are available for additional information on survival analysis using the Cutler-Ederer life table method.<sup>1</sup>

<sup>&</sup>lt;sup>1</sup> Lee, Elisa T.(2003) Statistical Methods for Survival Data Analysis – 3rd Edition (Wiley Series in Probability and Statistics).

# Method for Estimating CRT, ICD, and IPG Device Performance

Medtronic urges all physicians to return explanted products and to notify Medtronic when a product is no longer in use, regardless of reason for explant or removal from use.

The performance of CRT, ICD, and IPG devices is expressed in terms of device survival estimates, where "survival" refers to the function of the device, not the survival of the patient. These survival estimates are intended to illustrate the probability that a device will survive for a given number of years with neither malfunction nor battery depletion.

The survival estimates are determined from the analysis of Medtronic CRDM's United States device registration data and US returned product analysis data. These data are presented graphically and numerically.

Because this analysis is based on returned product analysis, the performance data does not reflect any device-related medical complications such as erosion, infection, muscle stimulation, or muscle inhibition.

#### Categorization of Depleted and Malfunctioning Devices for Survival Analysis

For survival estimation, every device returned to Medtronic CRDM and analyzed in the CRDM Returned Product Analysis laboratory is assigned to one of three categories. The device 1) has functioned normally, 2) has reached normal battery depletion, or 3) has malfunctioned. This categorization is combined with data from our device registry for the total number of implants and the implant durations to create the survival curves presented on the following pages.

#### **Definition of Malfunction**

Medtronic CRDM considers a device as having malfunctioned whenever the analysis shows that any parameter was outside the performance limits established by Medtronic while implanted and in service. To be considered a malfunction or battery depletion, the device must have been returned to Medtronic and analyzed.

Devices damaged after explant, damaged due to failure to heed warnings or contraindications in the labeling, or damaged due to interaction with other implanted devices (including leads) are not considered device malfunctions.

A device subject to a safety advisory is not considered to have malfunctioned unless it has been returned to Medtronic CRDM and found, through analysis, to actually have performed outside the performance limits established by Medtronic.

Not all malfunctions expose the patient to a loss of pacing or defibrillation therapy. Some malfunctions included in the following survival estimates may not have been detected at all by the physician or the patient. These malfunctions, however, are included in the survival estimates and provide important feedback to our product development organization.

To provide insight into the nature of malfunctions, each malfunction is categorized as Malfunction with Compromised Therapy Function or Malfunction without Compromised Therapy Function. A summary of these malfunctions is presented for the most recently market-released models.

For this report, Normal Battery Depletion, Malfunction with Compromised Therapy Function, and Malfunction without Compromised Therapy Function are defined as follows:

#### Normal Battery Depletion – The condition when:

- (a) a device is returned with no associated complaint and the device has reached its elective replacement indicator(s) with implant time that meets or exceeds the nominal (50 percentile) predicted longevity at default (labeled) settings, or
- (b) a device is returned and the device has reached its elective replacement indicator(s) with implant time exceeding 80% of the expected longevity calculated using the available device setting information.

Medtronic CRDM establishes expected longevity by statistically characterizing the power consumed by the device and the power available from the device battery. This characterization is applied to a number of parameter configurations to derive a statistical mean longevity value and standard deviation for each parameter configuration. The statistical mean value minus three standard deviations is used as the expected longevity for determining if a battery depleted normally.

# Method for Estimating CRT, ICD, and IPG Device Performance, continued

The Standard Actuarial Method is used to estimate IPG and ICD survival. This product performance report has been prepared in accordance with International Standard ISO 5841-2:2000(E).

For reference purposes, the following pages include estimated longevities for each model. The actual longevity achieved for any device while implanted will depend on the actual programmed parameters and patient factors, and may differ significantly from these estimates.

#### Malfunction with Compromised Therapy Function

The condition when a device is found to have malfunctioned in a manner that compromised pacing or defibrillation therapy (including complete loss or partial degradation), while implanted and in service, as confirmed by returned product analysis.

Examples: Sudden loss of battery voltage; accelerated current drain such that low battery was not detected before loss of therapy; sudden malfunction during defibrillation therapy resulting in aborted delivery of therapy, intermittent malfunction where therapy is compromised while in the malfunction state.

#### **Malfunction without Compromised Therapy Function**

The condition when a device is found to have malfunctioned in a manner that *did not* compromise pacing or defibrillation therapy, while implanted and in service, as confirmed by returned product analysis.

Examples: Error affecting diagnostic functions, telemetry function, data storage; malfunction of a component that causes battery to lose power quickly enough to cause premature battery depletion, but slowly enough that the condition is detected through normal follow-up before therapy is lost; mechanical problems with connector header that do not affect therapy.

#### **Expanded Malfunction Detail**

The malfunctions are further divided into categories that identify the subject area of the malfunction. The malfunctions are divided into the following subject areas:

Electrical Component - Findings linked to electrical components such as integrated circuits, resistors, capacitors, diodes, etc.

Electrical Interconnect – Findings linked to the connections between electrical components such as wires, solder joints, wire bonds, etc.

Battery - Findings linked to the battery and its components

Software/Firmware - Findings linked to software or firmware function

Possible Early Battery Depletion – Findings where the actual reported implant time is less than 80% of the expected longevity calculated using the available device setting information with no device malfunction observed. There may not be sufficient device setting information to determine conclusively if battery depletion was normal or premature in the absence of a specific root cause finding. However, returned devices meeting the above criteria are conservatively classified as Possible Early Battery Depletion malfunctions.

Other – Findings related to other components such as insulators, grommets, setscrews, and packaging, and findings where analysis is inconclusive

#### **Returned Product Analysis Process**

Analysis of returned product is performed according to written procedures. These procedures determine the minimum analysis required. The analysis required varies depending on the type of device, age of the device, the associated information received with the device, actual experience with models of similar design, and other factors. Additional analysis is performed as necessary to investigate a performance concern from a customer, or to collect specific reliability data.

When a device is returned with a performance concern from a customer, the general analysis process includes a preliminary analysis of the device in its as-received condition, followed by an automated functional test using test equipment equivalent to the equipment used in manufacturing.

When a malfunction is identified, failure analysis is performed to provide the detailed information necessary to investigate possible causes and actions. Medtronic CRDM maintains in-house expertise and performs its failure analysis using facilities it owns and supports. This capability permits detailed failure analysis.

# Method for Estimating CRT, ICD, and IPG Device Performance, continued

Medtronic CRDM adjusts all-cause survival estimates to account for underreporting. While this lowers our all-cause survival estimates, we feel it gives a more accurate perspective on real performance.

#### Statistical Methods for Survival Analysis

Of the several different statistical methods available for survival analysis, the Standard Actuarial Method, with suspensions assumed distributed across the intervals (Cutler-Ederer Method), is used to determine estimates of IPG and ICD survival. This method is commonly used by medical researchers and clinicians.

Implant times are calculated from the implant date to the earlier of the explant date or the cutoff date of the report. From this data an estimate of the probability of device survival is calculated at each monthly interval.

On the following pages, each graph includes a survival curve where events include malfunctions and normal battery depletions. This survival curve is a good representation of the probability a device will survive a period of time without malfunction and without battery depletion. For example, if a device survival probability is 95% after 5 years of service, then the device has a 5% chance of being removed due to battery depletion or malfunction in the first 5 years following implant.

In addition, a second curve is included to show survival excluding normal battery depletion. This curve is a good representation of the probability for a device to survive without malfunction. This curve includes only malfunctions as events and excludes normal battery depletion.

Since the survival estimate can become very imprecise with small effective sample sizes, Medtronic truncates the survival curve when the effective sample size is less than 100 for CRT, ICD, and IPG devices. The survival charts in the Product Performance Report show the effective sample size for each year interval where we have experience. When the effective sample size reaches 100, the next data point is added to the survival curve.

Although the report provides tabular data in one-year intervals, the curves are actually computed and plotted using one-month intervals.

The data in the tables are rounded to the nearest tenth of one percent. Occasionally, a graph may show 100% survival, but have one or more malfunctions or battery depletions. This occurs because, even with the malfunctions or battery depletions, the data rounds to 100%.

The survival curves are statistical estimates. As performance experience accumulates, the estimation improves. Confidence intervals are provided as a way

to indicate the degree of certainty of the estimates. Greenwood's formula is used to calculate corresponding 95% confidence intervals for the standard errors, and the complementary log-log method is used to produce the confidence bounds.

# Sample Size and How the Population and Population Samples Are Defined

The population sample from which the survival estimates are derived is comprised of the devices registered as implanted in the United States as of the report cutoff date. The number of registered implants, as well as an estimate of the number that remain in active service, is listed for each model. To be included in the population, the device must have been registered with Medtronic's registration system and implanted for at least one day.

This sample based on US implants is considered to be representative of the worldwide population, and therefore the survival estimates shown in this report should be representative of the performance worldwide of these models.

A CRT, ICD, or IPG model or model family will be included in this report when it has accumulated at least 10,000 implant months and will remain in the report as long as at least 500 devices remain active.

# Methods Used to Adjust for Underreporting of Malfunction and Battery Depletion

The tables on the following pages show the actual number of malfunctions and battery depletions recorded by the analysis lab for US registered devices. Since not all devices are returned to Medtronic CRDM for analysis, these numbers underestimate the true number of malfunctions and battery depletions. To more accurately estimate the all-cause device survival probabilities, the number of malfunctions and battery depletions used to plot each interval of the all-cause survival curves is adjusted (multiplied) by a factor that is based on an estimate of the magnitude of underreporting. The magnitude of underreporting is estimated by analyzing experience in clinical studies (including the System Longevity Study) and the device registration system.

# Method for Estimating CRT, ICD, and IPG Device Performance, continued

However, at this time, no adjustment for underreporting is applied to the malfunction-free survival curve because a method for estimating malfunction-only underreporting has not been developed.

#### Adjustments to Registered Implants to Compensate for Unreported Devices Removed from Service

Devices are at times removed from service for reasons other than device malfunction or battery depletion. Examples are devices removed from service due to non-device related patient mortality and devices removed due to changes in the patient's medical condition. Because an accurate estimate of device survival depends on an accurate estimate of the number of devices in service, it is important not to overstate the number of devices in service.

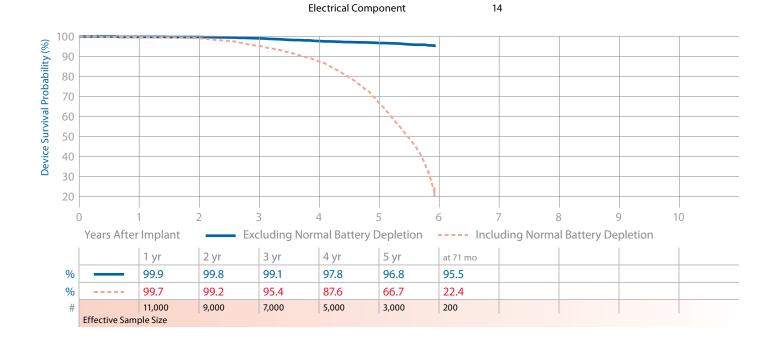
To ensure the number of devices in service is not overstated, the patient mortality rate derived from our device registration system is monitored and compared to published mortality rates for comparable patient populations. If, during calculation of the survival curves, the patient mortality indicated by the data in our device registration is significantly different from published rates, an adjustment is applied to correct the difference.

#### 7272 InSync ICD

| US Market Release              | Jul-02 | Malfunctions (US)                |
|--------------------------------|--------|----------------------------------|
| Registered US Implants         | 13,000 | Therapy Function Not Compromised |
| Estimated Active US Implants   | 1,000  | Battery                          |
| Normal Battery Depletions (US) | 1,284  | Electrical Component             |
| Advisories                     | None   | Software/Firmware                |
|                                |        | Possible Early Battery Depletion |
|                                |        | Therapy Function Compromised     |
|                                |        | Battery                          |

#### **Product Characteristics**

238

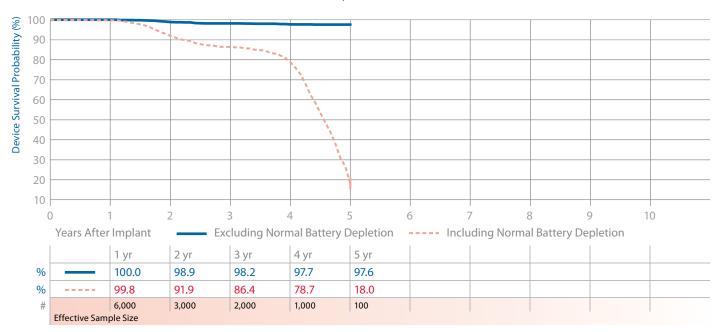

184

15

1

14

| NBD Code             | VVED        |
|----------------------|-------------|
| Serial Number Prefix | PJP         |
| Max Delivered Energy | 34 J        |
| Estimated Longevity  | See page 22 |
|                      |             |






#### **7277** InSync Marquis

| US Market Release                                   | Ma     | ar-03 | Malfunctions (US)                             | 74 |
|-----------------------------------------------------|--------|-------|-----------------------------------------------|----|
| Registered US Implants 7,0                          |        | 7,000 | Therapy Function Not Compromised              | 63 |
| Estimated Active US Im                              | plants | 100   | Battery                                       | 1  |
| Normal Battery Depletions (US)                      |        | 588   | Electrical Component                          | 8  |
| Advisories: See page 153 – 2005 Potential           |        |       | Software/Firmware                             | 1  |
| Premature Battery Depletion Due to<br>Battery Short |        |       | Possible Early Battery Depletion              | 53 |
|                                                     |        |       | Therapy Function Compromised                  | 11 |
|                                                     |        |       | Battery (10 malfunctions related to advisory) | 10 |
|                                                     |        |       | Electrical Component                          | 1  |

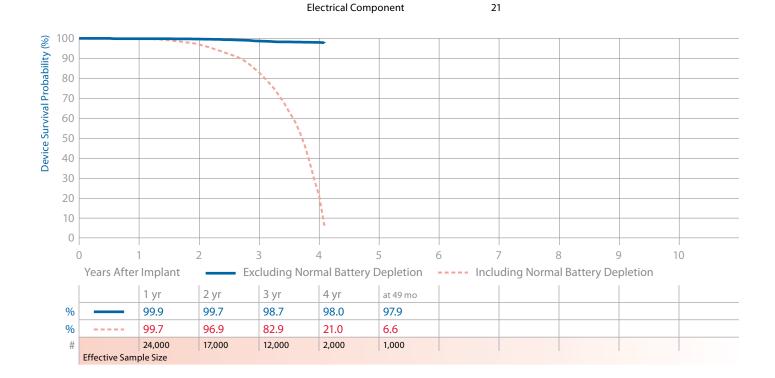
| NBD Code             | VVED        |
|----------------------|-------------|
| Serial Number Prefix | PLT         |
| Max Delivered Energy | 30 J        |
| Estimated Longevity  | See page 22 |
|                      |             |





#### 7289 InSync II Marquis

| US Market Release                                                                         | Jul-03 |
|-------------------------------------------------------------------------------------------|--------|
| Registered US Implants                                                                    | 28,000 |
| Estimated Active US Implants                                                              | 1,000  |
| Normal Battery Depletions (US)                                                            | 5,001  |
| Advisories: See page 153 – 2005 Po<br>Premature Battery Depletion Due to<br>Battery Short |        |

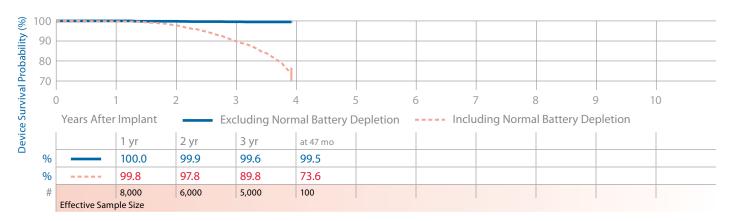

| Malfunctions (US)                | 284 |
|----------------------------------|-----|
| Therapy Function Not Compromised | 253 |
| Electrical Component             | 20  |
| Software/Firmware                | 1   |
| Possible Early Battery Depletion | 232 |
| Therapy Function Compromised     | 31  |

Battery (8 malfunctions related to advisory)

10

#### **Product Characteristics**

| 'VED       |
|------------|
| RJ         |
| 0 J        |
| ee page 22 |
|            |




#### 7297 InSync Sentry

| US Market Release                   | Nov-04 |
|-------------------------------------|--------|
| Registered US Implants              | 9,000  |
| <b>Estimated Active US Implants</b> | 4,000  |
| Normal Battery Depletions (US)      | 458    |
| Advisories                          | None   |
|                                     |        |

| Malfunctions (US)                | 30 |
|----------------------------------|----|
| Therapy Function Not Compromised | 29 |
| Battery                          | 1  |
| Electrical Component             | 6  |
| Software/Firmware                | 1  |
| Possible Early Battery Depletion | 21 |
| Therapy Function Compromised     | 1  |
| Electrical Component             | 1  |

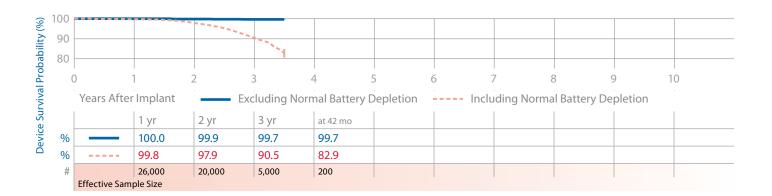
| NBD Code                   | VVED        |
|----------------------------|-------------|
| Serial Number Prefix       | PRK         |
| Max Delivered Energy       | 35 J        |
| <b>Estimated Longevity</b> | See page 22 |



#### 7299 InSync Sentry

| US Market Release                   | Apr-05 |
|-------------------------------------|--------|
| Registered US Implants              | 31,000 |
| <b>Estimated Active US Implants</b> | 18,000 |
| Normal Battery Depletions (US)      | 708    |
| Advisories                          | None   |

| Malfunctions (US)                | 48 |
|----------------------------------|----|
| Therapy Function Not Compromised | 43 |
| Electrical Component             | 9  |
| Software/Firmware                | 2  |
| Possible Early Battery Depletion | 32 |

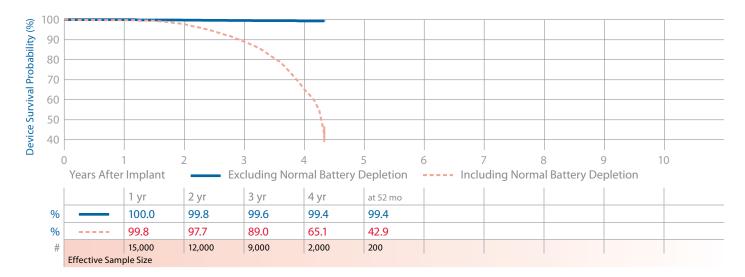

**Therapy Function Compromised** 

**Electrical Component** 

#### **Product Characteristics**

5 5

| NBD Code             | VVED        |
|----------------------|-------------|
| Serial Number Prefix | PRK         |
| Max Delivered Energy | 35 J        |
| Estimated Longevity  | See page 22 |
|                      |             |




#### 7303 InSync Maximo

| US Market Release                   | Jun-04 |
|-------------------------------------|--------|
| Registered US Implants              | 17,000 |
| <b>Estimated Active US Implants</b> | 6,000  |
| Normal Battery Depletions (US)      | 1,408  |
| Advisories                          | None   |

| Malfunctions (US)                | 62 |
|----------------------------------|----|
| Therapy Function Not Compromised | 57 |
| Electrical Component             | 11 |
| Software/Firmware                | 2  |
| Possible Early Battery Depletion | 44 |
| Therapy Function Compromised     | 5  |
| Electrical Component             | 5  |
|                                  |    |

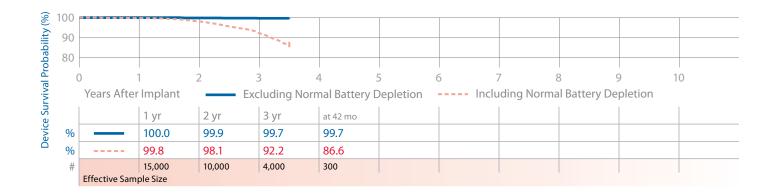
| NBD Code                   | VVED        |
|----------------------------|-------------|
| Serial Number Prefix       | PRL         |
| Max Delivered Energy       | 35 J        |
| <b>Estimated Longevity</b> | See page 22 |
|                            |             |





#### 7304 InSync Maximo

| US Market Release              | Apr-05 |
|--------------------------------|--------|
| Registered US Implants         | 18,000 |
| Estimated Active US Implants   | 11,000 |
| Normal Battery Depletions (US) | 344    |
| Advisories                     | None   |

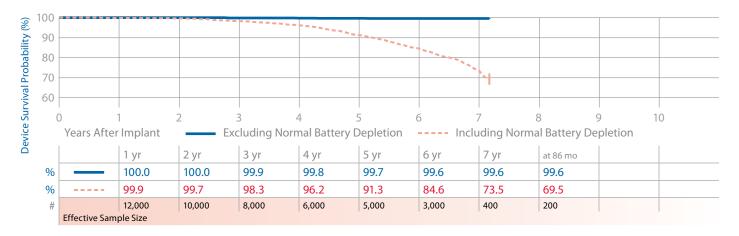

| Malfunctions (US)                | 24 |
|----------------------------------|----|
| Therapy Function Not Compromised | 22 |
| Battery                          | 1  |
| Electrical Component             | 7  |
| Possible Early Battery Depletion | 14 |
| Therapy Function Compromised     | 2  |

**Electrical Component** 

#### **Product Characteristics**

2

| NBD Code             | VVED        |
|----------------------|-------------|
| Serial Number Prefix | PRL         |
| Max Delivered Energy | 35 J        |
| Estimated Longevity  | See page 22 |
|                      |             |



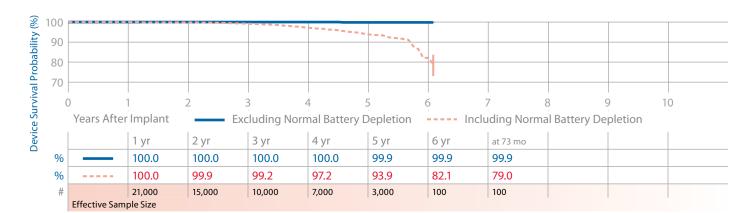

#### 8040 InSync

| US Market Release                   | Aug-01 |
|-------------------------------------|--------|
| Registered US Implants              | 15,000 |
| <b>Estimated Active US Implants</b> | 3,000  |
| Normal Battery Depletions (US)      | 533    |
| Advisories                          | None   |

| Malfunctions (US)                | 28 |
|----------------------------------|----|
| Therapy Function Not Compromised | 7  |
| Electrical Component             | 4  |
| Possible Early Battery Depletion | 3  |
| Therapy Function Compromised     | 21 |
| Electrical Interconnect          | 21 |
|                                  |    |

| NBD Code DDDR Serial Number Prefix PIN |   |             |
|----------------------------------------|---|-------------|
| Serial Number Prefix PIN               | , | DDDR        |
|                                        | , | PIN         |
| Estimated Longevity See page 2         |   | See page 22 |




#### 8042 InSync III

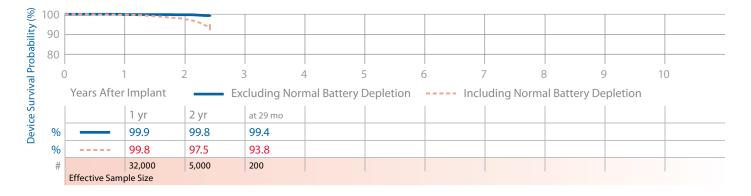
| US Market Release              | Feb-03 |
|--------------------------------|--------|
| Registered US Implants         | 29,000 |
| Estimated Active US Implants   | 16,000 |
| Normal Battery Depletions (US) | 243    |
| Advisories                     | None   |

| Malfunctions (US)                | 6 |
|----------------------------------|---|
| Therapy Function Not Compromised | 3 |
| Electrical Component             | 2 |
| Possible Early Battery Depletion | 1 |
| Therapy Function Compromised     | 3 |
| Flectrical Interconnect          | 3 |

| Product Characteristics |  |
|-------------------------|--|
|-------------------------|--|

| NBD Code             | DDDR        |
|----------------------|-------------|
| Serial Number Prefix | PKF         |
| Estimated Longevity  | See page 22 |
|                      |             |

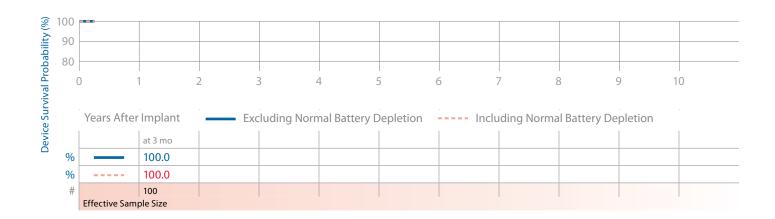



#### C154DWK, C164AWK, C174AWK Concerto

| US Market Release                   | May-06 |
|-------------------------------------|--------|
| Registered US Implants              | 68,000 |
| <b>Estimated Active US Implants</b> | 57,000 |
| Normal Battery Depletions (US)      | 168    |
| Advisories                          | None   |

| Malfunctions (US)                | 50 |
|----------------------------------|----|
| Therapy Function Not Compromised | 36 |
| Electrical Component             | 7  |
| Possible Early Battery Depletion | 29 |
| Therapy Function Compromised     | 14 |
| Electrical Component             | 13 |
| Electrical Interconnect          | 1  |
|                                  |    |

#### **Product Characteristics**


| NBD Code             | VVED          |
|----------------------|---------------|
| Serial Number Prefix | PVU, PVT, PVR |
| Max Delivered Energy | 35 J          |
| Estimated Longevity  | See page 22   |
|                      |               |





#### **D224TRK Consulta CRT-D**

| US Market Release                   | Aug-08 | Malfunctions (US)                | 0 | NBD Code                   | DDED        |
|-------------------------------------|--------|----------------------------------|---|----------------------------|-------------|
| Registered US Implants              | 2,000  | Therapy Function Not Compromised | 0 | Serial Number Prefix       | PUD         |
| <b>Estimated Active US Implants</b> | 2,000  | Therapy Function Compromised     | 0 | Max Delivered Energy       | 35 J        |
| Normal Battery Depletions (US)      | 0      |                                  |   | <b>Estimated Longevity</b> | See page 22 |
| Advisories                          | None   |                                  |   |                            |             |



#### **D284TRK** Maximo II CRT-D

| US Market Release                   | Mar-08 |
|-------------------------------------|--------|
| Registered US Implants              | 1,000  |
| <b>Estimated Active US Implants</b> | 1,000  |
| Normal Battery Depletions (US)      | 0      |
| Advisories                          | None   |

| Malfunctions (US)                |  |
|----------------------------------|--|
| Therapy Function Not Compromised |  |
| Therapy Function Compromised     |  |

#### **Product Characteristics**

0 0 0

| NE | BD Code             | VVED        |  |
|----|---------------------|-------------|--|
| Se | rial Number Prefix  | PZP         |  |
| M  | ax Delivered Energy | 35 J        |  |
| Es | timated Longevity   | See page 22 |  |



Device Survival Summary (95% Confidence Interval)

The following table shows CRT device survival estimates with 95% confidence intervals. Estimates are shown both with and without normal battery depletions included.

|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 yr                                                                       |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                               |                                          |                                          |                                          |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|-----------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                               |                                          |                                          |                                          |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8 yr                                                                        |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                               |                                          |                                          |                                          |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7 yr                                                                        |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                               |                                          |                                          |                                          |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6 yr                                                                        | 95.5<br>+0.6/-0.7<br>at 71 mo            | 22.4<br>+2.3/-2.2<br>at 71 mo            |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                               |                                          |                                          |                                          |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 yr                                                                        | 96.8<br>+0.4/-0.5                        | 66.7                                     | 97.6<br>+0.5/-0.7                        | 18.0<br>+3.0/-2.8                        | 97.9<br>+0.2/-0.3<br>at 49 mo            | 6.6<br>+0.8/-0.7<br>at 49 mo             |                                          |                                          |                                          |                                          | 99.4<br>+0.1/-0.2<br>at 52 mo                 | 42.9<br>+3.8/-3.9<br>at 52 mo            |                                          |                                          |
| (%)                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4 yr                                                                        | 97.8<br>+0.3/-0.4                        | 87.6<br>+0.8/-0.8                        | 97.7<br>+0.5/-0.6                        | 78.7                                     | 98.0<br>+0.2/-0.3                        | 21.0                                     | 99.5<br>+0.2/-0.2<br>at 47 mo            | 73.6<br>+3.1/-3.4<br>at 47 mo            | 99.7<br>+0.1/-0.1<br>at 42 mo            | 82.9<br>+2.1/-2.3<br>at 42 mo            | 99.4<br>+0.1/-0.2                             | 65.1<br>+1.2/-1.3                        | 99.7<br>+0.1/-0.2<br>at 42 mo            | 86.6<br>+1.3/-1.5<br>at 42 mo            |
| Device Survival Probability (%) | ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Y                                                                           | 99.1<br>+0.2/-0.2                        | 95.4<br>+0.4/-0.5                        | 98.2<br>+0.4/-0.5                        | 86.4                                     | 98.7<br>+0.2/-0.2                        | 82.9<br>+0.6/-0.6                        | 99.6<br>+0.1/-0.2                        | 89.8<br>+0.7/-0.8                        | 99.7<br>+0.1/-0.1                        | 90.5                                     | 99.6<br>+0.1/-0.1                             | 89.0+0.6/-0.6                            | 99.7<br>+0.1/-0.1                        | 92.2<br>+0.6/-0.7                        |
| ırvival Pr                      | er Implar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2 yr                                                                        | 99.8<br>+0.1/-0.1                        | 99.2<br>+0.2/-0.2                        | 98.9<br>+0.3/-0.4                        | 91.9<br>+0.8/-0.9                        | 99.7<br>+0.1/-0.1                        | 96.9<br>+0.2/-0.3                        | 99.9<br>+0.1/-0.1                        | 97.8<br>+0.3/-0.4                        | 99.9+0.0/-0.1                            | 97.9<br>+0.2/-0.2                        | 99.8<br>+0.1/-0.1                             | 97.7                                     | 99.9<br>+0.0/-0.1                        | 98.1<br>+0.2/-0.3                        |
| Device Su                       | Years After Implant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                             | 99.9                                     | 99.7<br>+0.1/-0.1                        | 100.0                                    | 99.8                                     | 99.9                                     | 99.7<br>+0.1/-0.1                        | 100.0 +0.0/-0.1                          | 99.8                                     | 100.0 +0.0/-0.0                          | 99.8                                     | 100.0                                         | 99.9                                     | 100.0 +0.0/-0.0                          | 99.8                                     |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             | Excluding<br>Normal Battery<br>Depletion | Including<br>Normal Battery<br>Depletion | Excluding<br>Normal Battery<br>Depletion      | Including<br>Normal Battery<br>Depletion | Excluding<br>Normal Battery<br>Depletion | Including<br>Normal Battery<br>Depletion |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             | 2                                        | N                                        | No                                       | Nor                                      | N                                        | Nor                                      | Nor                                      | Norn                                     | Nor                                      | Norn                                     | Nor                                           | Norn                                     | Š                                        | Non                                      |
| ons (US)                        | pəsimoro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                             | = 238                                    | io <sub>N</sub>                          | = 74                                     |                                          | = 284                                    |                                          | = 30                                     | Norn                                     | = 48                                     | Norn                                     | = 62                                          | Norn                                     | = 24                                     | Nor                                      |
| Malfunctions (US)               | toN not<br>bəsimorc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Comp<br>Thers<br>Funct                                                      | 238                                      | Nor                                      | 74                                       |                                          | 284                                      |                                          | 30                                       | Norn                                     | 48                                       | Norn                                     | 62                                            | Norn                                     | 24                                       | Non                                      |
| Malfunctions (US)               | yqr<br>ion Not<br>somised                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Deplo<br>Thers<br>Comp<br>Thers<br>Functional                               | + 223 = 238                              | Nor                                      | + 63 = 74                                | $\frac{(10)}{(advisory-related subset)}$ | + 253 = 284                              | $\frac{(8)}{(advisory-related subset)}$  | + 29 = 30                                | Norn                                     | + 43 = 48                                | Norn                                     | + 57 = 62                                     | Norn                                     | + 22 = 24                                | Non                                      |
| Malfunctions (US)               | nal Battery<br>etions (US)<br>to Punction<br>spy Function<br>spy<br>qer<br>tion Not<br>tion Not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Impla<br>Norm<br>Thera<br>Comp<br>Thera<br>Funci                            | 15 + 223 = 238                           | Nor                                      | 11 + 63 = 74                             | $\frac{(10)}{(advisory-related subset)}$ | 31 + 253 = 284                           | $\frac{(8)}{(advisory-related subset)}$  | 1 + 29 = 30                              | Nom                                      | 5 + 43 = 48                              | Norm                                     | 5 + 57 = 62                                   | Norn                                     | 2 + 22 = 24                              | Non                                      |
| Malfunctions (US)               | sints  Sal Battery  Scions (US)  The properties of the properties  | US Im<br>Estim<br>Activ<br>Morm<br>Deplo<br>Thers<br>Comp<br>Thers<br>Funct | 1,284 15 + 223 = 238                     | Nor                                      | 588 11 + 63 = 74                         | $\frac{(10)}{(advisory-related subset)}$ | 5,001 31 + 253 = 284                     | $\frac{(8)}{(advisory-related subset)}$  | 458 1 + 29 = 30                          | Nom                                      | 708 5 + 43 = 48                          | Norm                                     | 1,408 5 + 57 = 62                             | Norn                                     | 344 2 + 22 = 24                          | Non                                      |
| Malfunctions (US)               | stered balants e US e US sints sints consistency solutions consistency consist | Regisa<br>NS Implis<br>Morm<br>Morm<br>Morm<br>Morm<br>Deplo<br>Comp        | 1,000 1,284 15 + 223 = 238               | Non                                      | 100 588 11 + 63 = 74                     | $\frac{(10)}{(advisory-related subset)}$ | 1,000 5,001 31 + 253 = 284               | $\frac{(8)}{(advisory-related subset)}$  | 4,000 458 1 + 29 = 30                    | Nom                                      | 18,000 708 5 + 43 = 48                   | Norm                                     | 6,000 1,408 5 + 57 = 62                       | Norn                                     | 11,000  344  2  +  22  =  24             | Non                                      |
| Malfunctions (US)               | reted higherts based batter based be US but batter but based by the CO but be better but be better but be better but                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Regisa<br>NS Implis<br>Morm<br>Morm<br>Morm<br>Morm<br>Deplo<br>Comp        | 13,000 1,000 1,284 15 + 223 = 238        | Nor                                      | 7,000 100 588 11 + 63 = 74               |                                          | 28,000 1,000 5,001 31 + 253 = 284        |                                          | 9,000 4,000 458 1 + 29 = 30              | Nom                                      | 31,000 18,000 708 5 + 43 = 48            | Norm                                     | $17,000  6,000  1,408 \qquad 5  +  57  =  62$ | Norn                                     | 18,000 11,000 344 2 + 22 = 24            | Non                                      |

|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                           |                                          |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|-------------------------------------------|------------------------------------------|
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8 yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 99.6<br>+0.1/-0.2<br>at 86 mo            | 69.5<br>+2.7/-2.9<br>at 86 mo            |                                          |                                          |                                          |                                          |                                          |                                          |                                           |                                          |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7 yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 99.6                                     | <b>73.5</b> +1.9/-2.0                    | 99.9<br>+0.0/-0.1<br>at 73 mo            | 79.0<br>+4.8/-5.9<br>at 73 mo            |                                          |                                          |                                          |                                          |                                           |                                          |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6 yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 99.6<br>+0.1/-0.2                        | 84.6<br>+0.9/-1.0                        | 99.9<br>+0.0/-0.1                        | 82.1<br>+4.1/-5.1                        |                                          |                                          |                                          |                                          |                                           |                                          |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 99.7<br>+0.1/-0.2                        | 91.3 +0.7/-0.7                           | 99.9<br>+0.0/-0.1                        | 93.9<br>+0.6/-0.7                        |                                          |                                          |                                          |                                          |                                           |                                          |
| y (%)                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4 yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 99.8<br>+0.1/-0.1                        | 96.2<br>+0.4/-0.4                        | 100.0                                    | 97.2<br>+0.3/-0.4                        |                                          |                                          |                                          |                                          |                                           |                                          |
| Device Survival Probability (%) | ınt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3 yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 99.9<br>+0.0/-0.1                        | 98.3 +0.2/-0.3                           | 100.0                                    | 99.2 +0.1/-0.2                           | 99.4<br>+0.3/-0.5<br>at 29 mo            | 93.8<br>+1.3/-1.7<br>at 29 mo            |                                          |                                          |                                           |                                          |
| Survival F                      | Years After Implant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100.0                                    | 99.7<br>+0.1/-0.1                        | 100.0                                    | 99.9                                     | 99.8<br>+0.1/-0.1                        | 97.5<br>+0.3/-0.3                        |                                          |                                          |                                           |                                          |
| Device !                        | Years Af                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100.0                                    | 99.9                                     | 100.0                                    | 100.0 +0.0/-0.0                          | 99.9<br>+0.0/-0.0                        | 99.8 +0.0/-0.1                           | 100.0<br>+0.0/-0.0<br>at 3 mo            | 100.00<br>+0.0/-0.0<br>at 3 mo           | 100.0<br>+0.0/-0.0<br>at 2 mo             | 100.00<br>+0.0/-0.0<br>at 2 mo           |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Excluding<br>Normal Battery<br>Depletion | Including<br>Normal Battery<br>Depletion | Excluding<br>Normal Battery<br>Depletion  | Including<br>Normal Battery<br>Depletion |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Norr                                     | Norn                                     | Norn                                     | Nor                                      | Nor                                      | Norm                                     | Nor                                      | Norm                                     | Nor                                       | Norm                                     |
| S)                              | ls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | тот                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 28 Norn                                  | Norn                                     | 6<br>Norn                                | Norn                                     |                                          | Norm                                     |                                          | Norm                                     |                                           | Norm                                     |
| ins (US)                        | ubromised                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ıoɔ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                          | Norn                                     |                                          | Norm                                     | = 50                                     | Norm                                     | 0                                        | Norm                                     | 0                                         | Norm                                     |
| unctions (US)                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ıoɔ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7 = 28                                   | Norn                                     | 3 = 6                                    | Norn                                     | 36 = 50                                  | Norm                                     | 0 = 0                                    | Norm                                     | 0 = 0                                     | Norm                                     |
| Malfunctions (US)               | ubromised                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | The<br>The<br>run <sup>3</sup><br>Cor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | = 28                                     | Norn                                     | 9                                        | Norm                                     | = 50                                     | Norm                                     | 0                                        | Norm                                     | 0                                         | Norm                                     |
| Malfunctions (US)               | npromised<br>erapy<br>Iction Not<br>npromised                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | The<br>Cor<br>The<br>The<br>Tun<br>Tun<br>Too                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | + 7 = 28                                 | Norn                                     | + 3 = 6                                  | Norra                                    | + 36 = 50                                | Norm                                     | 0 = 0 +                                  | Norm                                     | 0 = 0 +                                   | Norm                                     |
| Malfunctions (US)               | oletions (US)<br>grapy Function<br>npromised<br>grapy<br>trapy<br>ction Not<br>hytomised                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Act<br>Inpp<br>Inpp<br>Inpp<br>Inpp<br>Inpp<br>Inpp<br>Inpp<br>Inp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 21 + 7 = 28                              | Norn                                     | 3 + 3 + 5                                | Norm                                     | 14 + 36 = 50                             | Norm                                     | 0 = 0 + 0                                | Norm                                     | 0 = 0 + 0                                 | Norm                                     |
| Malfunctions (US)               | ive US<br>blants<br>mal Battery<br>siletions (US)<br>mpromised<br>mpromised<br>srapy<br>srapy<br>stapy<br>mpromised                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SU<br>Esti<br>Acti<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli<br>Impli | 533 21 + 7 = 28                          | Norn                                     | 243 3 + 3 = 6                            | Norm                                     | 168 14 + 36 = 50                         | Norm                                     | 0 = 0 + 0                                | Norm                                     | 0 = 0 + 0                                 | Norm                                     |
| Malfunctions (US)               | Implants ive US ive US solidate mal Battery solidate ive US) function stepy Function promised function solidate | Reci<br>US<br>String<br>Moi<br>Uni<br>Moi<br>Dep<br>The<br>Con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3,000 533 21 + 7 = 28                    | Norn                                     | 16,000  243  3  +  3  =  6               | Norm                                     | 57,000 168 14 + 36 = 50                  | Norm                                     | 2,000 0 0 + 0 = 0                        | Norm                                     | 1,000 $0$ $0$ $0$ $0$ $0$ $0$ $0$         | Norm                                     |
| Malfunctions (US)               | pistered implants  imated by the US  ive US  ive US  inal Battery  inal  | Reci<br>US<br>String<br>Moi<br>Uni<br>Moi<br>Dep<br>The<br>Con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15,000 3,000 533 21 + 7 = 28             | Norn                                     | 29,000 16,000 243 3 + 3 = 6              | Norm                                     | 68,000 57,000 168 14 + 36 = 50           | Norm                                     | 2,000 $2,000$ $0$ $0$ $+ 0 = 0$          | Norm                                     | 1,000 $1,000$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ | Norm                                     |



#### **Reference Chart**

The longevity estimates provided are mean values calculated for the parameters given. The actual longevity achieved for any device while implanted will depend on the actual programmed parameters and patient factors, and may differ significantly from these estimates.

|                 |                      |                    |                |                     | E                                  | stimate           | d Longe           | vity               |                     | Elective           | End of                     |                                     |
|-----------------|----------------------|--------------------|----------------|---------------------|------------------------------------|-------------------|-------------------|--------------------|---------------------|--------------------|----------------------------|-------------------------------------|
|                 | Family               |                    |                | Delivered<br>Energy | **                                 |                   |                   |                    |                     | (ERI)***           |                            |                                     |
| Model<br>Number |                      | Connector<br>Style |                |                     | Charging<br>Frequency**            | 100%<br>Pacing‡   | 50%<br>Pacing‡    | 15%<br>Pacing‡     | 100%<br>Sensing     | Battery<br>Voltage | me ()                      | Life<br>(EOL)<br>Battery<br>Voltage |
| 7272            | InSync ICD           | DR+LV              | 66 cc<br>117 g | 34 J                | Monthly<br>Quarterly<br>Semiannual | 5.4<br>6.5<br>6.9 | 6.3<br>8.0<br>8.5 | 7.3<br>9.4<br>10.3 | 7.8<br>10.3<br>11.2 | ≤ 4.91 V           | _                          | ≤ 4.57 V                            |
| 7277            | InSync<br>Marquis    | DR+LV<br>split     | 38 cc<br>77 g  | 30 J                | Monthly<br>Quarterly<br>Semiannual | 3.7<br>5.0<br>5.5 | 4.3<br>6.0<br>6.7 | 4.7<br>7.0<br>8.0  | 4.9<br>7.5<br>8.6   | ≤ 2.62 V           | > 16 second<br>charge time | 3 months<br>after ERI               |
| 7289            | InSync II<br>Marquis | DR+LV<br>true      | 38 cc<br>76 g  | 30 J                | Monthly<br>Quarterly<br>Semiannual | 3.3<br>4.2<br>4.5 | 3.6<br>4.9<br>5.4 | 4.0<br>5.5<br>6.1  | 4.2<br>5.8<br>6.6   | ≤ 2.62 V           | > 16 second<br>charge time | 3 months<br>after ERI               |
| 7295            | InSync II<br>Protect | DR+LV true         | 38 cc<br>77 g  | 30 J                | Monthly<br>Quarterly<br>Semiannual | 3.3<br>4.2<br>4.5 | 3.7<br>4.9<br>5.4 | 4.0<br>5.5<br>6.2  | 4.2<br>5.9<br>6.6   | ≤ 2.62 V           | > 16 second<br>charge time | 3 months<br>after ERI               |
| 7297            | InSync Sentry        | DR+LV<br>true      | 40 cc<br>78 g  | 35 J                | Monthly<br>Quarterly<br>Semiannual | 3.3<br>4.5<br>5.0 | 3.7<br>5.3<br>6.0 | 4.1<br>6.2<br>7.1  | 4.3<br>6.6<br>7.7   | ≤ 2.62 V           | > 16 second<br>charge time | 3 months<br>after ERI               |
| 7299            | InSync Sentry        | DR+LV<br>true      | 40 cc<br>78 g  | 35 J                | Monthly<br>Quarterly<br>Semiannual | 3.3<br>4.5<br>5.0 | 3.7<br>5.3<br>6.0 | 4.1<br>6.2<br>7.1  | 4.3<br>6.6<br>7.7   | ≤ 2.62 V           | > 16 second<br>charge time | 3 months<br>after ERI               |
| 7303            | InSync<br>Maximo     | DR+LV<br>true      | 40 cc<br>78 g  | 35 J                | Monthly<br>Quarterly<br>Semiannual | 3.3<br>4.5<br>5.0 | 3.7<br>5.3<br>6.0 | 4.1<br>6.2<br>7.1  | 4.3<br>6.6<br>7.7   | ≤ 2.62 V           | > 16 second<br>charge time | 3 months<br>after ERI               |
| 7304            | InSync<br>Maximo     | DR+LV<br>true      | 40 cc<br>78 g  | 35 J                | Monthly<br>Quarterly<br>Semiannual | 3.3<br>4.5<br>5.0 | 3.7<br>5.3<br>6.0 | 4.1<br>6.2<br>7.1  | 4.3<br>6.6<br>7.7   | ≤ 2.62 V           | > 16 second<br>charge time | 3 months<br>after ERI               |

|            |                 | Estimated Lo                                                                 | ngevity            |                     |                                      |  |  |
|------------|-----------------|------------------------------------------------------------------------------|--------------------|---------------------|--------------------------------------|--|--|
| Family     | Model<br>Number | Amplitude Setting                                                            | 500<br>Lead Ω      | 1000<br>Lead Ω      | Elective Replacement Time Indicators |  |  |
| InSync     | 8040            | Low 2.5 V (A, RV)<br>Nominal 3.5 V (A, RV)<br>High 5.0 V (A, RV)             | 11.9<br>8.9<br>6.6 | 13.7<br>11.4<br>9.1 | **                                   |  |  |
| InSync III | 8042            | Low 2.5 V (A, RV, LV)<br>Nominal 3.5 V (A, RV, LV)<br>High 5.0 V (A, RV, LV) | 8.3<br>5.9<br>4.1  | 9.9<br>7.8<br>6.0   | **                                   |  |  |

|                                 |           |                    |                  |                     | Es                                 | Estimated Longevity |                   |                   |                    | Recommended        |                |                                                       |  |
|---------------------------------|-----------|--------------------|------------------|---------------------|------------------------------------|---------------------|-------------------|-------------------|--------------------|--------------------|----------------|-------------------------------------------------------|--|
|                                 |           |                    |                  |                     | *                                  |                     |                   |                   |                    | Replace            | ment (RRT)***  |                                                       |  |
| Model<br>Number                 | Family    | Connector<br>Style | Volume/<br>Mass* | Delivered<br>Energy | Charging<br>Frequency              | 100%<br>Pacing‡     | 50%<br>Pacing‡    | 15%<br>Pacing‡    | 100%<br>Sensing    | Battery<br>Voltage | Charge<br>Time | End of<br>Service<br>(EOS)                            |  |
| C154DWK,<br>C164AWK,<br>C174AWK | Concerto  | DR+LV<br>true      | 38 cm<br>68 g    | 35 J                | Monthly<br>Quarterly<br>Semiannual | 3.8<br>5.5<br>6.3   | 4.3<br>6.8<br>8.0 | 4.8<br>8.0<br>9.8 | 5.0<br>8.8<br>11.0 | ≤ 2.62 V           | _              | 3 month<br>after RRT or<br>> 16-second<br>charge time |  |
| D224TRK                         | Consulta  | DR+LV<br>true      | 38 cc/<br>68 g   | 35 J                | Monthly<br>Quarterly<br>Semiannual | 3.2<br>4.4<br>4.8   | 3.8<br>5.5<br>6.2 | 4.4<br>6.8<br>7.9 | 4.7<br>7.5<br>9.0  | ≤ 2.63 V           | _              | 3 month<br>after RRT or<br>> 16-second<br>charge time |  |
| D284TRK                         | Maximo II | DR+LV<br>true      | 38 cc/<br>68 g   | 35 J                | Monthly<br>Quarterly<br>Semiannual | 3.2<br>4.4<br>4.8   | 3.8<br>5.5<br>6.2 | 4.4<br>6.8<br>7.9 | 4.7<br>7.5<br>9.0  | ≤ 2.63 V           | _              | 3 month<br>after RRT or<br>> 16-second<br>charge time |  |

<sup>\*</sup> Volume and mass differ by connector style.

<sup>\*\*</sup> A full charge is a full energy therapeutic shock or capacitor reformation.

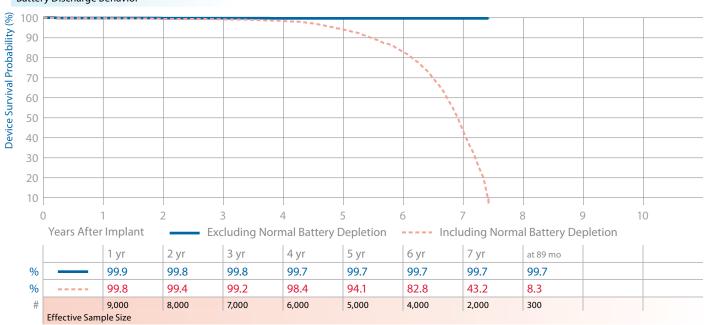
<sup>\*\*\*</sup> The minimum time between ERI and EOL (or RRT and EOS) is 3 months (100% pacing, two charges per month).

<sup>‡</sup> Pacing mode is DDD for CRT models. Parameter settings; lower rate at 60 ppm, sensing rate at 70 bpm, (A, RV, LV) 3.0 V amplitude, 0.4 ms pulse width, and 510-ohm pace load per applicable channel. CRT models with shared biventricular pacing; InSync Marquis 7277 (LV impedance set to 510 ohms), InSync ICD 7272 (RV amplitude set to 4.0 V).



#### **7227 GEM** Product Characteristics

| S Ma              | arket Release | 2             | Oct-         | 98 Ma        | Ifunctions (US) |        | 148   | NBD          | Code               |              | VVEV      |
|-------------------|---------------|---------------|--------------|--------------|-----------------|--------|-------|--------------|--------------------|--------------|-----------|
| egis <sup>.</sup> | tered US Imp  | olants        | 22,00        | 00           |                 |        |       | Seria        | ıl Number Pref     | ix           | PIP, PLN, |
| stim              | ated Active l | JS Implants   | 3,00         | 00           |                 |        |       |              |                    |              | PLP, PLR  |
| lorm              | al Battery De | epletions (US | ) 1,8        | 24           |                 |        |       | Max          | Delivered Ener     | rgy          | 35 J      |
|                   | ories: See pa | age 155 – 199 | 9 Potential  |              |                 |        |       | Estir        | nated Longevit     | ty           | See page  |
| 100               | COVENDAG      |               |              |              |                 |        |       |              |                    |              |           |
| 90                |               |               |              |              |                 |        |       |              |                    |              |           |
| 80                |               |               |              |              |                 |        |       | -            |                    |              |           |
| 70                |               |               |              |              |                 |        |       |              |                    |              |           |
| 60                |               |               |              |              |                 |        |       |              |                    |              |           |
| 50                |               |               |              |              |                 |        |       |              |                    |              |           |
| 40                |               |               |              |              |                 |        |       |              |                    |              |           |
| 30                |               |               |              |              |                 |        |       |              | · ·                |              |           |
|                   |               |               |              |              |                 |        |       |              |                    | 1            |           |
| 20                |               |               |              |              |                 |        |       |              |                    | Y            |           |
| 10                | 0             | 1             | 2            | 3            | 4               | 5      | 6 7   | 7            | 8                  | 9            | 10        |
| ,                 | Years Afte    | r Implant     | _            |              | lormal Battery  |        |       | dina Nor     | o<br>mal Battery D | _            | 10        |
|                   |               |               | 1            | 1            |                 | 1      | 1     | _            | 1                  | i            | at 112 mo |
| %                 |               | 1 yr          | 2 yr<br>99.6 | 3 yr<br>99.5 | 4 yr            | 5 yr   |       | 7 yr<br>99.1 | 8 yr<br>99.1       | 9 yr<br>99.0 | 99.0      |
| %<br>%            |               | 99.7          | 98.9         | 99.5         | 98.1            | 97.2   |       | 82.7         | 64.6               | 33.4         | 13.1      |
| 90<br>#           |               | 20,000        | 17,000       | 15,000       | 13,000          | 11,000 |       | 5,000        | 3,000              | 1,000        | 200       |
| π                 | Effective San |               | 17,000       | 13,000       | 13,000          | 11,000 | 0,000 | 3,000        | 3,000              | 1,000        | 200       |


#### 7229 GEM II VR

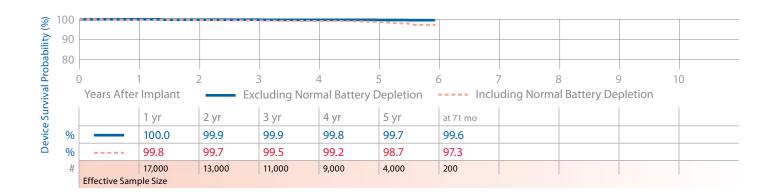
| US Market Release                   | Jul-99 | Malfunctions (US) | 27 | NBD Code             | VVEV        |
|-------------------------------------|--------|-------------------|----|----------------------|-------------|
| Registered US Implants              | 11,000 |                   |    | Serial Number Prefix | PJJ         |
| <b>Estimated Active US Implants</b> | 40     |                   |    | Max Delivered Energy | 30 J        |
| Normal Battery Depletions (US)      | 1,932  |                   |    | Estimated Longevity  | See page 37 |

Advisories: See page 155 – 1999 Potential

Circuit Overload

<u>Also see page 165</u> – Performance note on ICD Battery Discharge Behavior





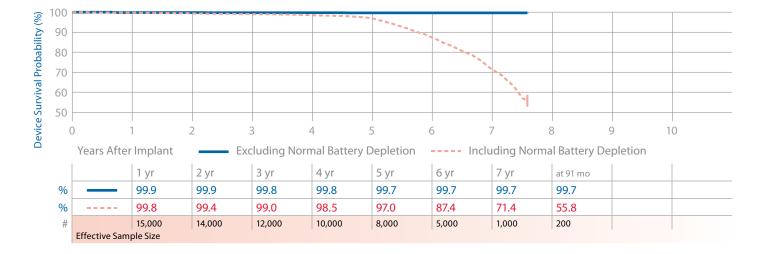

#### 7230 Marquis VR

| US Market Release                                | Dec    | -02 | Malfunctions (US)                           | 31 |
|--------------------------------------------------|--------|-----|---------------------------------------------|----|
| Registered US Implants                           | 19,000 |     | Therapy Function Not Compromised            | 21 |
| Estimated Active US Implants                     | 9,0    | 000 | Electrical Component                        | 11 |
| Normal Battery Depletions (US)                   |        | 52  | Software/Firmware                           | 1  |
| Advisories: See page 153 – 2005 Pote             | ential |     | Possible Early Battery Depletion            | 8  |
| Premature Battery Depletion Due to Battery Short | ue to  |     | Other                                       | 1  |
| battery short                                    |        |     | Therapy Function Compromised                | 10 |
|                                                  |        |     | Battery (3 malfunction related to advisory) | 5  |
|                                                  |        |     | Electrical Component                        | 5  |

#### **Product Characteristics**

| NBD Code             | VVEV             |
|----------------------|------------------|
| Serial Number Prefix | PKD, PLW,<br>PLY |
| Max Delivered Energy | 30 J             |
| Estimated Longevity  | See page 37      |
|                      |                  |
|                      |                  |




#### 7231 GEM III VR

| US Market Release                | Dec-00 |
|----------------------------------|--------|
| Registered US Implants           | 17,000 |
| Estimated Active US Implants     | 7,000  |
| Normal Battery Depletions (US)   | 795    |
| Performance Note: See page 165 – |        |

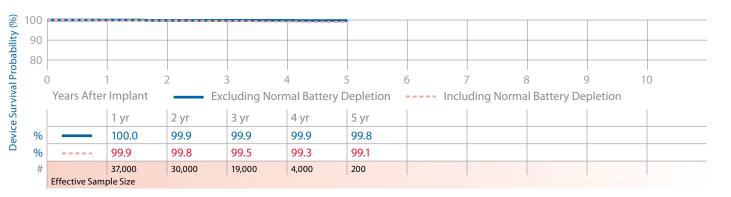
Performance note on ICD Battery Discharge Behavior

| Malfunctions (US)                | 37 |
|----------------------------------|----|
| Therapy Function Not Compromised | 27 |
| Battery                          | 1  |
| <b>Electrical Component</b>      | 22 |
| Possible Early Battery Depletion | 4  |
| Therapy Function Compromised     | 10 |
| Battery                          | 1  |
| Electrical Component             | 9  |

| NBD Code             | VVEV        |
|----------------------|-------------|
| Serial Number Prefix | PJL         |
| Max Delivered Energy | 30 J        |
| Estimated Longevity  | See page 37 |
|                      |             |
|                      |             |
|                      |             |

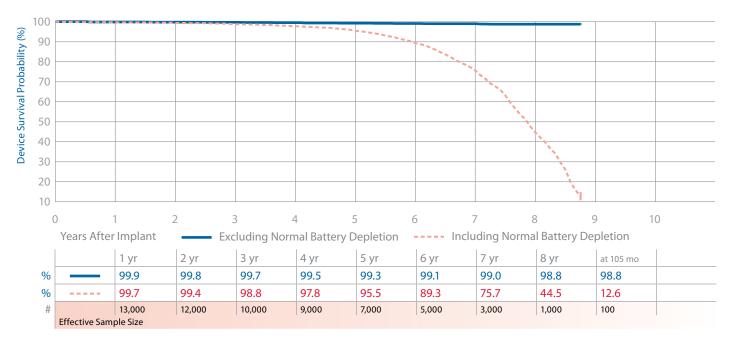





#### 7232 Maximo VR

| US Market Release                                                                          | Oct-03 | Malfund               |
|--------------------------------------------------------------------------------------------|--------|-----------------------|
| Registered US Implants                                                                     | 43,000 | Therap                |
| Estimated Active US Implants                                                               | 30,000 | Ele                   |
| Normal Battery Depletions (US)                                                             | 47     | Pos                   |
| Advisories: See page 153 – 2005 Por<br>Premature Battery Depletion Due to<br>Battery Short |        | <b>Therap</b><br>Elec |

| Malfunctions (US)                | 35 |
|----------------------------------|----|
| Therapy Function Not Compromised | 25 |
| Electrical Component             | 13 |
| Possible Early Battery Depletion | 12 |
| Therapy Function Compromised     | 10 |
| Electrical Component             | 8  |
| Electrical Interconnect          | 1  |
| Possible Early Battery Depletion | 1  |


| <b>Product Characteristics</b> |      |
|--------------------------------|------|
| NBD Code                       | VVED |
| 6 1 111 1 5 6                  | 221  |

| NBD Code             | VVED        |
|----------------------|-------------|
| Serial Number Prefix | PRN         |
| Max Delivered Energy | 35 J        |
| Estimated Longevity  | See page 37 |



#### **7271 GEM DR**

| US Market Release                   | Oct-98 | Malfunctions (US) | 96 | NBD Code             | VVED        |
|-------------------------------------|--------|-------------------|----|----------------------|-------------|
| Registered US Implants              | 15,000 |                   |    | Serial Number Prefix | PIM         |
| <b>Estimated Active US Implants</b> | 2,000  |                   |    | Max Delivered Energy | 27 J        |
| Normal Battery Depletions (US)      | 1,370  |                   |    | Estimated Longevity  | See page 37 |
| Advisories                          | None   |                   |    |                      |             |



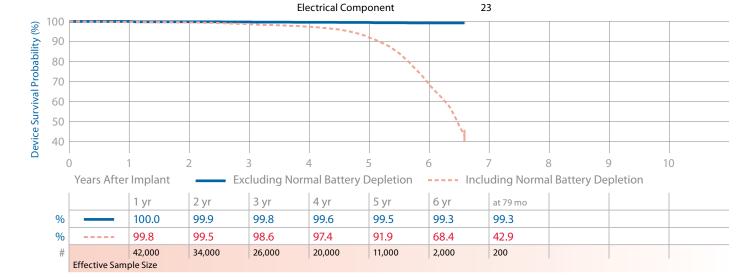
## **ICD**

#### 7274 Marquis DR

| US Market Release                         | Mar-02 |  |
|-------------------------------------------|--------|--|
| Registered US Implants                    | 48,000 |  |
| Estimated Active US Implants              | 15,000 |  |
| Normal Battery Depletions (US)            | 1,495  |  |
| Advisories: See page 153 - 2005 Potential |        |  |

Advisories: See page 153 – 2005 Potential Premature Battery Depletion Due to Battery Short

# Malfunctions (US) 150 Therapy Function Not Compromised 75 Battery (3 malfunctions related to advisory) 5 Electrical Component 23 Possible Early Battery Depletion 47


Electrical Component 23
Possible Early Battery Depletion 47

Therapy Function Compromised 75
Battery (42 malfunctions related to advisory) 52

75 Se 5 M 23 Es 47

NBD Code VVED
Serial Number Prefix PKC
Max Delivered Energy 30 J
Estimated Longevity See page 37

**Product Characteristics** 



#### 7275 GEM III DR

# US Market Release Nov-00 Registered US Implants 20,000 Estimated Active US Implants 2,000 Normal Battery Depletions (US) 3,471

Performance Note: See page 165 – Performance note on ICD Battery Discharge Behavior

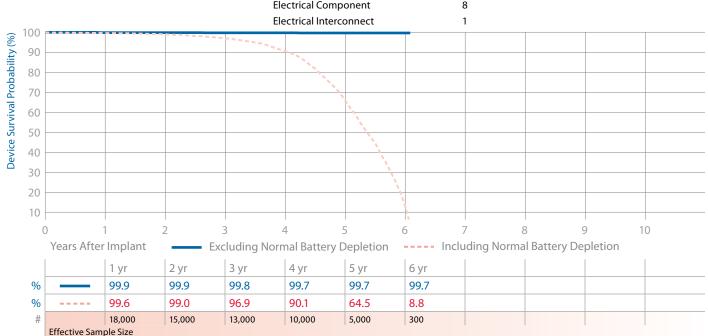
#### Product Characteristics

**NBD** Code

| Malfunctions (US)                | 41 |
|----------------------------------|----|
| Therapy Function Not Compromised | 30 |
| Battery                          | 1  |
| Electrical Component             | 11 |
| Software/Firmware                | 1  |
| Possible Early Battery Depletion | 17 |
| Therapy Function Compromised     | 11 |
| Battery                          | 2  |
| Floatrical Component             | 0  |

Serial Number Prefix

Max Delivered Energy


Estimated Longevity

**VVED** 

PJM

30 J

See page 37

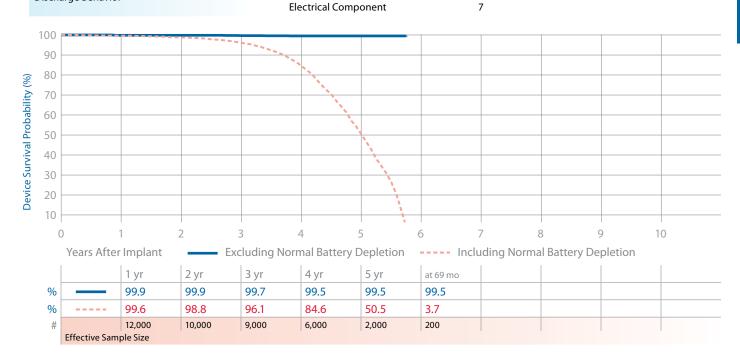




#### **7276 GEM III AT**

| US Market Release                                  | Feb-01 | Malfunctions (US)                |
|----------------------------------------------------|--------|----------------------------------|
| Registered US Implants                             | 14,000 | Therapy Function Not Compromised |
| Estimated Active US Implants                       | 1,000  | Electrical Component             |
| Normal Battery Depletions (US)                     | 2,700  | Software/Firmware                |
| Performance Note: See page 165 -                   |        | Possible Early Battery Depletion |
| Performance note on ICD Battery Discharge Behavior |        | Therapy Function Compromised     |
| Discharge Deriavior                                |        |                                  |

#### **Product Characteristics**


46

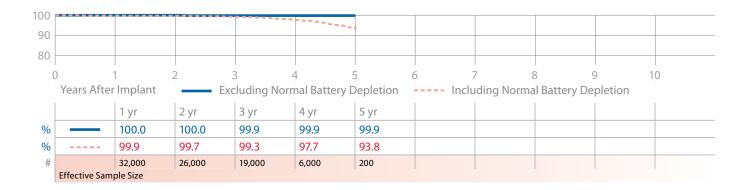
39 7 1

31

7

| NBD Code             | DDED       |
|----------------------|------------|
| Serial Number Prefix | PKE        |
| Max Delivered Energy | 30 J       |
| Estimated Longevity  | See page 3 |
|                      |            |




#### 7278 Maximo DR

| US Market Release                                                                             | Oct-03 |
|-----------------------------------------------------------------------------------------------|--------|
| Registered US Implants                                                                        | 37,000 |
| <b>Estimated Active US Implants</b>                                                           | 25,000 |
| Normal Battery Depletions (US)                                                                | 194    |
| Advisories: See page 153 – 2005 Potent<br>Premature Battery Depletion Due to<br>Battery Short | tial   |

# Malfunctions (US) 29 Therapy Function Not Compromised 21 Electrical Component 12 Possible Early Battery Depletion 9 Therapy Function Compromised 8 Electrical Component 7 Possible Early Battery Depletion 1

| Proc | luct C | harac | ter | istics |
|------|--------|-------|-----|--------|
|      |        |       |     |        |

| NBD Code             | VVED        |
|----------------------|-------------|
| Serial Number Prefix | PRM         |
| Max Delivered Energy | 35 J        |
| Estimated Longevity  | See page 37 |
|                      |             |

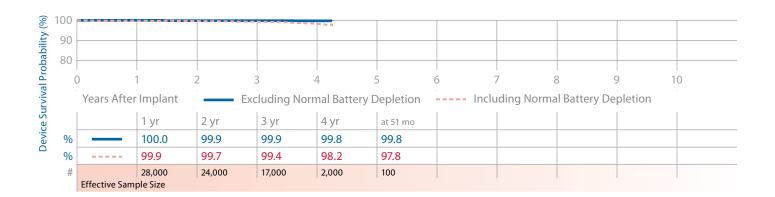




#### 7288 Intrinsic

| US Market Release                   | Aug-04 |
|-------------------------------------|--------|
| Registered US Implants              | 31,000 |
| <b>Estimated Active US Implants</b> | 22,000 |
| Normal Battery Depletions (US)      | 85     |
| Advisories                          | None   |

| Malfunctions (US)                | 33 |
|----------------------------------|----|
| Therapy Function Not Compromised | 27 |
| Battery                          | 2  |
| Electrical Component             | 10 |
| Software/Firmware                | 1  |
| Possible Early Battery Depletion | 14 |
| Therapy Function Compromised     | 6  |

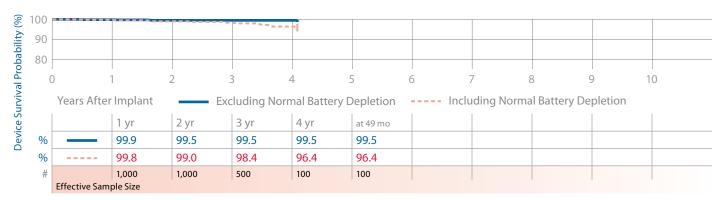

**Electrical Component** 

#### **Product Characteristics**

6

4

| NBD Code             | VVED        |
|----------------------|-------------|
| Serial Number Prefix | PUB         |
| Max Delivered Energy | 35 J        |
| Estimated Longevity  | See page 37 |
|                      |             |

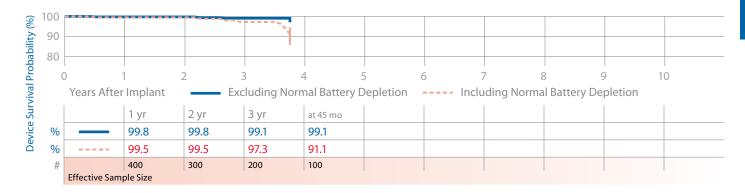



#### **7290 Onyx**

| US Market Release              | Mar-04 |
|--------------------------------|--------|
| Registered US Implants         | 1,000  |
| Estimated Active US Implants   | 1,000  |
| Normal Battery Depletions (US) | 6      |
| Advisories                     | None   |

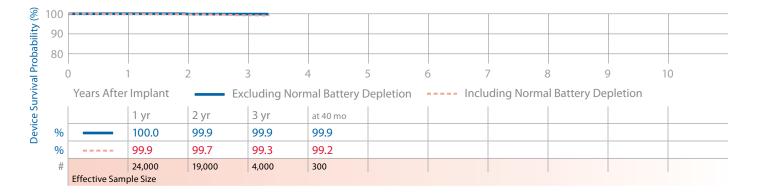
| Malfunctions (US)                |
|----------------------------------|
| Therapy Function Not Compromised |
| Electrical Component             |
| Possible Early Battery Depletion |
| Therapy Function Compromised     |
| Electrical Component             |
|                                  |

| NBD Code             | VVEV        |
|----------------------|-------------|
| Serial Number Prefix | PRP         |
| Max Delivered Energy | 30 J        |
| Estimated Longevity  | See page 37 |
|                      |             |






#### D153ATG, D153DRG EnTrust


#### **Product Characteristics**

| US Market Release                   | Jun-05 | Malfunctions (US)                | 3 | NBD Code                   | DDED, VVED  |
|-------------------------------------|--------|----------------------------------|---|----------------------------|-------------|
| Registered US Implants              | 400    | Therapy Function Not Compromised | 2 | Serial Number Prefix       | PNR         |
| <b>Estimated Active US Implants</b> | 300    | Possible Early Battery Depletion | 2 | Max Delivered Energy       | 30 J        |
| Normal Battery Depletions (US)      | 7      | Therapy Function Compromised     | 1 | <b>Estimated Longevity</b> | See page 38 |
| Advisories                          | None   | Electrical Component             | 1 |                            |             |

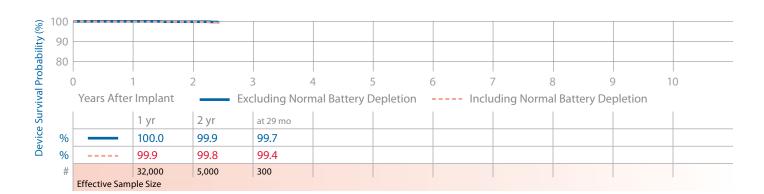


#### D154ATG, D154DRG EnTrust

| US Market Release              | Jun-05 | Malfunctions (US)                       | 20 | NBD Code             | DDED, VVED  |
|--------------------------------|--------|-----------------------------------------|----|----------------------|-------------|
| Registered US Implants         | 28,000 | <b>Therapy Function Not Compromised</b> | 14 | Serial Number Prefix | PNR         |
| Estimated Active US Implants   | 22,000 | Electrical Component                    | 5  | Max Delivered Energy | 35 J        |
| Normal Battery Depletions (US) | 33     | Possible Early Battery Depletion        | 9  | Estimated Longevity  | See page 38 |
| Advisories                     | None   | Therapy Function Compromised            | 6  |                      |             |
|                                |        | Electrical Component                    | 6  |                      |             |






#### D154AWG, D164AWG Virtuoso

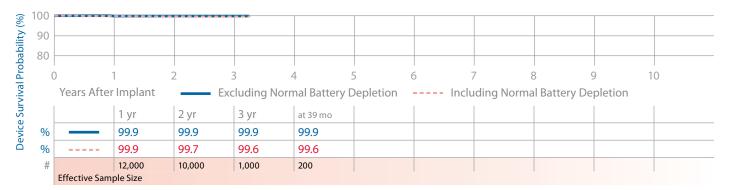
| US Market Release                   | May-06 |
|-------------------------------------|--------|
| Registered US Implants              | 62,000 |
| <b>Estimated Active US Implants</b> | 56,000 |
| Normal Battery Depletions (US)      | 14     |
| Advisories                          | None   |

| Malfunctions (US)                | 25 |
|----------------------------------|----|
| Therapy Function Not Compromised | 10 |
| Electrical Component             | 8  |
| Electrical Interconnect          | 1  |
| Possible Early Battery Depletion | 1  |
| Therapy Function Compromised     | 15 |
| Electrical Component             | 15 |

#### **Product Characteristics**

| NBD Code             | VVED        |
|----------------------|-------------|
| Serial Number Prefix | PVV, PUL    |
| Max Delivered Energy | 35 J        |
| Estimated Longevity  | See page 38 |
|                      |             |

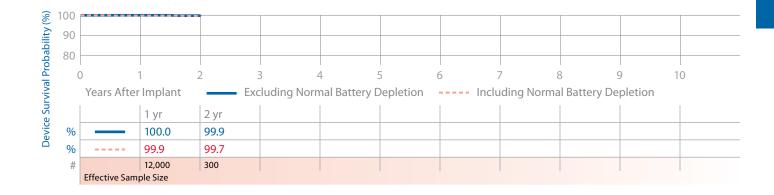



#### D154VRC EnTrust

| U | JS Market Release       | J        | un-05 |
|---|-------------------------|----------|-------|
| R | Registered US Implants  | 1        | 4,000 |
| Е | stimated Active US Imp  | plants 1 | 1,000 |
| Ν | lormal Battery Depletic | ons (US) | 7     |
| Α | Advisories              |          | None  |

| Malfunctions (US)                |
|----------------------------------|
| Therapy Function Not Compromised |
| Electrical Component             |
| Possible Early Battery Depletion |
| Therapy Function Compromised     |
| Electrical Component             |
|                                  |

#### **Product Characteristics**


| NBD Code             | VVEV        |
|----------------------|-------------|
| Serial Number Prefix | PNT         |
| Max Delivered Energy | 35 J        |
| Estimated Longevity  | See page 38 |
|                      |             |





#### D154VWC, D164VWC Virtuoso

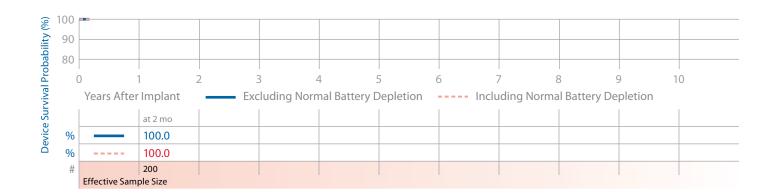
| US Market Release              | May-06 | Malfunctions (US)                | 8 | NBD Code             | VVEV        |
|--------------------------------|--------|----------------------------------|---|----------------------|-------------|
| Registered US Implants         | 26,000 | Therapy Function Not Compromised | 3 | Serial Number Prefix | PUN         |
| Estimated Active US Implants   | 24,000 | Electrical Component             | 2 | Max Delivered Energy | 35 J        |
| Normal Battery Depletions (US) | 7      | Electrical Interconnect          | 1 | Estimated Longevity  | See page 38 |
| Advisories                     | None   | Therapy Function Compromised     | 5 |                      |             |
|                                |        | Electrical Component             | 5 |                      |             |



#### **D224DRG** Secura DR

| US Market Release              | Aug-08 |
|--------------------------------|--------|
| Registered US Implants         | 1,000  |
| Estimated Active US Implants   | 1,000  |
| Normal Battery Depletions (US) | 0      |
| Advisories                     | None   |

| Malfunctions (US)               |   |
|---------------------------------|---|
| Therapy Function Not Compromise | d |
| Therapy Function Compromised    |   |








#### **D224VRC Secura VR**

| US Market Release              | Aug-08 | Malfunctions (US)                | 0 | NBD Code             | VVEV        |
|--------------------------------|--------|----------------------------------|---|----------------------|-------------|
| Registered US Implants         | 1,000  | Therapy Function Not Compromised | 0 | Serial Number Prefix | PUX         |
| Estimated Active US Implants   | 1,000  | Therapy Function Compromised     | 0 | Max Delivered Energy | 35 J        |
| Normal Battery Depletions (US) | 0      |                                  |   | Estimated Longevity  | See page 38 |
| Advisories                     | None   |                                  |   |                      |             |



#### D284DRG Maximo II DR

**US Market Release** 

Advisories

**Registered US Implants** 

**Estimated Active US Implants** 

Normal Battery Depletions (US)

# Malfunctions (US) 0 NBD Code VVED Therapy Function Not Compromised 0 Serial Number Prefix PZM Therapy Function Compromised 0 Max Delivered Energy 35 J Estimated Longevity See page 38

**Product Characteristics** 

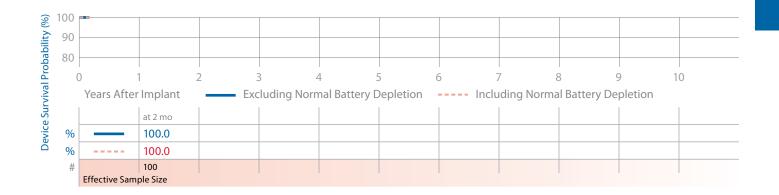
**Product Characteristics** 

| 100 |                 |                           |     |                   |                    |                  |   |                  |   |   |    |
|-----|-----------------|---------------------------|-----|-------------------|--------------------|------------------|---|------------------|---|---|----|
| 90  |                 |                           |     |                   |                    |                  |   |                  |   |   |    |
| 80  |                 |                           |     |                   |                    |                  |   |                  |   |   |    |
|     |                 | 1                         | 1   |                   |                    |                  |   |                  |   |   |    |
| (   | 0               | 1                         | 2   | 3                 | 4                  | 5                | 6 | 7                | 8 | 9 | 10 |
| (   | 0<br>Years Afte | 1<br>r Implant            | 2 E | 3<br>excluding No | 4<br>ormal Battery | 5<br>y Depletion |   | 7<br>luding Norr | _ | _ |    |
| (   |                 | 1<br>r Implant<br>at 2 mo | E   | 3<br>excluding No | 4<br>ormal Battery | 5<br>y Depletion |   | 7<br>Iuding Norr | _ | _ |    |
| %   |                 | 1                         | E   | 3<br>excluding No | 4<br>ormal Battery | 5<br>y Depletion |   | 7<br>Iuding Norr | _ | _ |    |
|     |                 | at 2 mo                   | 2 E | 3<br>Excluding No | 4<br>rmal Battery  | 5<br>y Depletion |   | 7<br>Iuding Norr | _ | _ |    |

Mar-08

1,000

1,000


None

0



#### **D284VRC** Maximo II VR

| US Market Release              | Mar-08 | Malfunctions (US)                | 0 | NBD Code             | VVEV        |
|--------------------------------|--------|----------------------------------|---|----------------------|-------------|
| Registered US Implants         | 400    | Therapy Function Not Compromised | 0 | Serial Number Prefix | PZN         |
| Estimated Active US Implants   | 400    | Therapy Function Compromised     | 0 | Max Delivered Energy | 35 J        |
| Normal Battery Depletions (US) | 0      |                                  |   | Estimated Longevity  | See page 38 |
| Advisories                     | None   |                                  |   |                      |             |





Device Survival Summary (95% Confidence Interval)

The following table shows ICD device survival estimates with 95% confidence intervals. Estimates are shown both with and without normal battery depletions included.

| Device Survival Probability (%) | Years After Implant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 yr 2 yr 3 yr 4 yr 5 yr 6 yr 7 yr 8 yr 10 yr                             | Excluding Depletion         99.7 by 1/0.1         99.6 by 2         99.4 by 2         99.2 by 2         99.2 by 3         99.1 by 3         99.0 by 3 </th <th>Including Depletion         99.3 by 3 by 3 by 1/0.01         98.9 by 3 by 3 by 1/0.02         98.7 by 3 by</th> <th>Excluding Depletion         99.9 big         99.8 big         99.7 big<!--</th--><th>Including         99.8         99.4         99.2         98.4         94.1         82.8         43.2         8.3           Normal Battery         +0.1/-0.1         +0.1/-0.2         +0.2/-0.2         +0.3/-0.3         +0.6/-0.6         +1.0/-1.1         +1.6/-1.6         +1.4/-1.3           Depletion         ***         ***         ***         ***         ***         ***         ***</th><th>Excluding         100.0         99.9         99.9         99.9         99.9         99.6           Normal Battery         +0.0/-0.0         +0.0/-0.1         +0.0/-0.1         +0.1/-0.1         +0.1/-0.1         +0.1/-0.2         at 71 mo</th><th>Including Department         99.8 big 1.00 - 0.1         99.7 big 1.00 big 1</th><th>Excluding Department Pattery         99.9         99.8         99.8         99.7         99.7         99.7         99.7         99.7           Depletion         Hould be propertion         Hould be propertion         Hould be propertied be propertied be propertied by properties by properties be properties be properties by properties be properties by properties be properties by properties by properties be properties by proper</th><th>Including         99.8         99.4         99.0         98.5         97.0         87.4         71.4         55.8           Normal Battery         +0.1/-0.1         +0.1/-0.1         +0.1/-0.2         +0.3/-0.2         +0.3/-0.4         +0.7/-0.8         +1.4/-1.5         +2.9/-3.1           Depletion         Depletion         40.3/-0.2         +0.3/-0.2         +0.3/-0.8         +1.4/-1.5         +2.9/-3.1</th><th>Excluding Normal Battery         100.0         99.9         99.9         99.9         99.9           Depletion         +0.0/-0.0         +0.0/-0.0         +0.0/-0.0         +0.0/-0.0         +0.0/-0.0         +0.0/-0.0</th><th>Including         99.9         99.8         99.5         99.3         99.1           Normal Battery         +0.0/-0.0         +0.0/-0.1         +0.1/-0.1         +0.1/-0.1         +0.1/-0.1         +0.2/-0.2</th><th>Excluding         99.9         99.8         99.7         99.5         99.3         99.1         99.0         98.8         98.8           Normal Battery         +0.0/-0.1         +0.1/-0.1         +0.1/-0.1         +0.1/-0.2         +0.1/-0.2         +0.2/-0.3         +0.2/-0.3         +0.2/-0.3           Depletion         at 105 mo</th><th>Including Depletion         99.7         99.4         98.8         97.8         95.5         89.3         75.7         44.5         12.6           Normal Battery Depletion         +0.1/-0.1         +0.1/-0.1         +0.2/-0.2         +0.3/-0.3         +0.4/-0.4         +0.7/-0.7         +1.2/-1.2         +1.8/-1.8         +2.1/-1.9</th><th>Excluding         100.0         99.9         99.8         99.6         99.5         99.3         99.3           Normal Battery         +0.0/-0.0         +0.0/-0.0         +0.0/-0.1         +0.1/-0.1         +0.1/-0.2         +0.1/-0.2         +0.1/-0.2           Depletion         at 79 mo</th><th></th></th> | Including Depletion         99.3 by 3 by 3 by 1/0.01         98.9 by 3 by 3 by 1/0.02         98.7 by 3 by | Excluding Depletion         99.9 big         99.8 big         99.7 big </th <th>Including         99.8         99.4         99.2         98.4         94.1         82.8         43.2         8.3           Normal Battery         +0.1/-0.1         +0.1/-0.2         +0.2/-0.2         +0.3/-0.3         +0.6/-0.6         +1.0/-1.1         +1.6/-1.6         +1.4/-1.3           Depletion         ***         ***         ***         ***         ***         ***         ***</th> <th>Excluding         100.0         99.9         99.9         99.9         99.9         99.6           Normal Battery         +0.0/-0.0         +0.0/-0.1         +0.0/-0.1         +0.1/-0.1         +0.1/-0.1         +0.1/-0.2         at 71 mo</th> <th>Including Department         99.8 big 1.00 - 0.1         99.7 big 1.00 big 1</th> <th>Excluding Department Pattery         99.9         99.8         99.8         99.7         99.7         99.7         99.7         99.7           Depletion         Hould be propertion         Hould be propertion         Hould be propertied be propertied be propertied by properties by properties be properties be properties by properties be properties by properties be properties by properties by properties be properties by proper</th> <th>Including         99.8         99.4         99.0         98.5         97.0         87.4         71.4         55.8           Normal Battery         +0.1/-0.1         +0.1/-0.1         +0.1/-0.2         +0.3/-0.2         +0.3/-0.4         +0.7/-0.8         +1.4/-1.5         +2.9/-3.1           Depletion         Depletion         40.3/-0.2         +0.3/-0.2         +0.3/-0.8         +1.4/-1.5         +2.9/-3.1</th> <th>Excluding Normal Battery         100.0         99.9         99.9         99.9         99.9           Depletion         +0.0/-0.0         +0.0/-0.0         +0.0/-0.0         +0.0/-0.0         +0.0/-0.0         +0.0/-0.0</th> <th>Including         99.9         99.8         99.5         99.3         99.1           Normal Battery         +0.0/-0.0         +0.0/-0.1         +0.1/-0.1         +0.1/-0.1         +0.1/-0.1         +0.2/-0.2</th> <th>Excluding         99.9         99.8         99.7         99.5         99.3         99.1         99.0         98.8         98.8           Normal Battery         +0.0/-0.1         +0.1/-0.1         +0.1/-0.1         +0.1/-0.2         +0.1/-0.2         +0.2/-0.3         +0.2/-0.3         +0.2/-0.3           Depletion         at 105 mo</th> <th>Including Depletion         99.7         99.4         98.8         97.8         95.5         89.3         75.7         44.5         12.6           Normal Battery Depletion         +0.1/-0.1         +0.1/-0.1         +0.2/-0.2         +0.3/-0.3         +0.4/-0.4         +0.7/-0.7         +1.2/-1.2         +1.8/-1.8         +2.1/-1.9</th> <th>Excluding         100.0         99.9         99.8         99.6         99.5         99.3         99.3           Normal Battery         +0.0/-0.0         +0.0/-0.0         +0.0/-0.1         +0.1/-0.1         +0.1/-0.2         +0.1/-0.2         +0.1/-0.2           Depletion         at 79 mo</th> <th></th> | Including         99.8         99.4         99.2         98.4         94.1         82.8         43.2         8.3           Normal Battery         +0.1/-0.1         +0.1/-0.2         +0.2/-0.2         +0.3/-0.3         +0.6/-0.6         +1.0/-1.1         +1.6/-1.6         +1.4/-1.3           Depletion         ***         ***         ***         ***         ***         ***         *** | Excluding         100.0         99.9         99.9         99.9         99.9         99.6           Normal Battery         +0.0/-0.0         +0.0/-0.1         +0.0/-0.1         +0.1/-0.1         +0.1/-0.1         +0.1/-0.2         at 71 mo | Including Department         99.8 big 1.00 - 0.1         99.7 big 1.00 big 1 | Excluding Department Pattery         99.9         99.8         99.8         99.7         99.7         99.7         99.7         99.7           Depletion         Hould be propertion         Hould be propertion         Hould be propertied be propertied be propertied by properties by properties be properties be properties by properties be properties by properties be properties by properties by properties be properties by proper | Including         99.8         99.4         99.0         98.5         97.0         87.4         71.4         55.8           Normal Battery         +0.1/-0.1         +0.1/-0.1         +0.1/-0.2         +0.3/-0.2         +0.3/-0.4         +0.7/-0.8         +1.4/-1.5         +2.9/-3.1           Depletion         Depletion         40.3/-0.2         +0.3/-0.2         +0.3/-0.8         +1.4/-1.5         +2.9/-3.1 | Excluding Normal Battery         100.0         99.9         99.9         99.9         99.9           Depletion         +0.0/-0.0         +0.0/-0.0         +0.0/-0.0         +0.0/-0.0         +0.0/-0.0         +0.0/-0.0 | Including         99.9         99.8         99.5         99.3         99.1           Normal Battery         +0.0/-0.0         +0.0/-0.1         +0.1/-0.1         +0.1/-0.1         +0.1/-0.1         +0.2/-0.2 | Excluding         99.9         99.8         99.7         99.5         99.3         99.1         99.0         98.8         98.8           Normal Battery         +0.0/-0.1         +0.1/-0.1         +0.1/-0.1         +0.1/-0.2         +0.1/-0.2         +0.2/-0.3         +0.2/-0.3         +0.2/-0.3           Depletion         at 105 mo | Including Depletion         99.7         99.4         98.8         97.8         95.5         89.3         75.7         44.5         12.6           Normal Battery Depletion         +0.1/-0.1         +0.1/-0.1         +0.2/-0.2         +0.3/-0.3         +0.4/-0.4         +0.7/-0.7         +1.2/-1.2         +1.8/-1.8         +2.1/-1.9 | Excluding         100.0         99.9         99.8         99.6         99.5         99.3         99.3           Normal Battery         +0.0/-0.0         +0.0/-0.0         +0.0/-0.1         +0.1/-0.1         +0.1/-0.2         +0.1/-0.2         +0.1/-0.2           Depletion         at 79 mo |          |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| rvival Pro                      | r Implan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                | -0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                            | -0.1                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                   |          |
| Device Su                       | Years Afte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                | -0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0                                                                                                                                                                                                                        |                                                                                                                                                                                                                 | 0.1                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                   |          |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                            |                                                                                                                                                                                                                 | Excluding<br>mal Battery<br>Depletion                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                   |          |
| 100                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                           | ž                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ž                                                                                                                                        | ž                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ž                                                                                                                                                                                                                                                                                                                                                                                                 | Š                                                                                                                                                                                                                                              | Š                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Š                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Š                                                                                                                                                                                                                                                                                                                                                                                                                          | Š                                                                                                                                                                                                                          | No                                                                                                                                                                                                              | No                                                                                                                                                                                                                                                                                                                                            | Š                                                                                                                                                                                                                                                                                                                                             | ž                                                                                                                                                                                                                                                                                                 |          |
| US)                             | le:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | тоТ                                                                       | 148<br>NG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ž                                                                                                                                        | 27 NG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N N                                                                                                                                                                                                                                                                                                                                                                                               | 31<br>No                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 37 No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0<br>N                                                                                                                                                                                                                                                                                                                                                                                                                     | 35                                                                                                                                                                                                                         |                                                                                                                                                                                                                 | 96<br>Nor                                                                                                                                                                                                                                                                                                                                     | 9<br>N                                                                                                                                                                                                                                                                                                                                        | 150                                                                                                                                                                                                                                                                                               |          |
| nctions (US)                    | yqpy<br>ton Noitor<br>bəzimorqm<br>ls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | rui<br>Coi                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ¥                                                                                                                                                                                                                                                                                                                                                                                                 | 21 = 31                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 27 = 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ON.                                                                                                                                                                                                                                                                                                                                                                                                                        | 25 = 35                                                                                                                                                                                                                    |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                               | ON.                                                                                                                                                                                                                                                                                                                                           | 75 = 150                                                                                                                                                                                                                                                                                          | 1        |
| Malfunctions (US)               | otion Not<br>mpromised                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | The<br>Turi                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | J                                                                                                                                                                                                                                                                                                                                                                                                 | 31                                                                                                                                                                                                                                             | (1)<br>ted subset)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | = 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ON                                                                                                                                                                                                                                                                                                                                                                                                                         | = 35                                                                                                                                                                                                                       | = (0)<br>ed subset)                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                               | ON.                                                                                                                                                                                                                                                                                                                                           | = 150                                                                                                                                                                                                                                                                                             | į        |
| Malfunctions (US)               | mpromised<br>erapy<br>nction Not<br>mpromised                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | The<br>Col                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | load; — — —                                                                                                                                                                                                                                                                                                                                                                                       | + 21 = 31                                                                                                                                                                                                                                      | (1) (0) (1) (advisory-related subset)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | + 27 = 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                            | + 25 = 35                                                                                                                                                                                                                  | $\begin{array}{rcl} (0) & + & (0) & = & (0) \\ (advisory-related subset) \end{array}$                                                                                                                           |                                                                                                                                                                                                                                                                                                                                               | ON                                                                                                                                                                                                                                                                                                                                            | + 75 = 150                                                                                                                                                                                                                                                                                        | <u> </u> |
| Malfunctions (US)               | pletions (US) srapy Function mpromised srapy ortion Not mpromised                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Act<br>Mo<br>Dell<br>Dell<br>The<br>Col                                   | 148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                        | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | load; — — —                                                                                                                                                                                                                                                                                                                                                                                       | 10 + 21 = 31                                                                                                                                                                                                                                   | (1) (0) (1) (advisory-related subset)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10 + 27 = 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                            | 10 + 25 = 35                                                                                                                                                                                                               | $\begin{array}{rcl} (0) & + & (0) & = & (0) \\ (advisory-related subset) \end{array}$                                                                                                                           | 96 – –                                                                                                                                                                                                                                                                                                                                        | ο <sub>ν</sub>                                                                                                                                                                                                                                                                                                                                | 75 + 75 = 150                                                                                                                                                                                                                                                                                     | 6        |
| Malfunctions (US)               | ive US Splants real Battery pletions (US) pletions (US) mpromised mpromised verse basion Not notion Not mpromised                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | US<br>Est<br>Imp<br>Moi<br>Del<br>The<br>Coi<br>The<br>The                | 1,824 — — 148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                        | 1,932 — — 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | load; — — —                                                                                                                                                                                                                                                                                                                                                                                       | 52 10 + 21 = 31                                                                                                                                                                                                                                | (1) (0) (1) (advisory-related subset)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 795                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                            | 47 10 + 25 = 35                                                                                                                                                                                                            | $\begin{array}{rcl} (0) & + & (0) & = & (0) \\ (advisory-related subset) \end{array}$                                                                                                                           | 1,370 — — 96                                                                                                                                                                                                                                                                                                                                  | 02                                                                                                                                                                                                                                                                                                                                            | 1,495 75 + 75 = 150                                                                                                                                                                                                                                                                               |          |
| Malfunctions (US)               | imated<br>sive US<br>soloris<br>soloris<br>simal Battery<br>pletions (US)<br>solorised<br>mpromised<br>scion Not<br>notion Mot<br>motomised                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Reg<br>US<br>Ling<br>Mos<br>Mos<br>Cos<br>The<br>The<br>The<br>The<br>Cos | 3,000 1,824 — — 148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                        | 40 1,932 – – 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | load; — — —                                                                                                                                                                                                                                                                                                                                                                                       | 9,000 52 10 + 21 = 31                                                                                                                                                                                                                          | (1) (0) (1) (advisory-related subset)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7,000 795 10 + 27 = 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                            | 30,000 47 10 + 25 = 35                                                                                                                                                                                                     | $\begin{array}{rcl} (0) & + & (0) & = & (0) \\ (advisory-related subset) \end{array}$                                                                                                                           | 2,000 1,370 — — 96                                                                                                                                                                                                                                                                                                                            | ο <sub>ν</sub>                                                                                                                                                                                                                                                                                                                                | 15,000 1,495 75 + 75 = 150                                                                                                                                                                                                                                                                        | <u> </u> |
| Malfunctions (US)               | gistereed implants in a lead of the US of the | Reg<br>US<br>Ling<br>Mos<br>Mos<br>Cos<br>The<br>The<br>The<br>The<br>Cos | 22,000 3,000 1,824 — — 148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Advisories: <u>See page 155</u> – 1999 Potential Circuit Overload                                                                        | 11,000 40 1,932 — — 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Advisories: See page 155 – 1999 Potential Circuit Overload; Also see page 165 – Performance note on ICD Battery Discharge Behavior                                                                                                                                                                                                                                                                | 19,000  9,000  52  10 + 21 = 31                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17,000  7,000  795  10  +  27  =  37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | See page 165 – Performance note on ICD Battery Discharge Behavior                                                                                                                                                                                                                                                                                                                                                          | 43,000 30,000 47 10 + 25 = 35                                                                                                                                                                                              |                                                                                                                                                                                                                 | 15,000 2,000 1,370 — — 96                                                                                                                                                                                                                                                                                                                     | ο <sub>ν</sub>                                                                                                                                                                                                                                                                                                                                | 48,000 15,000 1,495 75 + 75 = 150                                                                                                                                                                                                                                                                 | 3        |

|                               |                                                                                               |                           |                          | ŀ                       | Malfunctions               | ctior                             | S           |     |                                          | Device S          | Device Survival Probability (%) | robability        | (%)                           |                               |                               |      |      |       |
|-------------------------------|-----------------------------------------------------------------------------------------------|---------------------------|--------------------------|-------------------------|----------------------------|-----------------------------------|-------------|-----|------------------------------------------|-------------------|---------------------------------|-------------------|-------------------------------|-------------------------------|-------------------------------|------|------|-------|
|                               | Narket<br>sase                                                                                | istered<br>stafqm         | bətsm<br>ZU əvi<br>stnsl | mal Battery<br>sletions | rapy Function<br>npromised | rapy<br>ction Not                 | npromised   | Įŧ  |                                          | Years Af          | Years After Implant             | nt                |                               |                               |                               |      |      |       |
| Family                        | NS I                                                                                          | I SN<br>Bəy               | ĵэA                      |                         | The                        | edT<br>Fun∃                       | רסו         | tot |                                          | 1 yr              | 2 yr                            | 3 yr              | 4 yr                          | 5 yr                          | 6 yr                          | 7 yr | 8 yr | 10 yr |
| GEM III DR                    | Nov-00                                                                                        | 20,000                    | 2,000                    | 3,471                   | +                          | 30                                | II          | 14  | Excluding<br>Normal Battery<br>Depletion | 99.9              | 99.9                            | 99.8<br>+0.1/-0.1 | 99.7<br>+0.1/-0.1             | 99.7<br>+0.1/-0.1             | 99.7<br>+0.1/-0.1             |      |      |       |
| See page 165<br>Discharge Be  | See page 165 – Performance note on ICD Battery<br>Discharge Behavior                          | ce note on l              | CD Battery               |                         |                            |                                   |             | -   | Including<br>Normal Battery<br>Depletion | 99.6<br>+0.1/-0.1 | 99.0                            | 96.9<br>+0.3/-0.3 | 90.1                          | 64.5<br>+1.0/-1.0             | 8.8<br>+1.2/-1.1              |      |      |       |
| GEM III AT                    | Feb-01                                                                                        | 14,000                    | 1,000                    | 2,700                   | + _                        | 39                                | п           | 46  | Excluding<br>Normal Battery<br>Depletion | 99.9              | 99.9                            | 99.7<br>+0.1/-0.1 | 99.5<br>+0.1/-0.2             | 99.5<br>+0.1/-0.2             | 99.5<br>+0.1/-0.2<br>at 69 mo |      |      |       |
| See page 165<br>Discharge Be  | See page 165 – Performance note on ICD Battery<br>Discharge Behavior                          | ce note on l              | ICD Battery              |                         |                            |                                   |             | -   | Including<br>Normal Battery<br>Depletion | 99.6<br>+0.1/-0.1 | 98.8<br>+0.2/-0.2               | 96.1              | 84.6<br>+0.8/-0.8             | 50.5<br>+1.3/-1.3             | 3.7<br>+1.0/-0.8<br>at 69 mo  |      |      |       |
| Maximo DR                     | Oct-03                                                                                        | 37,000                    | 25,000                   | 194                     | +<br>&                     | 21                                | II          | 29  | Excluding<br>Normal Battery<br>Depletion | 100.0             | 100.0                           | 99.9              | 99.9                          | 99.9                          |                               |      |      |       |
| Advisories: S<br>Battery Depl | Advisories: See page 153 – 2005 Potential Premature<br>Battery Depletion Due to Battery Short | 2005 Poter<br>attery Shor | ntial Prematur<br>t      | ē                       | (0) +<br>(advisory         | + $(0) = (0)sory-related subset)$ | =<br>d subs |     | Including<br>Normal Battery<br>Depletion | 99.9              | 99.7                            | 99.3              | 97.7<br>+0.3/-0.3             | 93.8 +1.1/-1.3                |                               |      |      |       |
| Intrinsic                     | Aug-04                                                                                        | 31,000                    | 22,000                   | 85                      | 9                          | 27                                | П           | 33  | Excluding<br>Normal Battery<br>Depletion | 100.0             | 99.9                            | 99.9              | 99.8<br>+0.1/-0.1             | 99.8<br>+0.1/-0.1<br>at 51 mo |                               |      |      |       |
|                               |                                                                                               |                           |                          |                         |                            |                                   |             | -   | Including<br>Normal Battery<br>Depletion | 99.9              | 99.7                            | 99.4<br>+0.1/-0.1 | 98.2<br>+0.3/-0.4             | 97.8<br>+0.6/-0.8<br>at 51 mo |                               |      |      |       |
| Onyx                          | Mar-04                                                                                        | 1,000                     | 1,000                    | 9                       | +                          | m                                 | П           | 4   | Excluding<br>Normal Battery<br>Depletion | 99.9              | 99.5                            | 99.5<br>+0.3/-0.8 | 99.5<br>+0.3/-0.8             | 99.5<br>+0.3/-0.8<br>at 49 mo |                               |      |      |       |
|                               |                                                                                               |                           |                          |                         |                            |                                   |             | _   | Including<br>Normal Battery<br>Depletion | 99.8<br>+0.2/-0.7 | 99.0                            | 98.4<br>+0.7/-1.2 | 96.4                          | 96.4<br>+1.5/-2.4<br>at 49 mo |                               |      |      |       |
| EnTrust DR                    | Jun-05                                                                                        | 400                       | 300                      | 7                       | +                          | 2                                 | Ш           | m   | Excluding<br>Normal Battery<br>Depletion | 99.8<br>+0.2/-1.4 | 99.8<br>+0.2/-1.4               | 99.1<br>+0.6/-2.0 | 99.1<br>+0.6/-2.0<br>at 45 mo |                               |                               |      |      |       |
|                               |                                                                                               |                           |                          |                         |                            |                                   |             | -   | Including<br>Normal Battery<br>Depletion | 99.5<br>+0.4/-1.4 | 99.5                            | 97.3<br>+1.3/-2.7 | 91.1<br>+3.4/-5.3<br>at 45 mo |                               |                               |      |      |       |
| EnTrust DR                    | Jun-05                                                                                        | 28,000                    | 22,000                   | 33                      | +<br>9                     | 4                                 | П           | 20  | Excluding<br>Normal Battery<br>Depletion | 100.0             | 99.9                            | 99.9              | 99.9<br>+0.1/-0.1<br>at 40 mo |                               |                               |      |      |       |
|                               |                                                                                               |                           |                          |                         |                            |                                   |             | -   | Including<br>Normal Battery<br>Depletion | 99.9              | 99.7                            | 99.3<br>+0.1/-0.2 | 99.2<br>+0.2/-0.3<br>at 40 mo |                               |                               |      |      |       |

|   | C | D |
|---|---|---|
| _ |   |   |

| ility (%)                       |                                | 4yr 5yr 6yr 7yr 8yr | 5,0                                      | 5                                        | 99.9<br>1 +0.1/-0.1<br>at 39 mo          | 99.6<br>2 +0.1/-0.2<br>at 39 mo          |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                          |
|---------------------------------|--------------------------------|---------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|
| Device Survival Probability (%) | plant                          | 3 yr                | 99.7<br>+0.2/-0.5<br>at 29 mo            | 99.4<br>+0.3/-0.5<br>at 29 mo            | 99.9 +0.1/-0.1                           | 99.6 +0.1/-0.2                           | 5                                        | .2                                       |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                          |
| Surviv                          | fter Im                        | 2 yr                | 99.9                                     | 99.8 +0.0/-0.1                           | 99.9                                     | 99.7                                     | 99.9                                     | 99.7                                     |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                          |
| Device                          | Years After Implant            | 1 yr                | 100.0                                    | 99.9                                     | 99.9<br>+0.0/-0.1                        | 99.9<br>+0.0/-0.1                        | 100.0                                    | 99.9<br>+0.0/-0.1                        | 100.0<br>+0.0/-0.0<br>at 2 mo            |
|                                 |                                |                     | Excluding<br>Normal Battery<br>Depletion | Including<br>Normal Battery<br>Depletion |
|                                 | Įe                             | toT                 | 25                                       |                                          | 15                                       |                                          | ∞                                        |                                          | 0                                        |                                          | 0                                        |                                          | 0                                        |                                          | 0                                        |                                          |
| tions                           | rapy<br>ction Not<br>npromised | unⅎ                 | 10 =                                     |                                          | = 11                                     |                                          | п<br>М                                   |                                          | 0                                        |                                          | 0                                        |                                          | 0                                        |                                          | 0                                        |                                          |
| Malfunctions                    | rapy Function<br>npromised     | uoɔ                 | 15 +                                     |                                          | 4                                        |                                          | +                                        |                                          | +                                        |                                          | +                                        |                                          | +                                        |                                          | +                                        |                                          |
|                                 | mal Battery<br>snoisele        |                     | 14                                       |                                          | 7                                        |                                          | 7                                        |                                          | 0                                        |                                          | 0                                        |                                          | 0                                        |                                          | 0                                        |                                          |
|                                 | bətem<br>ZU əvi<br>stnslı      | ЭA                  | 26,000                                   |                                          | 11,000                                   |                                          | 24,000                                   |                                          | 1,000                                    |                                          | 1,000                                    |                                          | 1,000                                    |                                          | 400                                      |                                          |
|                                 | istered<br>mplants             | I SN<br>Bəy         | 62,000                                   |                                          | 14,000                                   |                                          | 26,000                                   |                                          | 1,000                                    |                                          | 1,000                                    |                                          | 1,000                                    |                                          | 400                                      |                                          |
|                                 | Market<br>ease                 | NS I                | May-06                                   |                                          | Jun-05                                   |                                          | May-06                                   |                                          | Aug-08                                   |                                          | Aug-08                                   |                                          | Mar-08                                   |                                          | Mar-08                                   |                                          |
|                                 |                                | Family              | Virtuoso DR                              |                                          | EnTrust VR                               |                                          | Virtuoso VR                              |                                          | Secura DR                                |                                          | Secura VR                                |                                          | Maximo II DR                             |                                          | Maximo II VR                             |                                          |
|                                 | -                              | Model<br>Number     | D154AWG<br>D164AWG                       |                                          | D154VRC                                  |                                          | D154VWC,<br>D164VWC                      |                                          | D224DRG                                  |                                          | D224VRC                                  |                                          | D284DRG                                  |                                          | D284VRC                                  |                                          |



### **Reference Chart**

The longevity estimates provided are mean values calculated for the parameters given. The actual longevity achieved for any device while implanted will depend on the actual programmed parameters and patient factors, and may differ significantly from these estimates.

|                 |              | Estimated Longevity |                  |                |                                    |                   | Elective           | Replacement        |                    |          |                            |                                    |
|-----------------|--------------|---------------------|------------------|----------------|------------------------------------|-------------------|--------------------|--------------------|--------------------|----------|----------------------------|------------------------------------|
| Model<br>Number | Family       | Connector<br>Style  | Volume/<br>Mass* | Delivered      | Charging<br>Frequency**            | 100%<br>Pacing‡   | 50%<br>Pacing‡     | 15%<br>Pacing‡     | 100%<br>Sensing    |          | Charge<br>Time<br>***(IN:  | End of<br>Life<br>(EOL)<br>Battery |
| 7227            | GEM GEM      | B, Cx, D, E         | 49 cc*<br>90 g   | Energy<br>35 J | Monthly<br>Quarterly<br>Semiannual | 5.3<br>7.7<br>8.8 | 5.7<br>8.5<br>10.0 | 6.0<br>9.3<br>11.0 | 6.1<br>9.6<br>11.5 | ≤ 2.55 V | _                          | Voltage<br>≤ 2.40 V <sup>§</sup>   |
| 7229            | GEM II VR    | Сх                  | 39 cc<br>77 g    | 30 J           | Monthly<br>Quarterly<br>Semiannual | 3.6<br>5.0<br>5.6 | 3.9<br>5.5<br>6.3  | 4.1<br>6.0<br>6.9  | 4.2<br>6.2<br>7.1  | ≤ 2.55 V | _                          | ≤ 2.40 V                           |
| 7230            | Marquis VR   | B, Cx, E            | 36 cc<br>75 g    | 30 J           | Monthly<br>Quarterly<br>Semiannual | 4.9<br>7.3<br>8.5 | 5.2<br>8.0<br>9.3  | 5.4<br>8.5<br>10.0 | 5.5<br>8.7<br>10.4 | ≤ 2.62 V | > 16-second<br>charge time | 3 months<br>after ERI              |
| 7231            | GEM III VR   | Сх                  | 39 cc<br>77 g    | 30 J           | Monthly<br>Quarterly<br>Semiannual | 4.3<br>6.0<br>6.6 | 4.7<br>6.8<br>7.5  | 5.0<br>7.4<br>8.5  | 5.2<br>7.8<br>8.9  | ≤ 2.55 V | _                          | ≤ 2.40 V                           |
| 7232            | Maximo VR    | B, Cx, E            | 39 cc<br>76 g    | 35 J           | Monthly<br>Quarterly<br>Semiannual | 4.4<br>7.0<br>8.2 | 4.7<br>7.5<br>9.0  | 4.8<br>8.0<br>9.7  | 4.9<br>8.3<br>10.0 | ≤ 2.62 V | > 16-second<br>charge time | 3 months<br>after ERI              |
| 7271            | GEM DR       | DR                  | 62 cc<br>115 g   | 35 J           | Monthly<br>Quarterly<br>Semiannual | 6.0<br>7.4<br>7.9 | 6.9<br>8.4<br>9.0  | 7.5<br>9.3<br>10.0 | 7.8<br>9.8<br>10.6 | ≤ 4.91 V | _                          | ≤ 4.57 V <sup>§</sup>              |
| 7274            | Marquis DR   | DR+LV               | 36 cc<br>75 g    | 30 J           | Monthly<br>Quarterly<br>Semiannual | 4.0<br>5.6<br>6.2 | 4.4<br>6.4<br>7.2  | 4.8<br>7.1<br>8.1  | 4.9<br>7.5<br>8.6  | ≤ 2.62 V | > 16-second<br>charge time | 3 months<br>after ERI              |
| 7275            | GEM III DR   | DR                  | 39.5 cc<br>78 g  | 30 J           | Monthly<br>Quarterly<br>Semiannual | 3.3<br>4.2<br>4.5 | 3.8<br>5.0<br>5.5  | 4.3<br>5.8<br>6.5  | 4.4<br>6.3<br>7.0  | ≤ 2.55 V | _                          | ≤ 2.40 V                           |
| 7276            | GEM III AT   | DR                  | 39 cc<br>77 g    | 30 J           | Monthly<br>Quarterly<br>Semiannual | 3.3<br>4.3<br>4.5 | 3.8<br>5.1<br>5.5  | 4.3<br>5.9<br>6.5  | 4.5<br>6.3<br>7.0  | ≤ 2.55 V | _                          | ≤ 2.40 V                           |
| 7278            | Maximo DR    | DR                  | 39 cc<br>77 g    | 35 J           | Monthly<br>Quarterly<br>Semiannual | 3.7<br>5.3<br>6.0 | 4.1<br>6.1<br>7.0  | 4.3<br>6.8<br>8.0  | 4.5<br>7.1<br>8.5  | ≤ 2.62 V | > 16-second<br>charge time | 3 months<br>after ERI              |
| 7287            | Intrinsic 30 | DR                  | 36 cc<br>75 g    | 30 J           | Monthly<br>Quarterly<br>Semiannual | 4.0<br>5.5<br>6.2 | 4.3<br>6.3<br>7.2  | 4.7<br>7.0<br>8.2  | 4.8<br>7.4<br>8.6  | ≤ 2.62 V | > 16-second<br>charge time | 3 months<br>after ERI              |
| 7288            | Intrinsic    | DR                  | 38 cc<br>76 g    | 35 J           | Monthly<br>Quarterly<br>Semiannual | 3.7<br>5.4<br>6.1 | 4.1<br>6.1<br>7.0  | 4.3<br>6.8<br>8.0  | 4.5<br>7.1<br>8.5  | ≤ 2.62 V | > 16-second<br>charge time | 3 months<br>after ERI              |
| 7290            | Onyx         | Сх                  | 39 cc<br>77 g    | 30 J           | Monthly<br>Quarterly<br>Semiannual | 3.8<br>5.0<br>5.4 | 4.1<br>5.6<br>6.1  | 4.3<br>6.2<br>6.7  | 4.5<br>6.4<br>7.0  | ≤ 2.55 V | > 16-second<br>charge time | ≤ 2.40 V                           |

<sup>\*</sup> Volume and mass differ by connector style.

 $<sup>\</sup>ensuremath{^{**}}$  A full charge is a full energy the rapeutic shock or capacitor reformation.

<sup>\*\*\*</sup> The minimum time between ERI and EOL is 3 months (100% pacing, two charges per month).

<sup>‡</sup> Pacing mode is VVI for single chamber models and DDD for dual chamber and CRT models. Parameter settings; lower rate at 60 ppm, sensing rate at 70 bpm, (A, RV, LV) 3.0 V amplitude, 0.4 ms pulse width, and 510-ohm pace load per applicable channel. CRT models with shared biventricular pacing; InSync Marquis 7277 (LV impedance set to 510 ohms), InSync ICD 7272 (RV amplitude set to 4.0 V).

<sup>‡‡</sup> For Model 7223 devices, if charge time exceeds 60 seconds, the devices are at EOL. If two consecutive charge cycles exceed 60 seconds, the "charge circuit inactive" indicator is tripped and all therapies except emergency output VVI pacing are disabled.

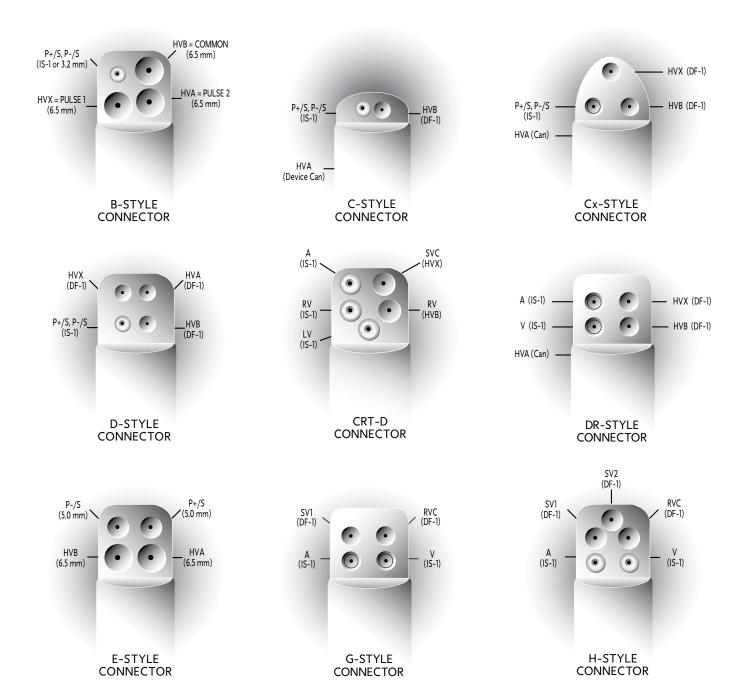
<sup>§</sup> For Model 7271 and 7227 devices, if charge time exceeds 30 seconds, the device is at EOL. Immediate replacement is recommended. If three consecutive charge cycles exceed 30 seconds, the "charge circuit inactive" indicator is tripped and all therapies except emergency VVI pacing are disabled.



### Reference Chart continued

|                     |              |                    |                  |                     | Estimated Longevity                |                      |                      |                      |                       |                    | nmended           |                                                        |
|---------------------|--------------|--------------------|------------------|---------------------|------------------------------------|----------------------|----------------------|----------------------|-----------------------|--------------------|-------------------|--------------------------------------------------------|
|                     |              |                    |                  |                     | Charging<br>Frequency**            | ,<br>10#             | <b>#</b> 61          | <b>#</b> 61          | ing                   | (R                 | acement<br>RT)*** | -<br>End of                                            |
| Model<br>Number     | Family       | Connector<br>Style | Volume/<br>Mass* | Delivered<br>Energy | Charg<br>Frequ                     | 100%<br>Pacing‡      | 50%<br>Pacing‡       | 15%<br>Pacing‡       | 100%<br>Sensing       | Battery<br>Voltage | Charge<br>Time    | Service<br>(EOS)                                       |
| D153ATG,<br>D153DRG | EnTrust      | DR                 | 33 cc<br>63 g    | 30 J                | Monthly<br>Quarterly<br>Semiannual | 3.5<br>4.8<br>5.3    | 3.8<br>5.4<br>6.1    | 4.1<br>6.0<br>6.9    | 4.2<br>6.3<br>7.2     | ≤ 2.61 V           | _                 | 3 months<br>after RRT or<br>> 16-second<br>charge time |
| D153VRC             | EnTrust      | Сх                 | 32 cc<br>63 g    | 30 J                | Monthly<br>Quarterly<br>Semiannual | 4.4<br>6.8<br>7.9    | 4.7<br>7.4<br>8.7    | 4.9<br>7.9<br>9.5    | 5.0<br>8.1<br>9.8     | ≤ 2.61 V           | _                 | 3 months<br>after RRT or<br>> 16-second<br>charge time |
| D154ATG,<br>D154DRG | EnTrust      | DR                 | 35 cc<br>68 g    | 35 J                | Monthly<br>Quarterly<br>Semiannual | 3.8<br>5.5<br>6.1    | 4.2<br>6.1<br>7.0    | 4.4<br>6.8<br>7.9    | 4.6<br>7.0<br>8.3     | ≤ 2.61 V           | _                 | 3 months<br>after RRT or<br>> 16-second<br>charge time |
| D154AWG,<br>D164AWG | Virtuoso     | DR                 | 37 cc<br>68 g    | 35 J                | Monthly<br>Quarterly<br>Semiannual | 4.1<br>6.3<br>7.3    | 4.5<br>7.3<br>8.7    | 4.8<br>8.3<br>10.1   | 5.0<br>8.8<br>11.0    | ≤ 2.62 V           | _                 | 3 months<br>after RRT or<br>> 16-second<br>charge time |
| D154VRC             | EnTrust      | Сх                 | 35 cc<br>68 g    | 35 J                | Monthly<br>Quarterly<br>Semiannual | 4.8<br>7.5<br>9.0    | 5.0<br>8.3<br>10.0   | 5.2<br>8.8<br>10.7   | 5.3<br>9.0<br>11.0    | ≤ 2.61 V           | _                 | 3 months<br>after RRT or<br>> 16-second<br>charge time |
| D154VWC,<br>D164VWC | Virtuoso     | Сх                 | 37 cc<br>68 g    | 35 J                | Monthly<br>Quarterly<br>Semiannual | 4.8<br>8.1<br>10.0   | 5.1<br>9.0<br>11.2   | 5.3<br>9.6<br>12.3   | 5.4<br>10.0<br>12.9   | ≤ 2.62 V           | _                 | 3 months<br>after RRT or<br>> 16-second<br>charge time |
| D224DRG             | Secura DR    | DR                 | 37 cc<br>68 g    | 35J                 | Monthly<br>Quarterly<br>Semiannual | 3.60<br>5.07<br>5.70 | 4.08<br>6.05<br>7.00 | 4.50<br>7.00<br>8.27 | 4.67<br>7.50<br>9.00  | ≤ 2.63 V           | _                 | 3 months<br>after RRT or<br>> 16-second<br>charge time |
| D224VRC             | Secura VR    | Сх                 | 37 cc<br>68 g    | 35J                 | Monthly<br>Quarterly<br>Semiannual | 4.33<br>6.67<br>7.76 | 4.67<br>7.45<br>8.85 | 4.92<br>8.05<br>9.79 | 5.00<br>8.41<br>10.25 | ≤ 2.63 V           | _                 | 3 months<br>after RRT or<br>> 19-second<br>charge time |
| D284DRG             | Maximo II DR | DR                 | 37 cc<br>68 g    | 35J                 | Monthly<br>Quarterly<br>Semiannual | 3.60<br>5.07<br>5.70 | 4.08<br>6.05<br>7.00 | 4.50<br>7.00<br>8.27 | 4.67<br>7.50<br>9.00  | ≤ 2.63 V           | _                 | 3 months<br>after RRT or<br>> 16-second<br>charge time |
| D284VRC             | Maximo II VR | Сх                 | 37 cc<br>68 g    | 35J                 | Monthly<br>Quarterly<br>Semiannual | 4.33<br>6.67<br>7.76 | 4.67<br>7.45<br>8.85 | 4.92<br>8.05<br>9.79 | 5.00<br>8.41<br>10.25 | ≤ 2.63 V           | _                 | 3 months<br>after RRT or<br>> 19-second<br>charge time |

<sup>\*</sup> Volume and mass differ by connector style.


 $<sup>\</sup>ensuremath{^{**}}$  A full charge is a full energy the rapeutic shock or capacitor reformation.

<sup>\*\*\*</sup> The minimum time between RRT and EOS is 3 months (100% pacing, two charges per month).

<sup>‡</sup> Pacing mode is VVI for single chamber models and DDD for dual chamber models. Parameter settings; lower rate at 60 ppm, sensing rate at 70 bpm, (A, RV, LV) 3.0 V amplitude, 0.4 ms pulse width, and 510-ohm pace load per applicable channel.



### **ICD Connector Styles**



### Adapta DR ADDR01, ADDR03, ADDR06, ADD01

### **Product Characteristics**

| US Market Release                   | Jul-06  | Malfunctions (US)                | 10 | NBG Code             | DDDR, DDD              |
|-------------------------------------|---------|----------------------------------|----|----------------------|------------------------|
| Registered US Implants              | 116,000 | Therapy Function Not Compromised | 6  | Serial Number Prefix | PWB, PWD,              |
| Estimated Active US Implants 104,00 |         | <b>Electrical Component</b>      | 6  |                      | PWC, PWF,<br>NWB, NWC, |
| Normal Battery Depletions (US)      | 1       | Therapy Function Compromised     | 4  |                      | NWD                    |
| Advisories                          | None    | Electrical Component             | 4  | Estimated Longevity  | See page 77            |

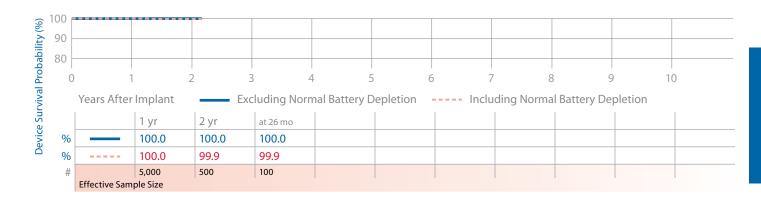


### Adapta DR ADDRL1

### **Product Characteristics**

| ı                           | US Market Release Jul-06 |                |               |        |          | Malfunctions (US) |             |        |       | NBG Code             |              |         | DDDR        |
|-----------------------------|--------------------------|----------------|---------------|--------|----------|-------------------|-------------|--------|-------|----------------------|--------------|---------|-------------|
| F                           | Regist                   | ered US Impla  | ants          | 11,000 | ) Th     | erapy Functio     | n Not Compr | omised | 0     | Serial Number Prefix |              |         | PWE, NWE    |
| E                           | Estima                   | ted Active US  | S Implants    | 10,000 | ) Th     | erapy Functio     | n Compromis | sed    | 0     |                      |              |         |             |
| 1                           | Norma                    | al Battery Dep | oletions (US) | (      | )        |                   |             |        |       | Estimat              | ed Longevity |         | See page 77 |
| ,                           | Advisc                   | ories          |               | None   | 9        |                   |             |        |       |                      |              |         |             |
|                             |                          |                |               |        |          |                   |             |        |       |                      |              |         |             |
| (%)                         | 100 =                    |                |               |        |          |                   |             |        |       |                      |              |         |             |
|                             | 90 -                     |                |               |        |          |                   |             |        |       |                      |              |         |             |
| abil                        |                          |                |               |        |          |                   |             |        |       |                      |              |         |             |
| rob                         | 80                       |                |               |        |          |                   |             |        |       |                      |              |         |             |
| valF                        | 0                        | 1              | 2             | 2 3    |          | 4                 | 5           | 6      | 7     | 8                    | 3            | ) 1     | 0           |
| urvi                        |                          | Years After    | Implant       | Exc    | luding N | ormal Battery     | Depletion   | Ind    | ludin | ig Norma             | l Battery De | pletion |             |
| Device Survival Probability |                          |                | 1 yr          | 2 yr   |          |                   |             |        |       |                      |              |         |             |
| Oevi                        | %                        |                | 100.0         | 100.0  |          |                   |             |        |       |                      |              |         |             |
| _                           | %                        |                | 100.0         | 100.0  |          |                   |             |        |       |                      |              |         |             |

200


4,000

Effective Sample Size



### Adapta DR ADDRS1

| •                              |        |                                         |   |                            |             |
|--------------------------------|--------|-----------------------------------------|---|----------------------------|-------------|
| US Market Release              | Jul-06 | Malfunctions (US)                       | 1 | NBG Code                   | SSIR        |
| Registered US Implants         | 10,000 | <b>Therapy Function Not Compromised</b> | 0 | Serial Number Prefix       | PWA         |
| Estimated Active US Implants   | 9,000  | Therapy Function Compromised            | 1 |                            |             |
| Normal Battery Depletions (US) | 1      | Electrical Component                    | 1 | <b>Estimated Longevity</b> | See page 77 |
| Advisories                     | None   |                                         |   |                            |             |



### Adapta SR ADSR01, ADSR03, ADSR06

### **Product Characteristics**

| US Market Release                   | Jul-06 | Malfunctions (US)                | 0 | NBG Code             | SSIR        |
|-------------------------------------|--------|----------------------------------|---|----------------------|-------------|
| Registered US Implants              | 22,000 | Therapy Function Not Compromised | 0 | Serial Number Prefix | NWN, NWM,   |
| <b>Estimated Active US Implants</b> | 19,000 | Therapy Function Compromised     | 0 |                      | NWP         |
| Normal Battery Depletions (US)      | 1      |                                  |   | Estimated Longevity  | See page 77 |
| Advisories                          | None   |                                  |   |                      |             |
|                                     |        |                                  |   |                      |             |



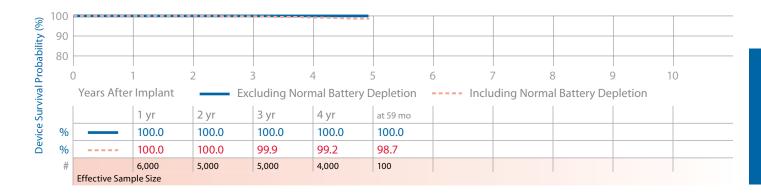
### Adapta VDD ADVDD01

### **Product Characteristics**

| JS Market Release                                                |               | Jul-06   | Malfun     | ctions (US)    |            |       | 0     | NBG Co   | de           |          | VDO        |
|------------------------------------------------------------------|---------------|----------|------------|----------------|------------|-------|-------|----------|--------------|----------|------------|
| Registered US Impl                                               | lants         | 400      | Thera      | py Function N  | ot Compron | ised  | 0     | Serial N | umber Prefix | (        | PWG, NWC   |
| Estimated Active U                                               | S Implants    | 400      | Thera      | py Function C  | ompromised |       | 0     | Estimate | ed Longevity | /        | See page 7 |
| Normal Battery De                                                | pletions (US) | 0        |            |                |            |       |       |          |              |          |            |
| Performance Note:<br>Performance note on<br>System Follow-Up Pro | AT500 Pacing  |          |            |                |            |       |       |          |              |          |            |
| 100                                                              |               |          |            |                |            |       |       |          |              |          |            |
| 90                                                               |               |          |            |                |            |       |       |          |              |          |            |
| 80                                                               |               |          |            |                |            |       |       |          |              |          |            |
| 0                                                                | 1 2           | 2 3      |            | 5              | 6          |       | 7     | 8        | 3            | 9        | 10         |
|                                                                  |               |          |            |                |            |       |       |          |              |          |            |
| Years After                                                      |               | 1        | uding Norn | nal Battery De | epletion • | Inclu | uding | g Norma  | l Battery De | epletion |            |
|                                                                  | 1 yr          | at 16 mo | uding Norn | nal Battery De | epletion • | Inclu | uding | g Norma  | l Battery De | epletion |            |
| Years After                                                      |               | 1        | uding Norn | nal Battery De | epletion   | Inclu | uding | g Norma  | l Battery De | epletion |            |

### AT500 AT501, 7253 Product Characteristics

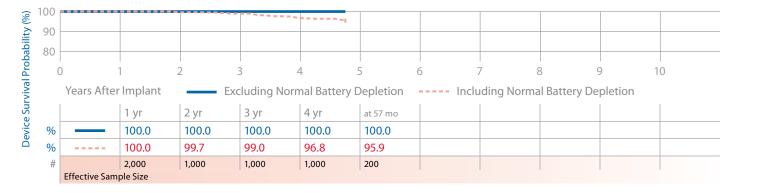
| US M                                                                   | arket Release                      |                | Mar-0 | 3 Malf     | unctions (US)     |               |          | 10      | NBG Code          |           | DDDRP       |  |  |  |
|------------------------------------------------------------------------|------------------------------------|----------------|-------|------------|-------------------|---------------|----------|---------|-------------------|-----------|-------------|--|--|--|
| Regis                                                                  | tered US Impla                     | ants           | 11,00 | 0 The      | rapy Function     | Not Compre    | omised   | 5       | Serial Number Pre | efix      | IJF         |  |  |  |
| Estim                                                                  | ated Active US                     | S Implants     | 5,00  | 0          | Electrical Comp   | onent         |          | 2       | Estimated Longev  | /ity      | See page 77 |  |  |  |
| Norm                                                                   | al Battery Dep                     | oletions (US)  | 48    | 1          | Possible Early E  | Battery Deple | etion    | 3       |                   |           |             |  |  |  |
| Perfo                                                                  | rmance Note:                       | See page 163 - | -     | The        | rapy Function     | Compromis     | ed       | 5       |                   |           |             |  |  |  |
|                                                                        | mance note on a<br>n Follow-Up Pro |                |       | I          | Electrical Comp   | onent         |          | 3       |                   |           |             |  |  |  |
|                                                                        |                                    |                |       | ı          | Electrical Interd | connect       |          | 1       |                   |           |             |  |  |  |
|                                                                        | Possible Early Battery Depletion 1 |                |       |            |                   |               |          |         |                   |           |             |  |  |  |
| <del>=</del> 100                                                       |                                    |                |       |            |                   |               |          |         |                   |           |             |  |  |  |
| % 90<br>£                                                              |                                    |                |       |            |                   |               |          |         |                   |           |             |  |  |  |
| abilit<br>80                                                           |                                    |                |       |            |                   |               |          |         |                   |           |             |  |  |  |
| oba                                                                    |                                    |                |       |            |                   |               |          |         |                   |           |             |  |  |  |
| 4 Page 70                                                              |                                    |                |       |            |                   |               |          |         |                   |           |             |  |  |  |
| ₹ 60                                                                   |                                    |                |       |            |                   | 1             |          |         |                   |           |             |  |  |  |
| e Su                                                                   |                                    |                |       |            |                   | •             |          |         |                   |           |             |  |  |  |
| Device Survival Probability (%) 00 00 00 00 00 00 00 00 00 00 00 00 00 | 0 1                                | 1              | 2 :   | 3          | 4                 | 5             | 6        | 7       | 8                 | 9         | 10          |  |  |  |
|                                                                        | Years After                        | Implant        | Exc   | cluding No | rmal Battery I    | Depletion     | Ir       | ncludin | g Normal Battery  | Depletion |             |  |  |  |
|                                                                        |                                    | 1 yr           | 2 yr  | 3 yr       | 4 yr              | 5 yr          | at 67 mo |         |                   |           |             |  |  |  |
| %                                                                      |                                    | 100.0          | 100.0 | 100.0      | 99.9              | 99.9          | 99.9     |         |                   |           |             |  |  |  |
| %                                                                      |                                    | 99.9           | 99.9  | 99.5       | 97.5              | 83.8          | 57.2     |         |                   |           |             |  |  |  |
| #                                                                      |                                    | 10,000         | 9,000 | 8,000      | 6,000             | 2,000         | 100      |         |                   |           |             |  |  |  |
|                                                                        | Effective Sam                      | ple Size       |       |            |                   |               |          |         |                   |           |             |  |  |  |




Advisories

### EnPulse DR E1DR01, E1DR03, E1DR06

### **Product Characteristics**


| US Market Release              | Dec-03 | Malfunctions (US)                | 1 | NBG Code             | DDDR        |
|--------------------------------|--------|----------------------------------|---|----------------------|-------------|
| Registered US Implants         | 7,000  | Therapy Function Not Compromised | 1 | Serial Number Prefix | PRA         |
| Estimated Active US Implants   | 4,000  | Electrical Component             | 1 | Estimated Longevity  | See page 77 |
| Normal Battery Depletions (US) | 26     | Therapy Function Compromised     | 0 |                      |             |
| Advisories                     | None   |                                  |   |                      |             |



### EnPulse DR E1DR21 **Product Characteristics**

None

| US Market Release                   | Dec-03 | Malfunctions (US)                | 0 | NBG Code             | DDDR        |
|-------------------------------------|--------|----------------------------------|---|----------------------|-------------|
| Registered US Implants              | 2,000  | Therapy Function Not Compromised | 0 | Serial Number Prefix | PPT         |
| <b>Estimated Active US Implants</b> | 1,000  | Therapy Function Compromised     | 0 | Estimated Longevity  | See page 77 |
| Normal Battery Depletions (US)      | 23     |                                  |   |                      |             |

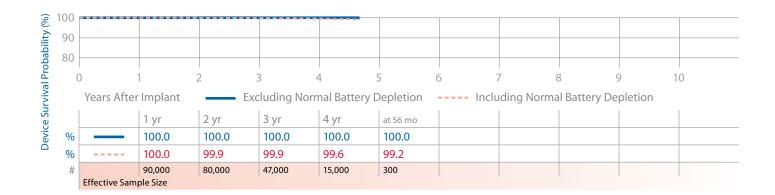


### EnPulse 2 DR E2DR01, E2DR03, E2DR06

| US Market Release             | Feb-04  | Malfunctions (US)                |
|-------------------------------|---------|----------------------------------|
| Registered US Implants        | 101,000 | Therapy Function Not Compromised |
| Estimated Active US Implants  | 70,000  | Electrical Component             |
| Normal Battery Depletions (US | 5) 81   | Possible Early Battery Depletion |
| Advisories                    | None    | Therapy Function Compromised     |

### **Product Characteristics**

13


10 9

3

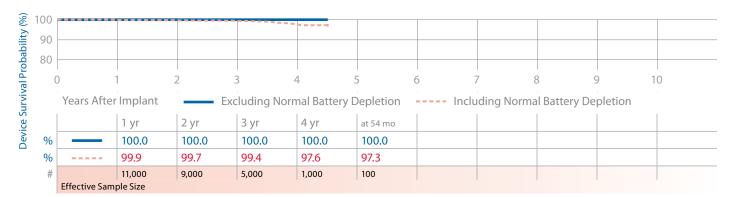
2

0

| NBG Code             | DDDR             |
|----------------------|------------------|
| Serial Number Prefix | PNB, PNC,<br>PNH |
| Estimated Longevity  | See page 77      |
|                      |                  |



Battery


**Electrical Component** 

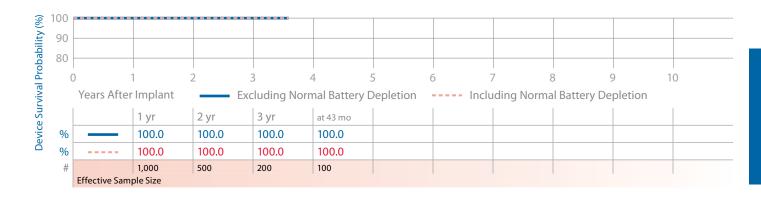
### EnPulse 2 DR E2DR21

## US Market Release Feb-04 Registered US Implants 12,000 Estimated Active US Implants 8,000 Normal Battery Depletions (US) 48 Advisories None

### Malfunctions (US) Therapy Function Not Compromised Therapy Function Compromised Electrical Component

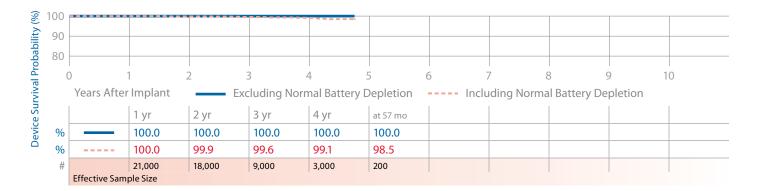
## NBG Code DDDR Serial Number Prefix PMU Estimated Longevity See page 77






### EnPulse 2 DR E2DR31, E2DR33

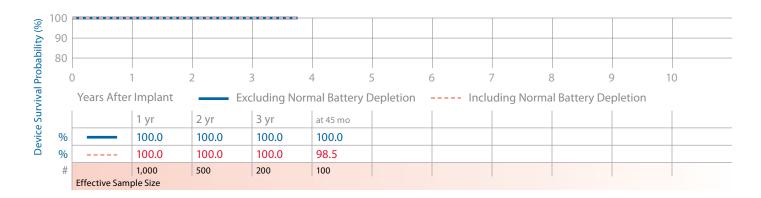
### **Product Characteristics**


| US Market Release                   | Feb-04 | Malfunctions (US)                |
|-------------------------------------|--------|----------------------------------|
| Registered US Implants              | 1,000  | Therapy Function Not Compromised |
| <b>Estimated Active US Implants</b> | 400    | Therapy Function Compromised     |
| Normal Battery Depletions (US)      | 0      |                                  |
| Advisories                          | None   |                                  |

| inctions (US)                | 0 | NBG Code             | DDDR        |
|------------------------------|---|----------------------|-------------|
| apy Function Not Compromised | 0 | Serial Number Prefix | PNL         |
| apy Function Compromised     | 0 | Estimated Longevity  | See page 77 |
|                              |   |                      |             |



### EnPulse 2 SR E2SR01, E2SR03, E2SR06


| US Market Release              | Dec-03 | Malfunctions (US)                | 3 | NBG Code             | SSIR        |
|--------------------------------|--------|----------------------------------|---|----------------------|-------------|
| Registered US Implants         | 25,000 | Therapy Function Not Compromised | 2 | Serial Number Prefix | PMW, PMY,   |
| Estimated Active US Implants   | 15,000 | Electrical Component             | 1 |                      | PNA         |
| Normal Battery Depletions (US) | 42     | Possible Early Battery Depletion | 1 | Estimated Longevity  | See page 77 |
| Advisories                     | None   | Therapy Function Compromised     | 1 |                      |             |
|                                |        | Other                            | 1 |                      |             |



### EnPulse 2 VDD E2VDD01

### **Product Characteristics**

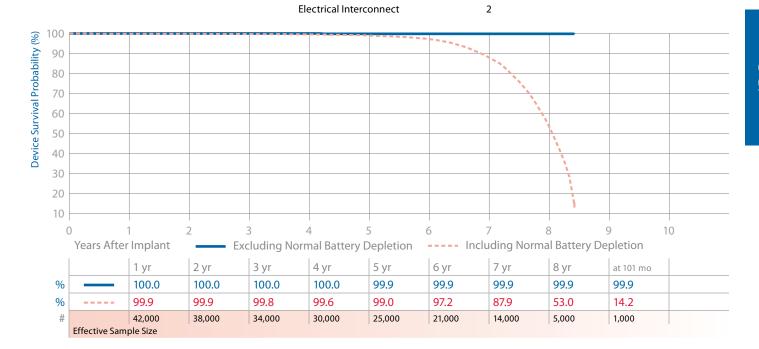
| US Market Release                   | Dec-03 | Malfunctions (US)                | 0 | NBG Code                   | VDD         |
|-------------------------------------|--------|----------------------------------|---|----------------------------|-------------|
| Registered US Implants              | 1,000  | Therapy Function Not Compromised | 0 | Serial Number Prefix       | PMV         |
| <b>Estimated Active US Implants</b> | 500    | Therapy Function Compromised     | 0 | <b>Estimated Longevity</b> | See page 77 |
| Normal Battery Depletions (US)      | 1      |                                  |   |                            |             |
| Advisories                          | None   |                                  |   |                            |             |



### **EnRhythm DR P1501DR**

| JS Market Release                                  | May-05               | Malfu              | Malfunctions (US) |                |         | 30            | NBG Co   | de           |   | DDDRP      |
|----------------------------------------------------|----------------------|--------------------|-------------------|----------------|---------|---------------|----------|--------------|---|------------|
| Registered US Implants 78,000 <b>Therapy Funct</b> |                      |                    |                   | n Not Comp     | romised | 5             | Serial N | umber Prefix | x | PNP        |
| Estimated Active US Implants                       | 62,000               | El                 | ectrical Com      | nponent        |         | 5             | Estimate | ed Longevit  | у | See page 7 |
| Normal Battery Depletions (US)                     | 4                    | Thera              | apy Function      | n Compron      | ised    | 25            |          |              |   |            |
| Advisories                                         | None                 | El                 | ectrical Com      | nponent        |         | 23            |          |              |   |            |
|                                                    |                      | Po                 | ossible Early     | Battery De     | oletion | 1             |          |              |   |            |
| 100                                                |                      |                    |                   |                |         |               |          |              |   |            |
| 100                                                |                      |                    |                   |                |         |               |          |              |   |            |
|                                                    |                      |                    |                   |                |         |               |          |              |   |            |
| 90                                                 |                      |                    |                   |                |         |               |          |              |   |            |
| 90                                                 |                      |                    |                   |                |         |               |          |              |   |            |
|                                                    | 2 3                  |                    | 4                 | 5              | 6       | 7             | 8        | }            | 9 | 10         |
| 80                                                 |                      | uding Nori         | 4<br>mal Battery  | 5<br>Depletion |         | 7<br>Includir |          | Battery D    |   | 10         |
| 0 1 2                                              | Excl                 | uding Nori<br>3 yr | 4 at 43 mo        | 5<br>Depletion |         | 7<br>Includir |          |              |   | 10         |
| 0 1 2 Years After Implant                          | Excl                 | _                  | 1                 | 5<br>Depletion |         | 7<br>Includir |          |              |   | 10         |
| 0 1 2 Years After Implant                          | Exclusion 2 yr 100.0 | 3 yr               | at 43 mo          | 5<br>Depletion |         | 7<br>Includir |          |              |   | 10         |




### Kappa 400 DR KDR401, KDR403

| US Market Release              | Jan-98 | Malfunctions (US)                | 22 |
|--------------------------------|--------|----------------------------------|----|
| Registered US Implants         | 47,000 | Therapy Function Not Compromised | 13 |
| Estimated Active US Implants   | 5,000  | Electrical Component             | 9  |
| Normal Battery Depletions (US) | 5,271  | Electrical Interconnect          | 1  |
| Advisories                     | None   | Possible Early Battery Depletion | 2  |
|                                |        | Other                            | 1  |
|                                |        | Therapy Function Compromised     | 9  |

### **Product Characteristics**

7

| NBG Code             | DDD/RO      |
|----------------------|-------------|
| Serial Number Prefix | PER, PET    |
| Estimated Longevity  | See page 77 |



**Electrical Component** 

### Kappa 400 SR KSR401, KSR403

### Product Characteristics

| app                             | a 400 SR K            | (SR401, KSR   | 403    |            |                 |               |       |      | Produc   | t Characteri  | stics   |             |
|---------------------------------|-----------------------|---------------|--------|------------|-----------------|---------------|-------|------|----------|---------------|---------|-------------|
| US I                            | Market Release Feb-98 |               |        | Malfur     | ctions (US)     |               |       | 5    | NBG Co   | de            |         | SSI/R       |
| Reg                             | istered US Impl       | lants         | 15,000 | Thera      | py Function     | Not Compro    | nised | 4    | Serial N | umber Prefix  |         | PEU, PGD    |
| Esti                            | mated Active U        | S Implants    | 2,000  | Ele        | ectrical Comp   | onent         |       | 3    | Estimat  | ed Longevity  |         | See page 77 |
| Nor                             | mal Battery De        | pletions (US) | 870    | Po         | ssible Early B  | attery Deplet | ion   | 1    |          |               |         |             |
| Adv                             | risories              |               | None   | Thera      | py Function     | Compromise    | d     | 1    |          |               |         |             |
|                                 |                       |               |        | Ele        | ectrical Interc | onnect        |       | 1    |          |               |         |             |
| <u>ş</u> 10                     | 0                     |               |        |            |                 |               |       |      |          |               |         |             |
| 9                               | 0                     |               |        |            |                 |               |       | -    |          |               |         |             |
| Device Survival Probability (%) | 0                     |               |        |            |                 |               |       |      |          |               |         |             |
| <u>2</u> 7                      | 0                     |               |        |            |                 |               |       |      | **       | <b>.</b>      |         |             |
| <b>≥</b> 6                      | 0                     |               |        |            |                 |               |       |      |          | 1             |         |             |
| 2 nc                            | 0                     |               |        |            |                 |               |       |      |          |               |         |             |
| 7 JUG 7                         |                       |               |        |            |                 |               |       |      |          |               |         |             |
| Dev                             |                       |               |        |            |                 |               |       |      |          | 1             |         |             |
| 3                               |                       |               |        |            |                 |               |       |      |          |               | 1.      |             |
| 2                               | 0                     |               |        |            |                 |               |       |      |          |               | 1       |             |
| 1                               | 0                     |               |        |            |                 |               |       |      |          |               |         |             |
|                                 | 0                     |               | 2 3    |            |                 |               | 6     | 7    | ,        | -             | 9       | 10          |
|                                 | Years After           | r Implant     | Excl   | uding Norn | nal Battery [   | Depletion     | Inclu | ıdin | g Norma  | al Battery De | pletion |             |
|                                 |                       | 1 yr          | 2 yr   | 3 yr       | 4 yr            | 5 yr          | 6 yr  | 7 y  | r        | 8 yr          | 9 yr    | at 111 mo   |
| g                               | /o <del></del>        | 100.0         | 100.0  | 100.0      | 100.0           | 100.0         | 99.9  | 99.  | 9        | 99.9          | 99.9    | 99.9        |

99.2

7,000

97.8

5,000

92.9

4,000

### 600 DD

Effective Sample Size

99.9

13,000

99.9

11,000

99.8

10,000

99.5

8,000

%

### Dua du at Ch

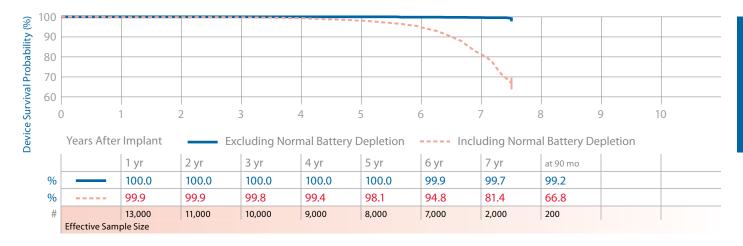
70.3

2,000

32.6

300

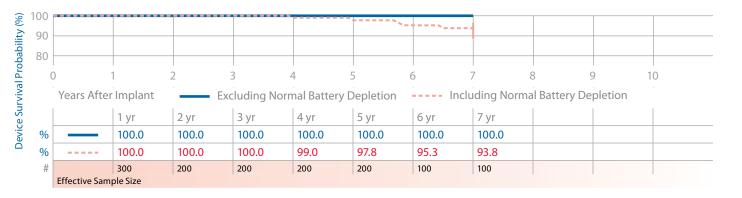
20.3


100

| US Market Release Jan-99                                               |                                   |               | set Release Jan-99 Malfunctions (US) 33 |                                                        |               |             | 33      | NBG Co               | de      | DDD/RO                                  |                  |            |
|------------------------------------------------------------------------|-----------------------------------|---------------|-----------------------------------------|--------------------------------------------------------|---------------|-------------|---------|----------------------|---------|-----------------------------------------|------------------|------------|
| Registered US Implants 24,000                                          |                                   |               | 0 <b>Th</b>                             | Therapy Function Not Compromised  Electrical Component |               |             |         | Serial Number Prefix |         |                                         | PHF, PHH,<br>PHG |            |
| Estima                                                                 | stimated Active US Implants 2,000 |               |                                         |                                                        |               |             |         |                      |         |                                         |                  |            |
| Norma                                                                  | al Battery De                     | pletions (US) | 2,41                                    | 7 <b>Th</b>                                            | erapy Functio | n Compromis | ed      | 30                   | Estimat | ed Longevity                            |                  | See page 7 |
| Advisories: See page 154 – 2002 Potential Fractured Power Supply Wires |                                   |               |                                         | Electrical Cor<br>Electrical Inte<br>(15 malfunction   | -             | ory)        | 2<br>28 |                      |         |                                         |                  |            |
| 100                                                                    |                                   |               |                                         |                                                        |               |             | - L _   |                      |         |                                         |                  |            |
| 90                                                                     |                                   |               |                                         |                                                        |               |             |         |                      |         |                                         |                  |            |
| 80                                                                     |                                   |               |                                         |                                                        |               |             |         | ***                  |         |                                         |                  |            |
| 70                                                                     |                                   |               |                                         |                                                        |               |             |         |                      |         |                                         |                  |            |
| 60                                                                     |                                   |               |                                         |                                                        |               |             |         |                      |         |                                         |                  |            |
|                                                                        |                                   |               |                                         |                                                        |               |             |         |                      |         | 1                                       |                  |            |
| 50                                                                     |                                   |               |                                         |                                                        |               |             |         |                      |         | 1                                       |                  |            |
| 40                                                                     |                                   |               |                                         |                                                        |               |             |         |                      |         |                                         |                  |            |
| 30                                                                     |                                   |               |                                         |                                                        |               |             |         |                      |         |                                         |                  |            |
| 20                                                                     |                                   |               |                                         |                                                        |               |             |         |                      |         | \ \ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ |                  |            |
| 10                                                                     |                                   |               |                                         |                                                        |               |             |         |                      |         | 1                                       |                  |            |
| (                                                                      | )                                 | 1 :           | 2                                       | 3                                                      | 4             | 5           | 6       | 7                    | 8       | 3                                       | 9                | 10         |
|                                                                        | Years After                       | r Implant     | Ex                                      | cluding No                                             | ormal Batter  | y Depletion | Ir      | ncluding             | g Norma | al Battery De                           | pletion          |            |
|                                                                        |                                   | 1 yr          | 2 yr                                    | 3 yr                                                   | 4 yr          | 5 yr        | 6 yr    | 7 yı                 | r       | 8 yr                                    | at 106 mo        |            |
| %                                                                      |                                   | 100.0         | 100.0                                   | 100.0                                                  | 99.9          | 99.9        | 99.9    | 99.                  | 8       | 99.7                                    | 99.7             |            |
| %                                                                      |                                   | 99.9          | 99.9                                    | 99.8                                                   | 99.5          | 98.8        | 96.8    | 87.9                 | )       | 58.9                                    | 15.5             |            |
| #                                                                      |                                   | 21,000        | 19,000                                  | 17,000                                                 | 15,000        | 13,000      | 12,000  | 9,00                 | 0       | 3,000                                   | 200              |            |



### Kappa 600 DR KDR651, KDR653


| US Market Release                   | Mar-01  | Malfunctions (US)                                           | 19 | NBG Code             | DDD/RO      |
|-------------------------------------|---------|-------------------------------------------------------------|----|----------------------|-------------|
| Registered US Implants              | 14,000  | <b>Therapy Function Not Compromised</b>                     | 2  | Serial Number Prefix | PLJ, PLK    |
| <b>Estimated Active US Implants</b> | 5,000   | Electrical Component                                        | 1  | Estimated Longevity  | See page 77 |
| Normal Battery Depletions (US)      | 569     | Possible Early Battery Depletion                            | 1  |                      |             |
| Advisories: See page 154 – 2002 Po  | tential | Therapy Function Compromised                                | 17 |                      |             |
| Fractured Power Supply Wires        |         | Electrical Component                                        | 1  |                      |             |
|                                     |         | Electrical Interconnect (1 malfunction related to advisory) | 16 |                      |             |



### Kappa 700 D KD701, KD703, KD706

| • •                            |        |                                         |   |                      |             |
|--------------------------------|--------|-----------------------------------------|---|----------------------|-------------|
| US Market Release              | Jan-99 | Malfunctions (US)                       | 0 | NBG Code             | DDD         |
| Registered US Implants         | 300    | <b>Therapy Function Not Compromised</b> | 0 | Serial Number Prefix | PHK         |
| Estimated Active US Implants   | 100    | Therapy Function Compromised            | 0 | Estimated Longevity  | See page 78 |
| Normal Battery Depletions (US) | 11     |                                         |   |                      |             |

Advisories: See page 154 – 2002 Potential Fractured Power Supply Wires



**Product Characteristics** 

Feb-99

192,000

54,000

12,539

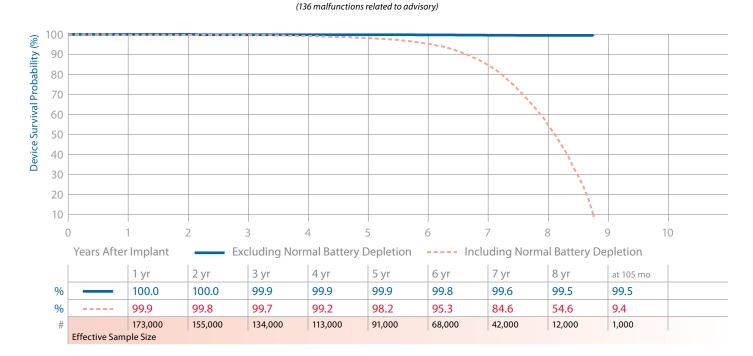


**US Market Release** 

**Registered US Implants** 

**Estimated Active US Implants** 

Normal Battery Depletions (US)


Fractured Power Supply Wires

### Kappa 700 DR KDR701, KDR703, KDR706

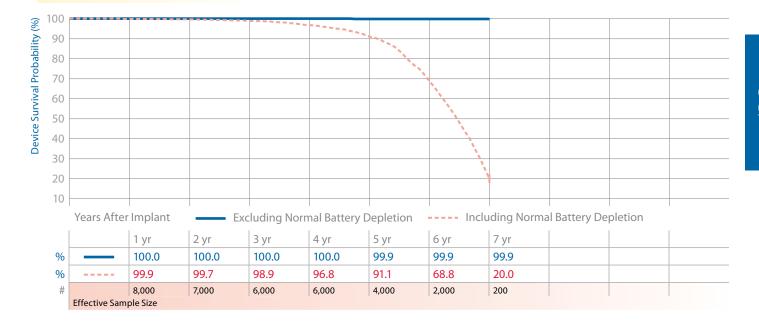
Advisories: See page 154 – 2002 Potential

| 351 |
|-----|
| 28  |
| 1   |
| 21  |
| 1   |
| 3   |
| 2   |
| 323 |
| 15  |
| 308 |
|     |

| NBG Code             | DDD/RO           |
|----------------------|------------------|
| Serial Number Prefix | PGU, PGY,<br>PGW |
| Estimated Longevity  | See page 78      |
|                      |                  |
|                      |                  |



DDD/RO


See page 78

PGR

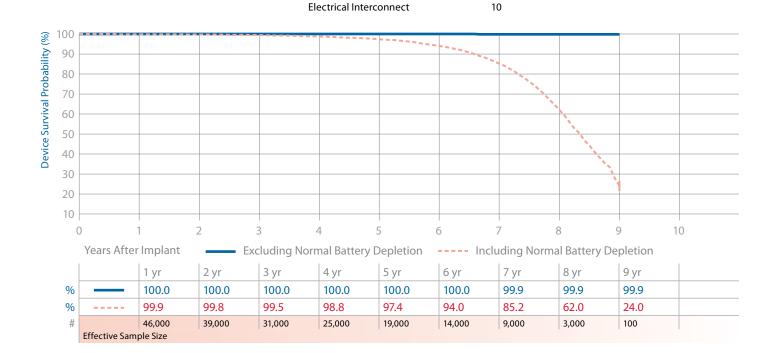


### Kappa 700 DR KDR721

| US Market Release                                               | Feb-99    | Malfunctions (US)                                            | 5 | NBG Code             |
|-----------------------------------------------------------------|-----------|--------------------------------------------------------------|---|----------------------|
| Registered US Implants                                          | 10,000    | Therapy Function Not Compromised                             | 1 | Serial Number Prefix |
| Estimated Active US Implants                                    | 100       | Electrical Component                                         | 1 | Estimated Longevity  |
| Normal Battery Depletions (US)                                  | 1,237     | Therapy Function Compromised                                 | 4 |                      |
| Advisories: See page 154 – 2002<br>Fractured Power Supply Wires | Potential | Electrical Interconnect (4 malfunctions related to advisory) | 4 |                      |



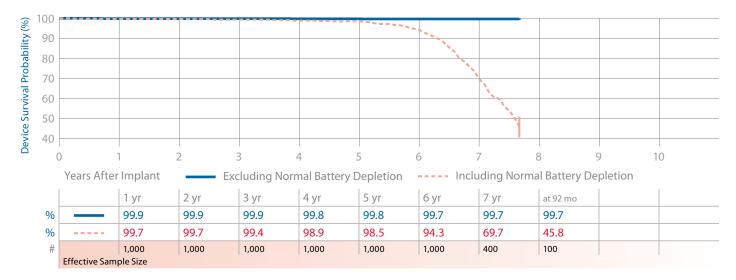
### Kappa 700 SR KSR701, KSR703, KSR706


### **Product Characteristics**

17 3 2

4

| US Market Release              | Feb-99 | Malfunctions (US)                       |
|--------------------------------|--------|-----------------------------------------|
| Registered US Implants         | 55,000 | <b>Therapy Function Not Compromised</b> |
| Estimated Active US Implants   | 13,000 | Electrical Component                    |
| Normal Battery Depletions (US) | 2,265  | Possible Early Battery Depletion        |
| Advisories                     | None   | Therapy Function Compromised            |
|                                |        | Electrical Component                    |


| NBG Code             | SSI/R            |
|----------------------|------------------|
| Serial Number Prefix | PHT, PHW,<br>PHU |
| Estimated Longevity  | See page 78      |
|                      |                  |

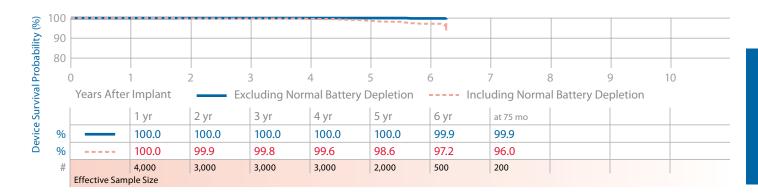


### Kappa 700 VDD KVDD701

Fractured Power Supply Wires

| US Market Release                   | Jan-99  | Malfunctions (US)                    | 3 | NBG Code             | VDD/RO      |
|-------------------------------------|---------|--------------------------------------|---|----------------------|-------------|
| Registered US Implants              | 2,000   | Therapy Function Not Compromised     | 0 | Serial Number Prefix | PHP         |
| <b>Estimated Active US Implants</b> | 100     | Therapy Function Compromised         | 3 | Estimated Longevity  | See page 78 |
| Normal Battery Depletions (US)      | 149     | Electrical Interconnect              | 3 |                      |             |
| Advisories: See page 154 – 2002 Por | tential | (3 malfunctions related to advisory) |   |                      |             |



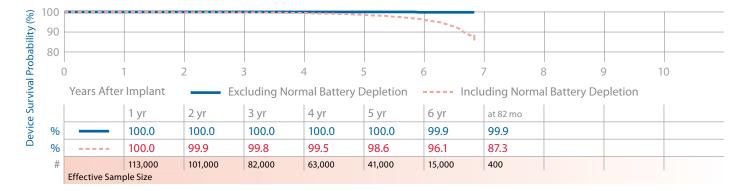



### Kappa 800 DR KDR801, KDR803

## US Market Release Jan-02 Registered US Implants 4,000 Estimated Active US Implants 2,000 Normal Battery Depletions (US) 27 Advisories None

### **Product Characteristics**

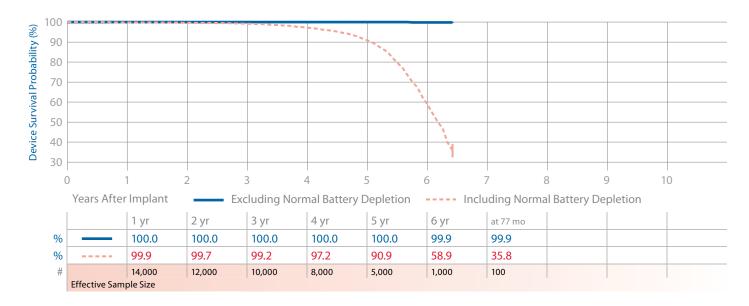
| Malfunctions (US)                | 1 | NBG Code             | DDD/RO      |
|----------------------------------|---|----------------------|-------------|
| Therapy Function Not Compromised | 0 | Serial Number Prefix | PKW, PKY    |
| Therapy Function Compromised     | 1 | Estimated Longevity  | See page 78 |
| Electrical Interconnect          | 1 |                      |             |




### Kappa 900 DR KDR901, KDR903, KDR906

## US Market Release Jan-02 Registered US Implants 125,000 Estimated Active US Implants 70,000 Normal Battery Depletions (US) 907 Advisories None

| Malfunctions (US)                | 36 |
|----------------------------------|----|
| Therapy Function Not Compromised | 12 |
| Electrical Component             | 12 |
| Therapy Function Compromised     | 24 |
| Electrical Component             | 8  |
| Electrical Interconnect          | 16 |
|                                  |    |


| NBG Code DDD/RC                     | )    |
|-------------------------------------|------|
|                                     |      |
| Serial Number Prefix PKM, PK<br>PKP | N,   |
| Estimated Longevity See pag         | e 78 |
|                                     |      |



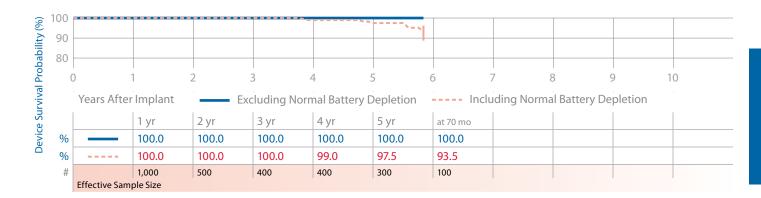
### Kappa 920 DR KDR921

### **Product Characteristics**

| US Market Release                   | Jan-02 | Malfunctions (US)                | 3 | NBG Code             | DDD/RO      |
|-------------------------------------|--------|----------------------------------|---|----------------------|-------------|
| Registered US Implants              | 16,000 | Therapy Function Not Compromised | 0 | Serial Number Prefix | PKR         |
| <b>Estimated Active US Implants</b> | 6,000  | Therapy Function Compromised     | 3 | Estimated Longevity  | See page 78 |
| Normal Battery Depletions (US)      | 902    | Electrical Interconnect          | 3 |                      |             |
| Advisories                          | None   |                                  |   |                      |             |

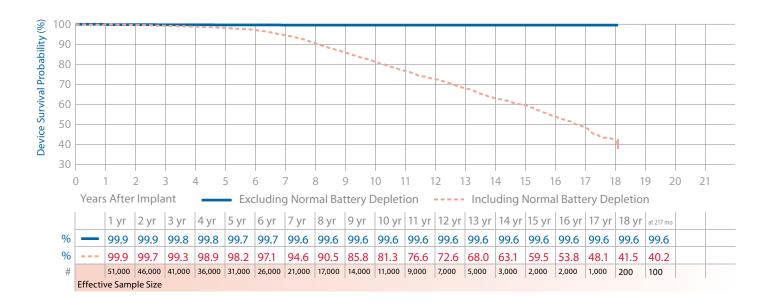


### anna 900 SR KSROOT KSROOZ KSROOG


| ppa               | 900 SK K                   | SR901, KSF    | 1903, KSR90 | 6       |                  |              |          |         | Product Char    | racteristics  |            |
|-------------------|----------------------------|---------------|-------------|---------|------------------|--------------|----------|---------|-----------------|---------------|------------|
| US Ma             | rket Release               |               | Jan-(       | )2 N    | Malfunctions (US | 5)           |          | 11      | NBG Code        |               | VVEV       |
| Regist            | ered US Impl               | ants          | 37,00       | 00      | Therapy Function | on Not Com   | promised | 8       | Serial Number   | Prefix        | PLF, PLG,  |
| Estima            | ated Active U              | S Implants    | 17,00       | 00      | Electrical Co    | mponent      |          | 7       |                 |               | PLH        |
| Norma             | al Battery De <sub>l</sub> | pletions (US) | 24          | 10      | Possible Earl    | y Battery De | pletion  | 1       | Estimated Lon   | gevity        | See page 7 |
| Adviso            | ories                      |               | Nor         | ne      | Therapy Function | on Compron   | nised    | 3       |                 |               |            |
|                   |                            |               |             |         | Electrical Int   | erconnect    |          | 3       |                 |               |            |
| 90                |                            |               |             |         |                  |              |          | 1       |                 |               |            |
| 90  <br>80  <br>0 | )                          | 1             | 2           | 3       | 4                | 5            | 6        | 7       | 8               | 9             | 10         |
|                   | Years After                | Implant       | Ex          | cluding | Normal Batter    | y Depletion  | 1 I      | ncludir | ng Normal Batte | ery Depletion | 1          |
|                   |                            | 1 yr          | 2 yr        | 3 yr    | 4 yr             | 5 yr         | 6 yr     | at      | 81 mo           |               |            |
| %                 |                            | 100.0         | 100.0       | 100.0   | 100.0            | 99.9         | 99.9     | 99      | 0.8             |               |            |
| 0/0               |                            | 999           | 99.8        | 99.7    | 99.0             | 97.5         | 95.1     | 22      | 2.0             |               |            |



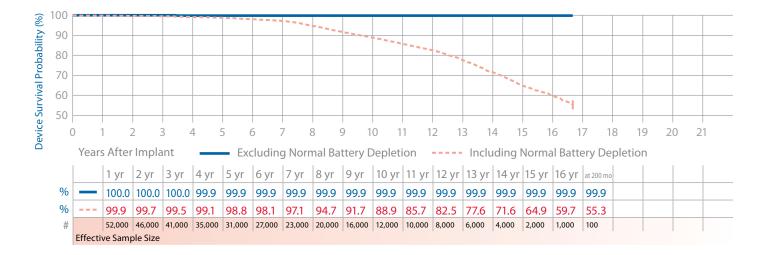
### Kappa 900 VDD KVDD901


### **Product Characteristics**

| US Market Release                   | Jan-02 | Malfunctions (US)                | 0 | NBG Code             | VDD         |
|-------------------------------------|--------|----------------------------------|---|----------------------|-------------|
| Registered US Implants              | 1,000  | Therapy Function Not Compromised | 0 | Serial Number Prefix | PLE         |
| <b>Estimated Active US Implants</b> | 300    | Therapy Function Compromised     | 0 | Estimated Longevity  | See page 78 |
| Normal Battery Depletions (US)      | 9      |                                  |   |                      |             |
| Advisories                          | None   |                                  |   |                      |             |



### **Legend** 8416, 8417, 8417M, 8418, 8419

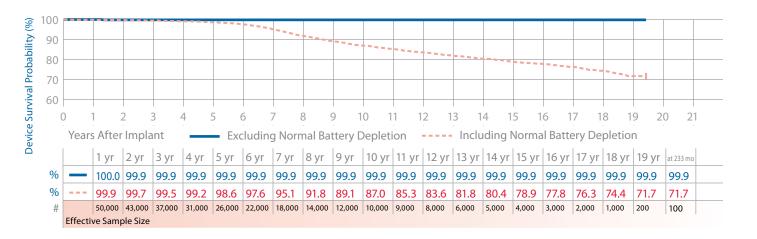

| US Market Release                   | Aug-89 | Malfunctions (US) | 143 | NBG Code             | SSIRO       |
|-------------------------------------|--------|-------------------|-----|----------------------|-------------|
| Registered US Implants              | 57,000 |                   |     | Serial Number Prefix | XT, WJ, WN, |
| <b>Estimated Active US Implants</b> | 2,000  |                   |     |                      | ZT          |
| Normal Battery Depletions (US)      | 2,900  |                   |     | Estimated Longevity  | See page 78 |
| Advisories                          | None   |                   |     |                      |             |



### Legend II 8424, 8426, 8427

### **Product Characteristics**

| US Market Release                   | Nov-91 | Malfunctions (US) | 36 | NBG Code             | SSIRO       |
|-------------------------------------|--------|-------------------|----|----------------------|-------------|
| Registered US Implants              | 59,000 |                   |    | Serial Number Prefix | 2P, 2T, 2U  |
| <b>Estimated Active US Implants</b> | 4,000  |                   |    | Estimated Longevity  | See page 78 |
| Normal Battery Depletions (US)      | 2,203  |                   |    |                      |             |
| Advisories                          | None   |                   |    |                      |             |




### Minix/Minix ST 8330, 8331, 8331M, 8340, 8341, 8341M, 8342

### **Product Characteristics**

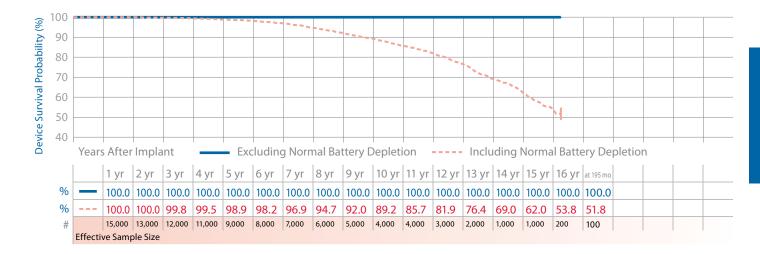
| US Market Release                   | Dec-89 | Malfunctions (US) | 49 | NBG Code             | SSIRO       |
|-------------------------------------|--------|-------------------|----|----------------------|-------------|
| Registered US Implants              | 58,000 |                   |    | Serial Number Prefix | 2P, 2T, 2U  |
| <b>Estimated Active US Implants</b> | 4,000  |                   |    | Estimated Longevity  | See page 78 |
| Normal Battery Depletions (US)      | 1,594  |                   |    |                      |             |

Advisories: See page 159 – 1991 Potential Delayed Restoration of Permanent Settings



None

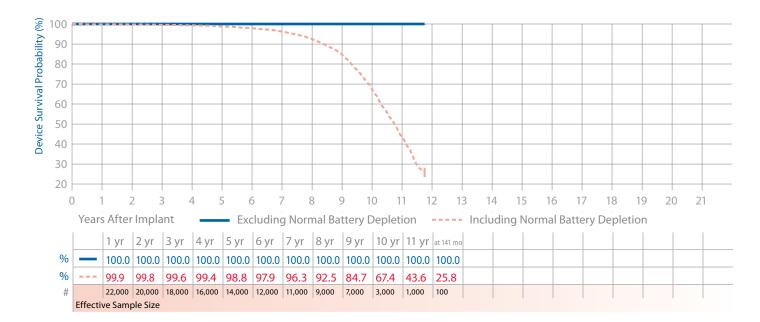
None




### Minuet 7107, 7108

**Advisories** 

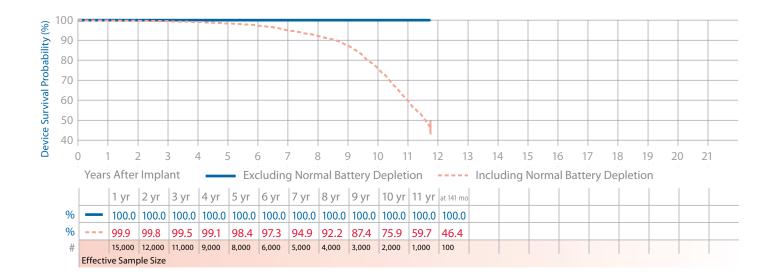
### **Product Characteristics**


| US Market Release                   | Mar-92 | Malfunctions (US) | 4 | NBG Code             | DDDCO       |
|-------------------------------------|--------|-------------------|---|----------------------|-------------|
| Registered US Implants              | 17,000 |                   |   | Serial Number Prefix | 1Z1, 2G1    |
| <b>Estimated Active US Implants</b> | 1,000  |                   |   | Estimated Longevity  | See page 78 |
| Normal Battery Depletions (US)      | 762    |                   |   |                      |             |



### Preva DR 7088, 7089

Advisories


| US Market Release                   | Jul-96 | Malfunctions (US) | 4 | NBG Code             | DDD/RO      |
|-------------------------------------|--------|-------------------|---|----------------------|-------------|
| Registered US Implants              | 26,000 |                   |   | Serial Number Prefix | PGJ, PGK    |
| <b>Estimated Active US Implants</b> | 3,000  |                   |   | Estimated Longevity  | See page 78 |
| Normal Battery Depletions (US)      | 1,828  |                   |   |                      |             |



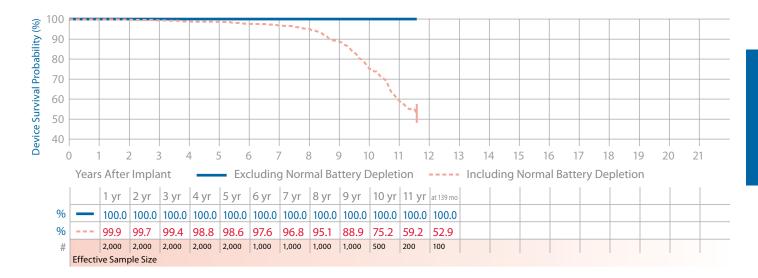
### Preva SR 8088, 8089

### **Product Characteristics**

| US Market Release              | Jul-96 | Malfunctions (US) | 1 | NBG Code             | SSI/R    |
|--------------------------------|--------|-------------------|---|----------------------|----------|
| Registered US Implants         | 18,000 |                   |   | Serial Number Prefix | PGL, PGM |
| Estimated Active US Implants   | 2,000  |                   |   | Estimated Longevity  | See page |
| Normal Battery Depletions (US) | 687    |                   |   |                      |          |
| Advisories                     | None   |                   |   |                      |          |



### Prevail S 8085, 8086


| US Ma  | arket Re | elease  |          |        |       | Oct-9        | 5      | Malfur | nctions | (US)    |        |       |           | 1     |      | NBG Co   | ode     |         |      |      | SS       | SI        |  |
|--------|----------|---------|----------|--------|-------|--------------|--------|--------|---------|---------|--------|-------|-----------|-------|------|----------|---------|---------|------|------|----------|-----------|--|
| Regist | tered U  | S Impl  | ants     |        |       | 4,00         | 0      |        |         |         |        |       |           |       |      | Serial N | lumbe   | r Prefi | ix   |      | PGL, PGM |           |  |
| Estima | ated Ad  | tive U  | S Impla  | nts    |       | 1,00         | 0      |        |         |         |        |       |           |       |      | Estima   | ted Loi | ngevit  | y    |      | Se       | ee page 7 |  |
| Norm   | al Batte | ery Dep | oletion  | s (US) |       | 3            | 8      |        |         |         |        |       |           |       |      |          |         |         |      |      |          |           |  |
| Advis  | ories    |         |          |        |       | Non          | e      |        |         |         |        |       |           |       |      |          |         |         |      |      |          |           |  |
|        |          |         |          |        |       |              |        |        |         |         |        |       |           |       |      |          |         |         |      |      |          |           |  |
| 100    |          |         |          |        |       |              |        |        |         |         |        |       |           |       |      |          | 1       |         |      |      |          |           |  |
|        |          |         |          |        |       |              |        |        |         |         |        |       |           |       |      |          |         |         |      |      |          |           |  |
| 90 80  |          |         |          |        |       |              |        |        |         |         |        |       |           |       |      |          |         |         |      |      |          |           |  |
| (      | ) 1      | 2       | 2 3      | 3 4    | 1 5   | 5 6          | 5 7    | 7 8    | 3 9     | 9 1     | 0 1    | 1 1   | 2 1       | 3 14  | 1    | 15 1     | 6       | 17      | 18   | 19   | 20       | 21        |  |
|        | Years    | After   | Impla    | int    |       | <b>-</b> Exc | luding | g Norn | nal Ba  | ttery [ | Deplet | ion   |           | Inclu | ding | Norma    | al Batt | ery D   | eple | tion |          |           |  |
|        |          | 1 yr    | 2 yr     | 3 yr   | 4 yr  | 5 yr         | 6 yr   | 7 yr   | 8 yr    | 9 yr    | 10 yr  | 11 yr | at 141 mo |       |      |          |         |         |      |      |          |           |  |
| %      | _        | 100.0   | 100.0    | 100.0  | 100.0 | 99.9         | 99.9   | 99.9   | 99.9    | 99.9    | 99.9   | 99.9  | 99.9      |       |      |          |         |         |      |      |          |           |  |
| %      |          | 99.9    | 99.9     | 99.8   | 99.8  | 99.1         | 98.9   | 98.1   | 97.2    | 95.4    | 93.5   | 90.4  | 89.7      |       |      |          |         |         |      |      |          |           |  |
| #      |          | 3,000   | 3,000    | 2,000  | 2,000 | 1,000        | 1,000  | 1,000  | 1,000   | 1,000   | 1,000  | 300   | 100       |       |      |          |         |         |      |      |          |           |  |
|        | Effectiv | ve Samp | ole Size |        |       |              |        |        |         |         |        |       |           |       |      |          |         |         |      |      |          |           |  |



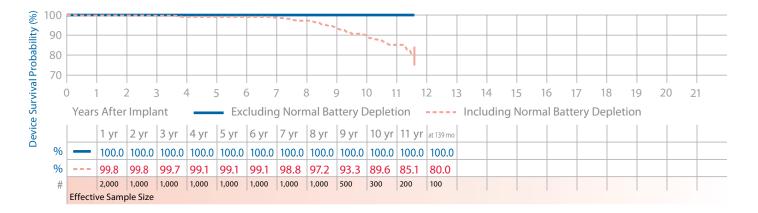
### Prodigy D 7864, 7865, 7866

### **Product Characteristics**

| US Market Release                   | Oct-95 | Malfunctions (US) | 0 | NBG Code             | DDDCO       |
|-------------------------------------|--------|-------------------|---|----------------------|-------------|
| Registered US Implants              | 3,000  |                   |   | Serial Number Prefix | PDL, PDM,   |
| <b>Estimated Active US Implants</b> | 300    |                   |   |                      | PDN         |
| Normal Battery Depletions (US)      | 160    |                   |   | Estimated Longevity  | See page 79 |
| Advisories                          | None   |                   |   |                      |             |



### Prodigy DR 7860, 7861, 7862


| US Market Release                   | Oct-95 | Malfunctions (US) | 11 | NBG Code             | DDD/RO      |
|-------------------------------------|--------|-------------------|----|----------------------|-------------|
| Registered US Implants              | 38,000 |                   |    | Serial Number Prefix | PDH, PDJ,   |
| <b>Estimated Active US Implants</b> | 4,000  |                   |    |                      | PDK         |
| Normal Battery Depletions (US)      | 2,522  |                   |    | Estimated Longevity  | See page 79 |
| Advisories                          | None   |                   |    |                      |             |



### Prodigy S 8164, 8165, 8166

### **Product Characteristics**

| US Market Release                   | Oct-95 | Malfunctions (US) | 0 | NBG Code             | SSIC        |
|-------------------------------------|--------|-------------------|---|----------------------|-------------|
| Registered US Implants              | 2,000  |                   |   | Serial Number Prefix | PEG, PEH,   |
| <b>Estimated Active US Implants</b> | 300    |                   |   |                      | PEJ         |
| Normal Battery Depletions (US)      | 41     |                   |   | Estimated Longevity  | See page 79 |
| Advisories                          | None   |                   |   |                      |             |



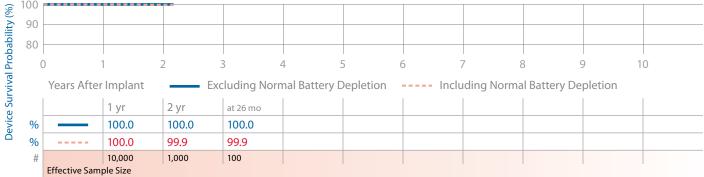
### Prodigy SR 8158, 8160, 8161, 8162

**Effective Sample Size** 

| US Ma                  | arket Re | elease  |         |        |        | Oct-9 | 5    | Malfur   | nctions | (US)     |     |       |       | 4           | 1   | NBG C  | ode     |        |     |    |          | SSI/R  |        |
|------------------------|----------|---------|---------|--------|--------|-------|------|----------|---------|----------|-----|-------|-------|-------------|-----|--------|---------|--------|-----|----|----------|--------|--------|
| Regist                 | tered U  | IS Impl | ants    |        |        | 22,00 | 0    |          |         |          |     |       |       |             |     | Serial | Numb    | er Pre | fix |    |          | PEM, I |        |
| Estima                 | ated A   | ctive U | S Impla | ants   |        | 3,00  | 0    |          |         |          |     |       |       |             |     |        |         |        |     |    | PEE, PEF |        | EF     |
| Norm                   | al Batte | ery Dep | oletion | s (US) |        | 83    | 6    |          |         |          |     |       |       |             |     | Estima | ated Lo | ongev  | ity |    |          | See pa | age 79 |
| Adviso                 | ories    |         |         |        |        | Non   | e    |          |         |          |     |       |       |             |     |        |         |        |     |    |          |        |        |
|                        |          |         |         |        |        |       |      |          |         |          |     |       |       |             |     |        |         |        |     |    |          |        |        |
| 100                    |          |         |         |        |        |       |      |          |         |          |     |       |       |             |     |        |         |        |     |    |          |        | T      |
| 90   80   70   60   40 |          |         |         |        |        |       |      |          |         |          |     |       |       |             |     |        |         |        |     |    |          |        |        |
| 80                     |          |         |         |        |        |       |      |          |         |          |     |       |       |             |     |        |         |        |     |    |          |        |        |
| 70                     |          |         |         |        |        |       |      |          |         |          |     |       |       |             |     |        |         |        |     |    |          |        |        |
| 60                     |          |         |         |        |        |       |      |          |         |          | 1   |       |       |             |     |        |         |        |     |    |          |        |        |
| 50                     |          |         |         |        |        |       |      |          |         |          |     | 1     |       |             |     |        |         |        |     |    |          |        |        |
| 40                     |          |         |         |        |        |       |      |          |         |          |     |       |       |             |     |        |         |        |     |    |          |        |        |
|                        | ) 1      | <br>  5 | ) :     | ]<br>} | 1 5    | 5 6   | 5 7  | l<br>7 { | 3 (     | )<br>) 1 | 0 1 | 1 1   | 2 1   | 1 1<br>3 14 | 4   | 15     | 16      | 17     | 18  | 19 | 20       | ) 2    | 1      |
|                        | Years    | After   | Impla   | nt     |        |       |      |          | nal Ba  |          |     | ion   |       |             | din | g Norm |         | terv l |     |    |          |        |        |
|                        |          |         |         |        | 4 yr   |       | 6 yr |          |         |          |     |       | 12 yr |             |     |        |         |        |     |    | 1        |        |        |
| %                      |          | -       | 100.0   | i e    | 100.0  | -     | -    | 100.0    |         | -        |     | -     | 100.0 |             |     |        |         |        |     |    |          |        |        |
| %                      |          | 99.8    | 99.6    |        | 98.8   | 98.0  | 97.0 | 95.3     | 92.2    | 86.6     |     |       | 50.6  | 49.7        |     |        |         |        |     |    |          |        |        |
| #                      |          |         |         |        | 11,000 |       |      | 7,000    | 5,000   |          |     | 1,000 | 100   | 100         |     |        |         |        |     |    |          |        |        |



### Sensia DR SEDR01, SED01


### **Product Characteristics**

| US Market Release                  | Jul-06 | Malfunctions (US)                | 1 | NBG Code             | DDD, DDDR   |
|------------------------------------|--------|----------------------------------|---|----------------------|-------------|
| Registered US Implants             | 42,000 | Therapy Function Not Compromised | 0 | Serial Number Prefix | PWL, PWK,   |
| Estimated Active US Implants 37,00 |        | Therapy Function Compromised     | 1 |                      | NWL         |
| Normal Battery Depletions (US)     | 0      | Electrical Component             | 1 | Estimated Longevity  | See page 79 |
| Advisories                         | None   |                                  |   |                      |             |



### Sensia SR SESR01, SES01

| US Market Release                   | Jul-06 | Malfunctions (US)                | 0 | NBG Code             | SSIR, SSI   |
|-------------------------------------|--------|----------------------------------|---|----------------------|-------------|
| Registered US Implants              | 26,000 | Therapy Function Not Compromised | 0 | Serial Number Prefix | PWR, PWS,   |
| <b>Estimated Active US Implants</b> | 22,000 | Therapy Function Compromised     | 0 |                      | NWR         |
| Normal Battery Depletions (US)      | 1      |                                  |   | Estimated Longevity  | See page 79 |
| Advisories                          | None   |                                  |   |                      |             |
|                                     |        |                                  |   |                      |             |
| _ 100                               |        |                                  |   |                      |             |



Aug-99

1,000

200

5

### Sigma 100 S SS103, SS106

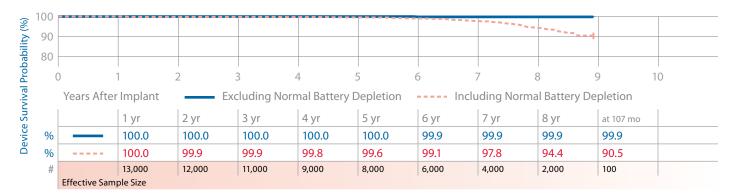
Registered US Implants

**Estimated Active US Implants** 

Normal Battery Depletions (US)

**US Market Release** 

| Malfunctions (US)                | 0 | NBG Code             | SSI         |
|----------------------------------|---|----------------------|-------------|
| Therapy Function Not Compromised | 0 | Serial Number Prefix | PJG, PJH    |
| Therapy Function Compromised     | 0 | Estimated Longevity  | See page 79 |
|                                  |   |                      |             |


**Product Characteristics** 

Advisories: See page 152 – 2005 Potential Separation of Interconnect Wires

| 100      |                                                                                           |          |       |       |       |       |       |       |          |     |   |
|----------|-------------------------------------------------------------------------------------------|----------|-------|-------|-------|-------|-------|-------|----------|-----|---|
|          |                                                                                           |          |       |       |       |       |       | •     |          |     |   |
| 90<br>80 |                                                                                           |          |       |       |       |       |       |       |          |     |   |
|          | 0                                                                                         | 1        | 2     | 3     | 4     | 5     | 6     | 7     | 8        | 9 1 | 0 |
| >        | Years After Implant Excluding Normal Battery Depletion Including Normal Battery Depletion |          |       |       |       |       |       |       |          |     |   |
| 5        |                                                                                           | 1 yr     | 2 yr  | 3 yr  | 4 yr  | 5 yr  | 6 yr  | 7 yr  | at 87 mo |     |   |
| %        |                                                                                           | 100.0    | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0    |     |   |
| š %      |                                                                                           | 100.0    | 100.0 | 99.6  | 99.6  | 98.7  | 98.7  | 97.5  | 97.5     |     |   |
| #        |                                                                                           | 1,000    | 500   | 400   | 300   | 200   | 200   | 100   | 100      |     |   |
|          | Effective Sam                                                                             | ple Size |       |       |       |       |       |       |          |     |   |

### Sigma 200 DR SDR203

### **US Market Release NBG** Code DDD/RO Aug-99 Malfunctions (US) 6 **Therapy Function Not Compromised** Serial Number Prefix PJD Registered US Implants 16,000 1 **Estimated Active US Implants** 6,000 **Electrical Component** 1 **Estimated Longevity** See page 79 Normal Battery Depletions (US) 5 117 **Therapy Function Compromised** Advisories: See page 152 – 2005 Potential **Electrical Component** 1 Separation of Interconnect Wires **Electrical Interconnect** 4 (2 malfunction related to advisory)





### Sigma 200 SR SSR203

|  | US Market Release                   | Sep-99 | Malfunctions (US)                                            |
|--|-------------------------------------|--------|--------------------------------------------------------------|
|  | Registered US Implants              | 12,000 | Therapy Function Not Compromis                               |
|  | <b>Estimated Active US Implants</b> | 4,000  | Therapy Function Compromised                                 |
|  | Normal Battery Depletions (US)      | 65     | Electrical Interconnect (4 malfunctions related to advisory) |

Advisories: See page 152 – 2005 Potential Separation of Interconnect Wires

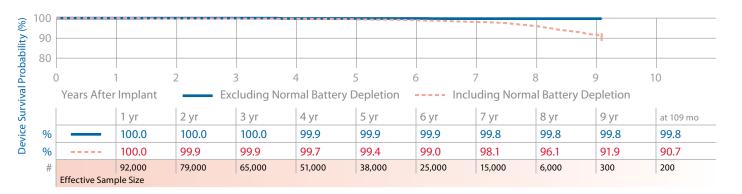
### **Product Characteristics**

| 6 | NBG Code             | SSI/R       |
|---|----------------------|-------------|
| 0 | Serial Number Prefix | PJG         |
| 6 | Estimated Longevity  | See page 79 |

| <b>§</b> 10       | 00 |               |          |       |             |               |           |          |            | _            | I         |   |
|-------------------|----|---------------|----------|-------|-------------|---------------|-----------|----------|------------|--------------|-----------|---|
|                   | 0  |               |          |       |             |               |           |          |            |              |           |   |
| robability<br>8 6 | 30 |               |          |       |             |               |           |          |            |              |           |   |
| Pro               | (  | ) .           | 1 :      | 2 :   | 1<br>3 4    | 1<br>4        | 5 6       | і<br>б 7 | 7 8        | 3            | 9 1       | 0 |
| vival             |    | Years After   | Implant  | Exc   | luding Norn | nal Battery [ | Depletion | Inclu    | ding Norma | l Battery De | pletion   |   |
| Sur               |    |               | 1 yr     | 2 yr  | 3 yr        | 4 yr          | 5 yr      | 6 yr     | 7 yr       | 8 yr         | at 106 mo |   |
| Device            | %  |               | 100.0    | 100.0 | 100.0       | 100.0         | 99.9      | 99.9     | 99.9       | 99.9         | 99.9      |   |
| Õ                 | %  |               | 100.0    | 99.9  | 99.8        | 99.7          | 99.3      | 98.7     | 97.3       | 95.6         | 90.8      |   |
|                   | #  |               | 10,000   | 8,000 | 7,000       | 5,000         | 4,000     | 3,000    | 2,000      | 1,000        | 100       |   |
|                   |    | Effective Sam | ple Size |       |             |               |           |          |            |              |           |   |

Compromised

6


### Sigma 300 DR SDR303, SDR306

| US Market Release                         | Aug-99  |  |  |
|-------------------------------------------|---------|--|--|
| Registered US Implants                    | 107,000 |  |  |
| <b>Estimated Active US Implants</b>       | 53,000  |  |  |
| Normal Battery Depletions (US)            | 394     |  |  |
| Advisories: See page 152 – 2005 Potential |         |  |  |

**Separation of Interconnect Wires** 

| Malfunctions (US)                                             | 76 |
|---------------------------------------------------------------|----|
| Therapy Function Not Compromised                              | 5  |
| Electrical Component                                          | 4  |
| Possible Early Battery Depletion                              | 1  |
| Therapy Function Compromised                                  | 71 |
| <b>Electrical Component</b>                                   | 6  |
| Electrical Interconnect (28 malfunctions related to advisory) | 65 |

| NBG Code             | DDD/RO      |
|----------------------|-------------|
| Serial Number Prefix | PJD, PJE    |
| Estimated Longevity  | See page 79 |
|                      |             |
|                      |             |



### Sigma 300 SR SSR303, SSR306

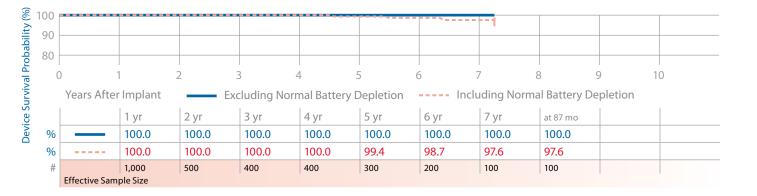
| US Market Release                   | Sep-99   |
|-------------------------------------|----------|
| Registered US Implants              | 54,000   |
| <b>Estimated Active US Implants</b> | 20,000   |
| Normal Battery Depletions (US)      | 191      |
| Advisories: See page 152 – 2005 Pe  | otential |

| Malfunctions (US)                | 15 |
|----------------------------------|----|
| Therapy Function Not Compromised | 2  |
| Electrical Component             | 1  |
| Electrical Interconnect          | 1  |
| Therapy Function Compromised     | 13 |
| Electrical Component             | 3  |
| Electrical Interconnect          | 10 |

(5 malfunctions related to advisory)

### **Product Characteristics**

| NBG Code             | SSI/R       |
|----------------------|-------------|
| Serial Number Prefix | PJG, PJH    |
| Estimated Longevity  | See page 79 |
|                      |             |

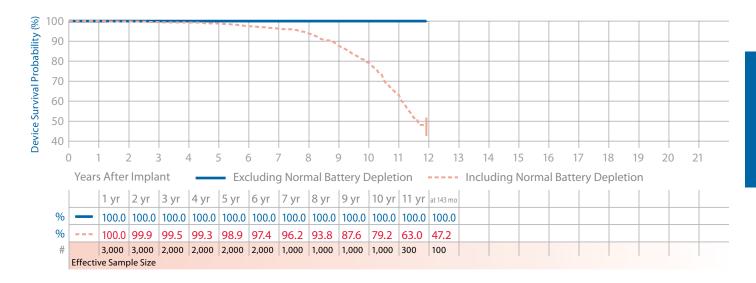

| 00 |             |                 |      |                   |                      |                     |    |              |              |                        |    |
|----|-------------|-----------------|------|-------------------|----------------------|---------------------|----|--------------|--------------|------------------------|----|
| 90 |             |                 |      |                   |                      |                     |    |              |              | 1                      |    |
| 80 |             |                 |      |                   |                      |                     |    |              |              |                        |    |
|    |             |                 | I    |                   | I                    | I                   |    |              | I            |                        |    |
| _  | <b>1</b>    | 1               | 2    | 2                 | /                    | 5                   | 6  | 7            | 8            | 9 1                    | 10 |
| 0  | )           | 1               | _    | 5                 | 4                    | J                   | O  | /            | O            |                        | 10 |
| U  | Years Afte  | r Implant       |      | S<br>Excluding No | ormal Batter         | y Depletion         |    | rcluding Nor | mal Battery  |                        | 10 |
|    |             | Implant<br>1 yr | 2 yr | Excluding No      | ormal Batter<br>4 yr | y Depletion<br>5 yr |    | ncluding Nor |              |                        |    |
| %  | Years After |                 | I    | 1                 | 1.                   |                     | In | 1            | rmal Battery | Depletion              |    |
|    | Years After | 1 yr            | 2 yr | 3 yr              | 4 yr                 | 5 yr                | In | 7 yr         | rmal Battery | Depletion<br>at 107 mo |    |

### Sigma 300 VDD svDD303

### **US Market Release** Sep-99 **Registered US Implants** 1,000 **Estimated Active US Implants** 200 Normal Battery Depletions (US) 5

Advisories: See page 152 – 2005 Potential Separation of Interconnect Wires

| Malfunctions (US)                | 0 | NBG Code             | VDDD        |
|----------------------------------|---|----------------------|-------------|
| Therapy Function Not Compromised | 0 | Serial Number Prefix | PJD         |
| Therapy Function Compromised     | 0 | Estimated Longevity  | See page 79 |





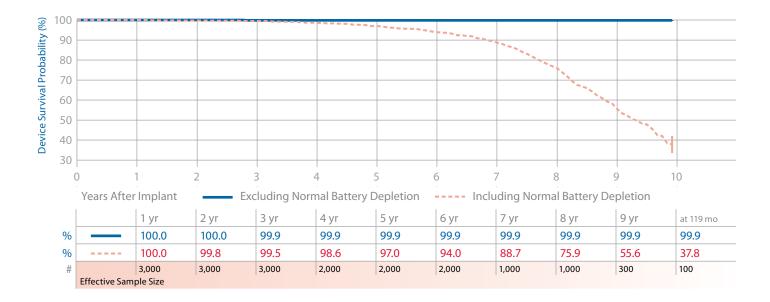

### Thera-i D 7964i, 7965i, 7966i

### **Product Characteristics**

| US Market Release                   | Oct-95 | Malfunctions (US) | 1 | NBG Code             | DDDCO       |
|-------------------------------------|--------|-------------------|---|----------------------|-------------|
| Registered US Implants              | 3,000  |                   |   | Serial Number Prefix | PDE, PDF,   |
| <b>Estimated Active US Implants</b> | 300    |                   |   |                      | PDG         |
| Normal Battery Depletions (US)      | 195    |                   |   | Estimated Longevity  | See page 79 |
| Advisories                          | None   |                   |   |                      |             |

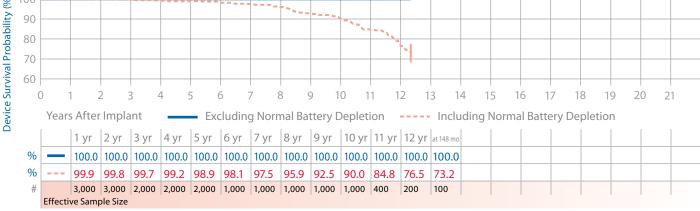


### Thera-i DR 7960i, 7961i, 7962i


| US Market Release              | Oct-95  | Malfunctions (US) | 50 | NBG Code             | DDD   | /RO     |
|--------------------------------|---------|-------------------|----|----------------------|-------|---------|
| Registered US Implants         | 122,000 |                   |    | Serial Number Prefix | PDB,  | ,       |
| Estimated Active US Implants   | 7,000   |                   |    |                      | PDD   |         |
| Normal Battery Depletions (US) | 10,066  |                   |    | Estimated Longevity  | See p | page 79 |
| Advisories                     | None    |                   |    |                      |       |         |



### Thera-i DR 7968i

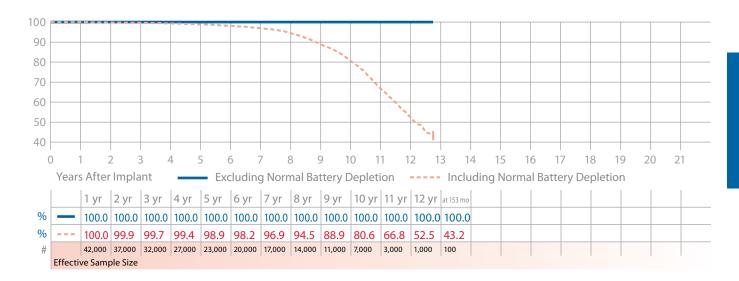

### **Product Characteristics**

| US Market Release                   | Jul-96 | Malfunctions (US) | 3 | NBG Code             | DDD/RO      |
|-------------------------------------|--------|-------------------|---|----------------------|-------------|
| Registered US Implants              | 4,000  |                   |   | Serial Number Prefix | PGH         |
| <b>Estimated Active US Implants</b> | 100    |                   |   | Estimated Longevity  | See page 79 |
| Normal Battery Depletions (US)      | 295    |                   |   |                      |             |
| Advisories                          | None   |                   |   |                      |             |



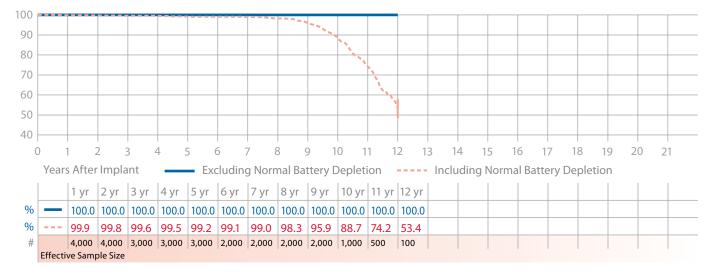
### Thera-i S 8964i, 8965i, 8966i

| · -                            |        |                   |   |                      |             |
|--------------------------------|--------|-------------------|---|----------------------|-------------|
| US Market Release              | Oct-95 | Malfunctions (US) | 1 | NBG Code             | SSIR        |
| Registered US Implants         | 4,000  |                   |   | Serial Number Prefix | PDY, PEA,   |
| Estimated Active US Implants   | 500    |                   |   |                      | PEB         |
| Normal Battery Depletions (US) | 84     |                   |   | Estimated Longevity  | See page 79 |
| Advisories                     | None   |                   |   |                      |             |
|                                |        |                   |   |                      |             |
| § 100                          |        |                   |   |                      |             |
| © '                            |        |                   |   |                      |             |





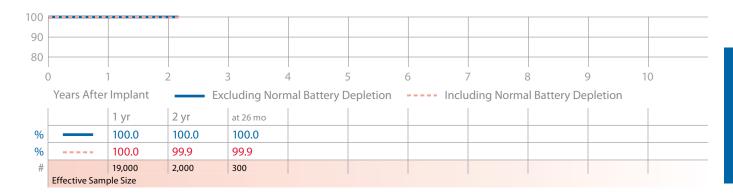

### Thera-i SR 8960i, 8961i, 8962i


### **Product Characteristics**

| US Market Release                   | Oct-95 | Malfunctions (US) | 7 | NBG Code             | SSIR        |
|-------------------------------------|--------|-------------------|---|----------------------|-------------|
| Registered US Implants              | 50,000 |                   |   | Serial Number Prefix | PDU, PDV,   |
| <b>Estimated Active US Implants</b> | 5,000  |                   |   |                      | PDW         |
| Normal Battery Depletions (US)      | 2,012  |                   |   | Estimated Longevity  | See page 79 |
| Advisories                          | None   |                   |   |                      |             |



### Thera-i VDD 8968i **Product Characteristics**


| US Market Release              | Mar-96 | Malfunctions (US) | 0 | NBG Code             | VDD         |
|--------------------------------|--------|-------------------|---|----------------------|-------------|
| Registered US Implants         | 5,000  |                   |   | Serial Number Prefix | PEC         |
| Estimated Active US Implants   | 1,000  |                   |   | Estimated Longevity  | See page 79 |
| Normal Battery Depletions (US) | 196    |                   |   |                      |             |
| Advisories                     | None   |                   |   |                      |             |
|                                |        |                   |   |                      |             |





### Versa DR VEDR01

| US Market Release                   | Jul-06 | Malfunctions (US)                       | 2 | NBG Code                   | DDDR        |
|-------------------------------------|--------|-----------------------------------------|---|----------------------------|-------------|
| Registered US Implants              | 38,000 | <b>Therapy Function Not Compromised</b> | 2 | Serial Number Prefix       | PWH, NWH    |
| <b>Estimated Active US Implants</b> | 34,000 | Electrical Component                    | 2 | <b>Estimated Longevity</b> | See page 79 |
| Normal Battery Depletions (US)      | 1      | Therapy Function Compromised            | 0 |                            |             |
| Advisories                          | None   |                                         |   |                            |             |



16 yr

98.7 +0.3/-0.4 at 59 mo

99.2 +0.2/-0.3

100.0

HO.0/-0.0

Including Normal Battery Depletion

100.0 +0.0/-0.1 at 59 mo

100.0

100.0 +0.0/-0.1

100.0

100.0

Excluding Normal Battery Depletion

Ш

0

26

4,000

7,000

Dec-03

EnPulse

DR

E1DR01, E1DR03, E1DR06

100.0 +0.0/-0.0 at 57 mo

100.0

100.0+0.0/-0.0

100.0

100.0

Excluding Normal Battery Depletion

0

П

0

0

23

1,000

2,000

Dec-03

E1DR21

**EnPulse** 

96.8 +0.9/-1.2

99.0

99.7

+0.0/-0.0

Including Normal Battery Depletion

100.0



# Device Survival Summary (95% Confidence Interval)

The following table shows IPG device survival estimates with 95% confidence intervals. Estimates are shown both with and without normal battery depletions

12 yr 14 yr 10 yr 8 Vr 7 yr 57.2 +4.1/-4.3 at 67 mo 99.9 +0.1/-0.1 at 67 mo 6 yr 99.9 +0.1/-0.1 83.8 +1.2/-1.3 5 yr Device Survival Probability (%) 99.9 +0.1/-0.1 97.5 +0.3/-0.4 4 yr 100.0 +0.0/-0.0 at 27 mo 100.0 +0.0/-0.0 at 27 mo 100.0 +0.0/-0.0 at 26 mo 99.5 +0.1/-0.2 100.0 +0.0/-0.1 at 26 mo +0.1/-0.2 at 26 mo 100.0 +0.0/-0.1 at 26 mo 100.0 +0.0/-0.1 3 yr Years After Implant 100.0 +0.0/-0.0 100.0 100.0+0.0/-0.0 100.0 +0.0/-0.0 100.0 +0.0/-0.0 99.9 100.0 +0.0/-0.0 at 16 mo 100.0 +0.0/-0.1 100.0 +0.0/-0.1 99.9 100.0 +0.0/-0.1 100.0 2 yr 100.0 100.0 100.0 +0.0/-0.0 100.0 +0.0/-0.0 100.0 HO.0/-0.0 100.0 +0.0/-0.1 +0.0/-0.0 HO.0/-0.0 +0.0/0.0+1 yr 100.0 1000 100.0 100.0 Including Normal Battery Depletion Excluding Normal Battery Depletion Excluding Normal Battery Depletion Including Normal Battery Depletion Excluding Normal Battery Depletion Including Normal Battery Depletion Excluding Normal Battery Depletion Including Normal Battery Depletion Excluding Including Including Excluding 10 0 0 0 10 Total Malfunctions (US) Ш П П П П Compromised Function Not 9 0 0 0 0 2 Therapy + + + + Compromised Therapy Function 4 0 0 0 2 Depletions (US) See page 163 – Performance note on AT500 Pacing System Follow-Up Protocol 0 0 481 Normal Battery 104,000 Implants 10,000 19,000 000'6 5,000 **SU evitoA** 400 Estimated 116,000 10,000 11,000 22,000 11,000 US Implants 400 Registered Mar-03 90-Inf 90-Inf 90-Inf Jul-06 Jul-06 Кејеаѕе US Market included. ADVDD01 ADDR06, ADD01 ADSR01, ADSR03, ADDR01, ADDR03, ADDRL1 **ADDRS1** AT501, 7253 уарширы IəboM Adapta DR Adapta DR Adapta SR Adapta DR Adapta AT500 VDD

Family

| continued |
|-----------|
| Summary   |
| Survival  |
| Device    |

|                  |                              |                 |                      | <b>.</b>                    | )S)                         | Malfu<br>b               |                     | s (US)           |                |                                          | Device            | Device Survival Probability (%) | l Probab            | ility (%)                      |                                |                         |                         |                         |                                |       |       |       |
|------------------|------------------------------|-----------------|----------------------|-----------------------------|-----------------------------|--------------------------|---------------------|------------------|----------------|------------------------------------------|-------------------|---------------------------------|---------------------|--------------------------------|--------------------------------|-------------------------|-------------------------|-------------------------|--------------------------------|-------|-------|-------|
| <b>K</b> iiii    | odel<br>mber                 | Market<br>lease | gistered<br>Implants | imated<br>SU evit<br>stnslq | raat Batter<br>2U) znoitelq | erapy Funct<br>mpromised | erapy<br>nction Not | mpromised<br>Ial | ומן            |                                          | Years A           | Years After Implant             | lant                | -                              | -                              | -                       | -                       | -                       | -                              | -     | -     |       |
| 167              | oM<br>uM                     | SU<br>Sel       |                      | ıэA                         | ON<br>De                    |                          | ın∃                 | toT              | 101            |                                          | 1 yr              | 2 yr                            | 3 yr                | 4 yr 5                         | 5 yr   6                       | 6 yr 7                  | yr 8                    | yr                      | 10 yr                          | 12 yr | 14 yr | 16 yr |
| EnPulse<br>2 DR  | E2DR01,<br>E2DR03,<br>E2DR06 | Feb-04          | 101,000              | 70,000                      | 81                          | m                        | + 10                | 11               | 13 No          | Excluding Normal Battery Depletion       | 100.0             | 100.0                           | 100.0 + +0.0/-0.0   | 100.0<br>+0.0/-0.0<br>ai       | 100.0<br>+0.0/-0.0<br>at 56 mo |                         |                         |                         |                                |       |       |       |
|                  |                              |                 |                      |                             |                             |                          |                     |                  | ž              | Including<br>Normal Battery<br>Depletion | 100.0             | 99.9                            | 99.9                | 99.6<br>+0.1/-0.1              | 99.2<br>+0.2/-0.4<br>at 56 mo  |                         |                         |                         |                                |       |       |       |
| EnPulse<br>2 DR  | E2DR21                       | Feb-04          | 12,000               | 8,000                       | 48                          | -                        | 0 +                 |                  | N <sub>O</sub> | Excluding Normal Battery Depletion       | 100.0             | 100.0                           | 100.0 + +0.0/-0.1   | 100.0<br>+0.0/-0.1<br>+ ai     | 100.0<br>+0.0/-0.1<br>at 54 mo |                         |                         |                         |                                |       |       | ,     |
|                  |                              |                 |                      |                             |                             |                          |                     |                  | ŭ              | Including<br>Normal Battery<br>Depletion | 99.9<br>+0.0/-0.1 | 99.7<br>+0.1/-0.1               | 99.4 +0.1/-0.2      | 97.6<br>+0.5/-0.7<br>at        | 97.3<br>+0.6/-0.7<br>at 54 mo  |                         |                         |                         |                                |       |       |       |
| EnPulse<br>2 DR  | E2DR31,<br>E2DR33            | Feb-04          | 1,000                | 400                         | 0                           | 0                        | 0 +                 | 0                | 0<br>N         | Excluding Normal Battery Depletion       | 100.0             | 100.0                           | 100.0<br>+0.0/-0.0  | 100.0<br>+0.0/-0.0<br>at 43 mo |                                |                         |                         |                         |                                |       |       |       |
|                  |                              |                 |                      |                             |                             |                          |                     |                  | ž              | Including<br>Normal Battery<br>Depletion | 100.0             | 100.0                           | 100.0<br>+0.0/-0.0  | 100.0<br>+0.0/-0.0<br>at 43 mo |                                |                         |                         |                         |                                |       |       |       |
| EnPulse 2<br>SR  | E2SR01,<br>E2SR03,<br>E2SR06 | Dec-03          | 25,000               | 15,000                      | 42                          | -                        | 7                   | ε<br>Ε           | N<br>N         | Excluding<br>Normal Battery<br>Depletion | 100.0             | 100.0                           | 100.0 +             | 100.0<br>+0.0/-0.0<br>al       | 100.0<br>+0.0/-0.0<br>at 57 mo |                         |                         |                         |                                |       |       |       |
|                  |                              |                 |                      |                             |                             |                          |                     |                  | ŭ              | Including<br>Normal Battery<br>Depletion | 100.0             | 99.9                            | 99.6                | 99.1<br>+0.2/-0.3 +            | 98.5<br>+0.4/-0.5<br>at 57 mo  |                         |                         |                         |                                |       |       |       |
| EnPulse 2<br>VDD | E2VDD01                      | Dec-03          | 1,000                | 200                         | -                           | 0                        | 0 +                 | 0                | 0              | Excluding Normal Battery Depletion       | 100.0             | 100.0                           | 100.0<br>+0.0/-0.0  | 100.0<br>+0.0/-0.0<br>at 45 mo |                                |                         |                         |                         |                                |       |       |       |
|                  |                              |                 |                      |                             |                             |                          |                     |                  | ŭ              | Including<br>Normal Battery<br>Depletion | 100.0             | 100.0                           | 100.0<br>+0.0/-0.0  | 98.5<br>+1.1/-4.4<br>at 45 mo  |                                |                         |                         |                         |                                |       |       |       |
| EnRhythm<br>DR   | P1501DR                      | May-05          | 78,000               | 62,000                      | 4                           | 25 +                     | ÷                   | = 3(             | 30 No          | Excluding Normal Battery Depletion       | 100.0             | 100.0                           | 99.9<br>+ 0.0-/0.0+ | 99.9<br>+0.0/-0.0<br>at 43 mo  |                                |                         |                         |                         |                                |       |       |       |
|                  |                              |                 |                      |                             |                             |                          |                     |                  | ž              | Including Normal Battery Depletion       | 100.0             | 99.9                            | 99.9<br>+ 0.0-/0.0+ | 99.9<br>+0.0/-0.0<br>at 43 mo  |                                |                         |                         |                         |                                |       |       |       |
| Kappa 400<br>DR  | KDR401,<br>KDR403            | Jan-98          | 47,000               | 2,000                       | 5,271                       | 6                        | + 13                | = 27             | 22 No          | Excluding Normal Battery Depletion       | 100.0             | 100.0                           | 100.0 + +0.0/-0.0   | 100.0 + +0.0/-0.0              | 96.9 + 0.0/-0.0+               | 99.9                    | 99.9                    | 99.9<br>+0.0/-0.0<br>at | 99.9<br>+0.0/-0.0<br>at 101 mo |       |       |       |
|                  |                              |                 |                      |                             |                             |                          |                     |                  | ĕ              | Including<br>Normal Battery<br>Depletion | 99.9              | 99.9                            | 99.8                | 99.6 + 0.1/-0.1                | 99.0 97.4-0.1 +0.1/-0.1        | 97.2 87<br>+0.2/-0.2 +C | 87.9<br>+0.5/-0.5<br>+C | 53.0<br>+0.9/-1.0<br>at | 14.2<br>+1.2/-1.2<br>at 101 mo |       |       |       |
| Kappa 400<br>SR  | KSR401,<br>KSR403            | Feb-98          | 15,000               | 2,000                       | 870                         | -                        | 4                   | = 2              | 2<br>No        | Excluding<br>Normal Battery<br>Depletion | 100.0             | 100.0                           | 100.0               | 100.0+                         | 100.0 + 0.0/-0.1               | 99.9                    | 99.9                    | 99.9<br>+0.0/-0.1       | 99.9<br>+0.0/-0.1<br>at 111 mo |       |       |       |
|                  |                              |                 |                      |                             |                             |                          |                     |                  | ĕ              | Including Normal Battery Depletion       | +0.0/-0.1         | +0.0/-0.1                       | 99.8                | 99.5 +0.1/-0.2 +               | 99.2 9.7                       | 97.8 +0.3/-0.4 +0       | 92.9 70 +0.7/-0.8       | 70.3<br>+1.6/-1.7<br>at | 20.3<br>+2.8/-2.6<br>at 111 mo |       |       |       |
|                  |                              |                 |                      |                             |                             |                          |                     |                  |                |                                          |                   |                                 |                     |                                |                                |                         |                         |                         |                                |       |       |       |

## **Device Survival Summary** continued

Malfunctions (US)

Device Survival Probability (%)

paninitud

| continued |
|-----------|
|           |
| _         |
| ā         |
| ≥         |
|           |
| =         |
| 3         |
| V)        |
| <u></u>   |
| Š         |
| ÷         |
| 2         |
| 3         |
| Š         |
| d)        |
| ซ         |
| ÷         |
| 6         |
| ŏ         |
|           |

|                                 | impiantai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                              | ı                                        |                                          | ,                                           |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                             |                                          |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------|------------------------------------------|---------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|---------------------------------------------|------------------------------------------|
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16 yr                                                        |                                          |                                          |                                             |                                          |                                          |                                          |                                          |                                          |                                          |                                          | 99.6<br>+0.1/-0.1<br>at 217 mo           | 40.2<br>+2.5/-2.5<br>at 217 mo           | 99.9<br>+0.0/-0.0<br>at 200 mo              | 55.3<br>+2.2/-2.3<br>at 200 mo           |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14 yr                                                        |                                          |                                          |                                             |                                          |                                          |                                          |                                          |                                          |                                          |                                          | 99.6<br>+0.1/-0.1                        | 63.1<br>+0.9/-0.9                        | 99.9                                        | 71.6<br>+0.9/-0.9                        |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12 yr                                                        |                                          |                                          |                                             |                                          |                                          |                                          |                                          |                                          |                                          |                                          | 99.6<br>+0.1/-0.1                        | 72.6<br>+0.7/-0.7                        | 99.9                                        | 82.5<br>+0.6/-0.6                        |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10 yr                                                        |                                          |                                          |                                             |                                          |                                          |                                          |                                          |                                          |                                          |                                          | 99.6<br>+0.1/-0.1                        | 81.3                                     | 99.9                                        | 88.9                                     |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8 yr                                                         |                                          |                                          |                                             |                                          |                                          |                                          |                                          |                                          |                                          |                                          | 99.6<br>+0.1/-0.1                        | 90.5                                     | 99.9                                        | 94.7                                     |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7 yr                                                         | 99.9<br>+0.1/-0.6<br>at 75 mo            | 96.0<br>+1.4/-2.2<br>at 75 mo            | 99.9<br>+0.0/-0.1<br>at 82 mo               | 87.3<br>+1.3/-1.5<br>at 82 mo            | 99.8<br>+0.1/-0.5<br>at 81 mo            | 88.9<br>+2.1/-2.6<br>at 81 mo            |                                          |                                          | 99.9<br>+0.1/-0.2<br>at 77 mo            | 35.8<br>+3.4/-3.3<br>at 77 mo            | 99.6<br>+0.1/-0.1                        | 94.6<br>+0.3/-0.3                        | 99.9                                        | 97.1                                     |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6 yr                                                         | 99.9                                     | 97.2<br>+0.7/-1.0                        | 99.9                                        | 96.1                                     | 99.9                                     | 95.1                                     | 100.0<br>+0.0/-0.0<br>at 70 mo           | 93.5<br>+2.8/-4.8<br>at 70 mo            | 99.9                                     | 58.9<br>+1.9/-2.0                        | 99.7<br>+0.1/-0.1                        | 97.1<br>+0.2/-0.2                        | 99.9                                        | 98.1<br>+0.1/-0.2                        |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5 yr                                                         | 100.0                                    | 98.6                                     | 100.0                                       | 98.6<br>+0.1/-0.1                        | 99.9                                     | 97.5<br>+0.3/-0.3                        | 100.0                                    | 97.5                                     | 100.0                                    | 90.9                                     | 99.7<br>+0.0/-0.1                        | 98.2<br>+0.1/-0.1                        | 99.9                                        | 98.8                                     |
| oility (%)                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4 yr                                                         | 100.0                                    | 99.6                                     | 100.0                                       | 99.5                                     | 100.0                                    | 99.0                                     | 100.0                                    | 99.0                                     | 100.0                                    | 97.2<br>+0.3/-0.3                        | 99.8<br>+0.0/-0.0                        | 98.9                                     | 99.9                                        | 99.1                                     |
| l Probak                        | lant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3 yr                                                         | 100.0                                    | 99.8                                     | 100.0                                       | 99.8                                     | 100.0                                    | 99.7<br>+0.1/-0.1                        | 100.0 +0.0/-0.0                          | 100.0                                    | 100.0 +0.0/-0.1                          | 99.2                                     | 99.8                                     | 99.3                                     | 100.0                                       | 99.5                                     |
| Device Survival Probability (%) | Years After Implant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2 yr                                                         | 100.0                                    | 99.9                                     | 100.0                                       | 99.9                                     | 100.0                                    | 99.8                                     | 100.0 +0.0/-0.0                          | 100.0 +0.0/-0.0                          | 100.0                                    | 99.7<br>+0.1/-0.1                        | 99.9                                     | 99.7<br>+0.0/-0.1                        | 100.0                                       | 99.7                                     |
| Device                          | Years A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 yr                                                         | 100.0                                    | 100.0                                    | 100.0                                       | 100.0                                    | 100.0                                    | 99.9                                     | 100.0                                    | 100.0                                    | 100.0                                    | 99.9                                     | 99.9                                     | 99.9                                     | 100.0                                       | 99.9                                     |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                              | מאכ                                      |                                          |                                             |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                             |                                          |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                              | Excluding<br>Normal Battery<br>Depletion | Including<br>Normal Battery<br>Depletion | Excluding<br>Normal Battery<br>Depletion    | Including<br>Normal Battery<br>Depletion | Excluding<br>Normal Battery<br>Depletion | Including<br>Normal Battery<br>Depletion | Excluding<br>Normal Battery<br>Depletion | Including<br>Normal Battery<br>Depletion | Excluding<br>Normal Battery<br>Depletion | Including<br>Normal Battery<br>Depletion | Excluding<br>Normal Battery<br>Depletion | Including<br>Normal Battery<br>Depletion | Excluding<br>Normal Battery<br>Depletion    | Including<br>Normal Battery<br>Depletion |
|                                 | ĮĘ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 510T                                                         | 1 Excluding Normal Batter Depletio       | Including<br>Normal Battery<br>Depletior | 36 Excluding<br>Normal Battery<br>Depletion | Including<br>Normal Battery<br>Depletior | 11 Excluding Normal Battery Depletion    | Including<br>Normal Battery<br>Depletior | 0 Excluding Normal Battery Depletion     | Including<br>Normal Battery<br>Depletior | 3 Excluding Normal Battery Depletior     | Including<br>Normal Battery<br>Depletion | 143 Excluding Normal Battery Depletior   | Including<br>Normal Battery<br>Depletion | 36 Excluding<br>Normal Battery<br>Depletior | Including<br>Normal Battery<br>Depletion |
| nns                             | ubkomised                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | น๐๖                                                          | = 1 Norm                                 | Including<br>Normal Battery<br>Depletior | = 36 Norm                                   | Including<br>Normal Battery<br>Depletior | = 11<br>Norm                             | Including<br>Normal Battery<br>Depletior | Norm                                     | Including<br>Normal Battery<br>Depletior | m<br>II                                  | Including<br>Normal Battery<br>Depletion | Norm                                     | Including<br>Normal Battery<br>Depletion |                                             | Including<br>Normal Battery<br>Depletion |
| ınctions                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | น๐๖                                                          | 0 = 1                                    | Including<br>Normal Battery<br>Depletior | 12 = 36 Norm                                | Including<br>Normal Battery<br>Depletior | 8 = 11 Norm                              | Including<br>Normal Battery<br>Depletior | 0 = 0<br>Norm                            | Including<br>Normal Battery<br>Depletior | 0 = 3                                    | Including<br>Normal Battery<br>Depletion | Norm                                     | Including<br>Normal Battery<br>Depletion |                                             | Including<br>Normal Battery<br>Depletion |
| Malfunctions                    | ubkomised                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Con<br>The<br>Tun<br>Con                                     | = 1 Norm                                 | Including<br>Normal Battery<br>Depletior | = 36 Norm                                   | Including<br>Normal Bartery<br>Depletior | = 11<br>Norm                             | Including<br>Normal Battery<br>Depletior | Norm                                     | Including<br>Normal Battery<br>Depletior | m<br>II                                  | Including<br>Normal Battery<br>Depletion | — 143 Norm                               | Including<br>Normal Battery<br>Depletion |                                             | Including<br>Normal Battern<br>Depletion |
| Malfunctions                    | rapy<br>rapy<br>ction Not<br>npromised                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Dep<br>The<br>Con<br>The<br>Fun<br>Con                       | + 0 = 1                                  | Including Normal Battery Depletion       | + 12 = 36 Norm                              | Including<br>Normal Battery<br>Depletior | + 8 = 11 Norm                            | Including<br>Normal Battern<br>Depletion | Norm                                     | Including Normal Battery Depletion       | + 0 +                                    | Including Normal Battery Depletion       | Norm                                     | Including Normal Battery Depletion       |                                             | Including<br>Normal Batter<br>Depletion  |
| Malfunctions                    | rapy Function<br>rapy Function<br>inposition and<br>rapy<br>rapy<br>rapy<br>rapy<br>rapy<br>rapy<br>rapy<br>rapy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Acti<br>Mor<br>Dep<br>The<br>Con<br>The<br>Tun<br>Tun<br>Tun | + 0 + 1 Norm                             | Including Normal Battery Depletion       | 24 + 12 = 36 Norm                           | Including<br>Normal Battery<br>Depletior | 3 + 8 = 11 Norm                          | Including Normal Battery Depletion       | 0 = 0 + 0                                | Including Normal Battery Depletion       | 3 + 0 = 3                                | Including Normal Battery Depletion       | — 143 Norm                               | Including Normal Battery Depletion       | 36                                          | Including<br>Normal Batter<br>Depletion  |
| Malfunctions                    | injenus<br>Injents<br>Mal Battery<br>Metions<br>Irapy Function<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Ira<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Ira<br>Irapy<br>Irapy<br>Ira<br>Irapy<br>Irapy<br>Ira<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Irapy<br>Ira<br>Irapy<br>Ira<br>Irapy<br>Ira<br>Irapy | Estiti<br>Almp<br>Mor<br>Mor<br>Dep<br>The<br>Com            | 27 1 + 0 = 1 Norm                        | Including Normal Battery Depletion       | 907 24 + 12 = 36 Norm                       | Including Normal Battery Depletion       | 240 3 + 8 = 11 Norm                      | Including Normal Battery Depletion       | 0 = 0 + 0 Norm                           | Including Normal Battery Depletion       | 3 + 0 = 3                                | Including Normal Battery Depletion       | 2,900 — — 143 Norm                       | Including Normal Battery Depletion       | 2,203 — 36                                  | Including Normal Batter Depletion        |
| Malfunctions                    | mated<br>Jonts<br>Jants<br>Jetions<br>Jetions<br>Jetion<br>Jetion<br>Jetion Mot<br>Grion Mot<br>Ction Mot<br>Optionised                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Reget USI Learning Reget USI Learning Mort Mor The Com       | 2,000 27 1 + 0 = 1 Norm                  | Including Normal Battery Depletion       | 70,000 907 24 + 12 = 36 Norm                | Including Normal Battery Depletion       | 17,000 240 3 + 8 = 11 Norm               | Including Normal Battery Depletion       | 300 9 0 + 0 = 0 Norm                     | Including Normal Battery Depletion       | 6,000 902 3 + 0 = 3                      | Including Normal Battery Depletion       | 2,000 2,900 — — 143 Norm                 | Including Normal Battery Depletion       | 4,000 2,203 — — 36                          | Including Normal Battery Depletion       |
| Malfunctions                    | Market<br>jesse<br>istered<br>mplants<br>mal Battery<br>ilants<br>mal Battery<br>aletions<br>rapy Function<br>npromised<br>rapy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Regular Regular Regular Regular North Mort Imp Dept The Com  | 4,000 2,000 27 1 + 0 = 1 Norm            | Including Normal Battery Depletion       | 125,000 70,000 907 24 + 12 = 36 Norm        | Including Normal Battery Depletion       | 37,000 17,000 240 3 + 8 = 11 Norm        | Including Normal Battery Depletion       | 1,000 300 9 0 + 0 = 0 Norm               | Including Normal Battery Depletion       | 16,000 6,000 902 3 + 0 = 3               | Including Normal Battery Depletion       | 57,000 2,000 2,900 — — 143 Norm          | Including Normal Battery Depletion       | 59,000 4,000 2,203 — — 36                   | Including Normal Batter Depletion        |

|   | continued |
|---|-----------|
|   | oummar)   |
| ١ | "         |
|   | rvival    |
|   | 3         |
| ( | 2         |
|   | evice 5   |

| ΙP                                | G                               | Implantak                        | ole       | Pulse Generato                                       |                                                                                        |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                          |
|-----------------------------------|---------------------------------|----------------------------------|-----------|------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|
|                                   |                                 |                                  | 16 yr     | 99.9<br>+0.0/-0.0<br>at 233 mo                       | 71.7<br>+1.6/-1.7<br>at 233 mo                                                         | 100.0<br>+0.0/-0.1<br>at 195 mo          | 51.8<br>+3.0/-3.1<br>at 195 mo           |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                          |
|                                   |                                 |                                  | 14 yr     | 99.9                                                 | 80.4 +0.7/-0.7                                                                         | 100.0 +0.0/-0.1                          | 69.0 +1.5/-1.6                           |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                          |
|                                   |                                 | _                                | 12 yr     | 99.9<br>+0.0/-0.0                                    | 83.6 +0.6/-0.6                                                                         | 100.0                                    | 81.9                                     | 100.0<br>+0.0/-0.1<br>at 141 mo          | 25.8<br>+2.3/-2.3<br>at 141 mo           | 100.0<br>+0.0/-0.1<br>at 141 mo          | 46.4<br>+3.4/-3.5<br>at 141 mo           | 99.9<br>+0.1/-0.4<br>at 141 mo           | 89.7<br>+2.2/-2.8<br>at 141 mo           | 100.0<br>+0.0/-0.0<br>at 139 mo          | 52.9<br>+4.6/-4.9<br>at 139 mo           | 100.0<br>+0.0/-0.0<br>at 140 mo          | 23.8<br>+2.3/-2.3<br>at 140 mo           |
|                                   |                                 | _                                | 10 yr     | 99.9                                                 | 87.0 +0.5/-0.5                                                                         | 100.0                                    | 89.2<br>+0.7/-0.8                        | 100.0                                    | 67.4 +1.1/-1.1                           | 100.0                                    | 75.9<br>+1.4/-1.4                        | 99.9<br>+0.1/-0.4                        | 93.5 +1.5/-2.0                           | 100.0                                    | 75.2<br>+2.9/-3.2                        | 100.0                                    | 67.9                                     |
|                                   |                                 | -                                | 8 yr      | 99.9                                                 | 91.8<br>+0.4/-0.4                                                                      | 100.0                                    | 94.7 +0.5/-0.5                           | 100.0                                    | 92.5 +0.5/-0.5                           | 100.0 +0.0/-0.1                          | 92.2 +0.6/-0.7                           | 99.9<br>+0.1/-0.4                        | 97.2<br>+0.8/-1.2                        | 100.0                                    | 95.1                                     | 100.0                                    | 92.5                                     |
|                                   |                                 | -                                | 7 yr      | 99.9<br>+0.0/-0.0                                    | 95.1                                                                                   | 100.0                                    | 96.9<br>+0.3/-0.4                        | 100.0                                    | 96.3 +0.3/-0.3                           | 100.0                                    | 94.9 +0.5/-0.5                           | 99.9<br>+0.1/-0.4                        | 98.1 +0.6/-0.9                           | 100.0                                    | 96.8                                     | 100.0                                    | 96.4 +0.3/-0.3                           |
|                                   |                                 | -                                | 6 yr      | 99.9                                                 | 97.6 +0.2/-0.2                                                                         | 100.0                                    | 98.2 +0.2/-0.3                           | 100.0 +0.0/-0.0                          | 97.9 +0.2/-0.2                           | 100.0                                    | 97.3<br>+0.3/-0.4                        | 99.9<br>+0.1/-0.4                        | 98.9<br>+0.4/-0.7                        | 100.0                                    | 97.6                                     | 100.0                                    | 98.0                                     |
|                                   | (9)                             | -                                | 5 yr      | 99.9                                                 | 98.6 +0.1/-0.1                                                                         | 100.0 +0.0/-0.1                          | 98.9<br>+0.2/-0.2                        | 100.0                                    | 98.8<br>+0.2/-0.2                        | 100.0                                    | 98.4 +0.2/-0.3                           | 99.9<br>+0.1/-0.4                        | 99.1<br>+0.4/-0.6                        | 100.0                                    | 98.6 +0.4/-0.6                           | 100.0                                    | 98.8<br>+0.1/-0.1                        |
|                                   | Device Survival Probability (%) | -                                | 4 yr      | 99.9<br>+0.0/-0.0                                    | 99.2 +0.1/-0.1                                                                         | 100.0                                    | 99.5                                     | 100.0 +0.0/-0.0                          | 99.4 +0.1/-0.1                           | 100.0 +0.0/-0.1                          | 99.1<br>+0.2/-0.2                        | 100.0 +0.0/-0.0                          | 99.8 +0.1/-0.2                           | 100.0                                    | 98.8<br>+0.4/-0.6                        | 100.0                                    | 99.4<br>+0.1/-0.1                        |
|                                   | al Proba                        | iplant                           | 3 yr      | 99.9                                                 | 99.5                                                                                   | 100.0                                    | 99.8<br>+0.1/-0.1                        | 100.0                                    | 99.6 +0.1/-0.1                           | 100.0                                    | 99.5<br>+0.1/-0.1                        | 100.0                                    | 99.8<br>+0.1/-0.2                        | 100.0                                    | 99.4 +0.3/-0.4                           | 100.0                                    | 99.7                                     |
|                                   | e Surviv                        | Years After Implant              | 2 yr      | 99.9                                                 | 99.7                                                                                   | 100.0                                    | 100.0 +0.0/-0.0                          | 100.0                                    | 99.8                                     | 100.0                                    | 99.8<br>+0.1/-0.1                        | 100.0 +0.0/-0.0                          | 99.9                                     | 100.0                                    | 99.7                                     | 100.0                                    | 99.9                                     |
|                                   | Devic                           | Years                            | 1 yr      | 100.0 +0.0/-0.0                                      | 99.9                                                                                   | 100.0                                    | 100.0 +0.0/-0.0                          | 100.0                                    | 99.9                                     | 100.0                                    | 99.9<br>+0.0/-0.1                        | 100.0                                    | 99.9<br>+0.1/-0.2                        | 100.0                                    | 99.9                                     | 100.0                                    | 99.9                                     |
|                                   |                                 |                                  |           | Excluding<br>Normal Battery<br>Depletion             | Including<br>Normal Battery<br>Depletion                                               | Excluding<br>Normal Battery<br>Depletion | Including<br>Normal Battery<br>Depletion | Excluding<br>Normal Battery<br>Depletion | Including<br>Normal Battery<br>Depletion | Excluding<br>Normal Battery<br>Depletion | Including<br>Normal Battery<br>Depletion | Excluding<br>Normal Battery<br>Depletion | Including<br>Normal Battery<br>Depletion | Excluding<br>Normal Battery<br>Depletion | Including<br>Normal Battery<br>Depletion | Excluding<br>Normal Battery<br>Depletion | Including<br>Normal Battery<br>Depletion |
|                                   |                                 | la                               | tоТ       | 46                                                   | I                                                                                      | 4                                        |                                          | 4                                        |                                          | -                                        |                                          | -                                        |                                          | 0                                        |                                          | =                                        |                                          |
|                                   | ctions                          | erapy<br>sction Not<br>mpromised | un⊣       | I                                                    | I                                                                                      | I                                        |                                          | I                                        |                                          | I                                        |                                          | I                                        |                                          | I                                        |                                          | I                                        |                                          |
| ned                               | Malfunctions                    | erapy Function<br>npromised      |           | 1                                                    | 1                                                                                      | I                                        |                                          | I                                        |                                          | 1                                        |                                          | I                                        |                                          |                                          |                                          | T                                        |                                          |
| contin                            |                                 | rmal Battery<br>snoifelo         | Nor       | 1,594                                                | elayed                                                                                 | 762                                      |                                          | 1,828                                    |                                          | 687                                      |                                          | 38                                       |                                          | 160                                      |                                          | 2,522                                    |                                          |
| Device Survival Summary continued |                                 | bətsmi<br>SU əvi<br>stnslc       | tэА       | 4,000                                                | Advisories: See page 159 – 1991 Potential Delayed<br>Restoration of Permanent Settings | 1,000                                    |                                          | 3,000                                    |                                          | 2,000                                    |                                          | 1,000                                    |                                          | 300                                      |                                          | 4,000                                    |                                          |
| /al Su                            |                                 | jistered<br>Implants             |           | 58,000                                               | 159 – 199<br>nent Setti                                                                | 17,000                                   |                                          | 26,000                                   |                                          | 18,000                                   |                                          | 4,000                                    |                                          | 3,000                                    |                                          | 38,000                                   |                                          |
| Survi                             |                                 | Market<br>ease                   |           | Dec-89                                               | See page<br>of Perma                                                                   | Mar-92                                   |                                          | Jul-96                                   |                                          | Jul-96                                   |                                          | Oct-95                                   |                                          | Oct-95                                   |                                          | Oct-95                                   |                                          |
| Device                            |                                 | del<br>mber                      | oM<br>inM | 8330,<br>8331,<br>8331M,<br>8340,<br>8341,<br>8341M, | Advisories:<br>Restoratior                                                             | 7107,<br>7108                            |                                          | 7088,<br>7089                            |                                          | 8088,<br>8089                            |                                          | 8085,<br>8086                            |                                          | 7864,<br>7865,<br>7866                   |                                          | 7860,<br>7861,<br>7862                   |                                          |
|                                   |                                 | ۸lin                             | Fan       | Minix /                                              |                                                                                        | Minuet                                   |                                          | Preva DR                                 |                                          | Preva SR                                 |                                          | Prevail S                                |                                          | Prodigy D                                |                                          | Prodigy<br>DR                            |                                          |

| itinued |
|---------|
| ry cor  |
| mma     |
| al Su   |
| urviv   |
| /ice S  |
| De      |

| ΙP                                | G                               | Implantab                        | ole       | Pulse G                                  | enerat                                   | tors, cont                               | inued                                    |                                          |                                          |                                          |                                          |                                          |                                                                                   |                                          |                                                                                      |                                          |                                                                                          |
|-----------------------------------|---------------------------------|----------------------------------|-----------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------------------------------------------------------|
|                                   |                                 |                                  | 16 yr     |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                                                                   |                                          |                                                                                      |                                          |                                                                                          |
|                                   |                                 |                                  | 14 yr     |                                          |                                          | 100.0<br>+0.0/-0.0<br>at 145 mo          | 49.7<br>+3.2/-3.2<br>at 145 mo           |                                          |                                          |                                          |                                          |                                          |                                                                                   |                                          |                                                                                      |                                          |                                                                                          |
|                                   |                                 |                                  | 12 yr     | 100.0<br>+0.0/-0.0<br>at 139 mo          | 80.0<br>+4.3/-5.2<br>at 139 mo           | 100.0                                    | 50.6<br>+3.0/-3.1                        |                                          |                                          |                                          |                                          |                                          |                                                                                   |                                          |                                                                                      |                                          |                                                                                          |
|                                   |                                 |                                  | 10 yr     | 100.0                                    | 89.6<br>+2.3/-3.0                        | 100.0                                    | 74.9                                     |                                          |                                          |                                          |                                          |                                          |                                                                                   | 99.9<br>+0.0/-0.1<br>at 107 mo           | 90.5                                                                                 | 99.9<br>+0.1/-0.2<br>at 106 mo           | 90.8<br>+2.0/-2.5<br>at 106 mo                                                           |
|                                   |                                 |                                  | 8 yr      | 100.0                                    | 97.2 +1.0/-1.5                           | 100.0                                    | 92.2 +0.6/-0.6                           |                                          |                                          |                                          |                                          | 100.0<br>+0.0/-0.0<br>at 87 mo           | 97.5                                                                              | 99.9<br>+0.0/-0.1                        | 94.4                                                                                 | 99.9                                     | 95.6                                                                                     |
|                                   |                                 |                                  | 7 yr      | 100.0                                    | 98.8<br>+0.5/-0.9                        | 100.0                                    | 95.3<br>+0.4/-0.4                        |                                          |                                          |                                          |                                          | 100.0                                    | 97.5                                                                              | 99.9<br>+0.0/-0.1                        | 97.8<br>+0.4/-0.4                                                                    | 99.9                                     | 97.3 +0.5/-0.6                                                                           |
|                                   |                                 |                                  | 6 yr      | 100.0                                    | 99.1                                     | 100.0                                    | 97.0 +0.3/-0.3                           |                                          |                                          |                                          |                                          | 100.0 +0.0/-0.0                          | 98.7                                                                              | 99.9                                     | 99.1                                                                                 | 99.9                                     | 98.7                                                                                     |
|                                   | (%)                             |                                  | 5 yr      | 100.0                                    | 99.1                                     | 100.0 +0.0/-0.0                          | 98.0 +0.2/-0.3                           |                                          |                                          |                                          |                                          | 100.0 +0.0/-0.0                          | 98.7                                                                              | 100.0 +0.0/-0.1                          | 99.6                                                                                 | 99.9                                     | 99.3 +0.2/-0.3                                                                           |
|                                   | ability (9                      |                                  | 4 yr      |                                          | 99.1                                     | 100.0                                    | 98.8<br>+0.2/-0.2                        | _                                        |                                          |                                          |                                          | 100.0                                    | 99.6                                                                              | 100.0                                    | 99.8                                                                                 | 100.0 +0.0/-0.1                          | 99.7                                                                                     |
|                                   | Device Survival Probability (%) | nplant                           | 3 yr      | 100.0                                    | 99.7                                     | 100.0 +0.0/-0.0                          | 99.3                                     | 100.0<br>+0.0/-0.0<br>at 26 mo           | 100.0<br>+0.0/-0.0<br>at 26 mo           | 100.0<br>+0.0/-0.0<br>at 26 mo           | 99.9<br>+0.0/-0.2<br>at 26 mo            | 100.0 +0.0/-0.0                          | 99.6                                                                              | 100.0 +0.0/-0.0                          | 99.9                                                                                 | 100.0 +0.0/-0.0                          | 99.8                                                                                     |
|                                   | e Surviv                        | Years After Implant              | 2 yr      | 100.0                                    | 99.8 +0.1/-0.3                           | 100.0 +0.0/-0.0                          | 99.6                                     | 100.0 +0.0/-0.0                          | 100.0 +0.0/-0.0                          | 100.0                                    | 99.9                                     | 100.0 +0.0/-0.0                          | 100.0 +0.0/-0.0                                                                   | 100.0 +0.0/-0.0                          | 99.9                                                                                 | 100.0 +0.0/-0.0                          | 99.9                                                                                     |
|                                   | Devic                           | Years                            | 1 yr      |                                          | 99.8<br>+0.1/-0.3                        | 100.0                                    | 99.8<br>+0.1/-0.1                        | 100.0                                    | 100.0                                    | 100.0                                    | 100.0 +0.0/-0.0                          | 100.0                                    | 100.0 +0.0/-0.0                                                                   | 100.0                                    | 100.0                                                                                | 100.0                                    | 100.0                                                                                    |
|                                   |                                 |                                  |           | Excluding<br>Normal Battery<br>Depletion | Including<br>Normal Battery<br>Depletion                                          | Excluding<br>Normal Battery<br>Depletion | Including<br>Normal Battery<br>Depletion                                             | Excluding<br>Normal Battery<br>Depletion | Including<br>Normal Battery<br>Depletion                                                 |
|                                   |                                 | ls                               | тот       | 0                                        |                                          | 4                                        |                                          | -                                        |                                          | 0                                        |                                          | 0                                        | (0)<br>ubset)                                                                     | 9                                        | (1)<br>ubset)                                                                        | 9                                        | (3)                                                                                      |
|                                   | ctions                          | erapy<br>nction Not<br>mpromised | ın⊣       | I                                        |                                          | I                                        |                                          | 0                                        |                                          | 0                                        |                                          | 0                                        | (0) + (0) = (0)  (advisory-related subset)                                        | -                                        | (1) + (0) = (1)  (advisory-related subset)                                           | 0                                        | = (0)                                                                                    |
| ned                               | Malfunctions                    | erapy Function<br>mpromised      |           | 1                                        |                                          | T                                        |                                          | +                                        |                                          | +                                        |                                          | +                                        | (0) +<br>(advisory                                                                | +                                        | (1) +<br>(advisory                                                                   | +                                        | (3)                                                                                      |
| contin                            |                                 | rmal Battery<br>pletions         |           | 41                                       |                                          | 836                                      |                                          | 0                                        |                                          | -                                        |                                          | 5                                        |                                                                                   | 117                                      |                                                                                      | 65                                       |                                                                                          |
| mary                              |                                 | bətsmi<br>SU əvi:<br>stnslc      | tэА       | 300                                      |                                          | 3,000                                    |                                          | 37,000                                   |                                          | 22,000                                   |                                          | 200                                      | otential                                                                          | 00009                                    | otential                                                                             | 4,000                                    | otential                                                                                 |
| al Sum                            |                                 | jistered<br>Implants             | SN<br>Seg | 2,000                                    |                                          | 22,000                                   |                                          | 42,000                                   |                                          | 26,000                                   |                                          | 1,000                                    | 22 – 2005 F<br>Ject Wires                                                         | 16,000                                   | 22 – 2005 F<br>Ject Wires                                                            | 12,000                                   | 22 – 2005 P<br>rect Wires                                                                |
| Device Survival Summary continued |                                 | Market<br>ease                   | lэЯ       | Oct-95                                   |                                          | Oct-95                                   |                                          | , 90-lut                                 |                                          | 90-Inf                                   |                                          | Aug-99                                   | Advisories: <u>See page 152</u> – 2005 Potential Separation of Interconnect Wires | Aug-99                                   | Advisories: <u>See page 152</u> – 2005 Potential<br>Separation of Interconnect Wires | Sep-99                                   | Advisories: <u>See page 152</u> – 2005 Potential <u>Separation of Interconnect Wires</u> |
| vice S                            |                                 |                                  |           |                                          |                                          |                                          |                                          | SEDRO1, J                                |                                          | SESRO1, J<br>SESO1                       |                                          | SS103, A<br>SS106                        | lvisories: Soaration or                                                           | SDR203 A                                 | lvisories: Soaration o                                                               | SSR203 S                                 | lvisories: S<br>paration o                                                               |
| De                                |                                 | del<br>mber                      | οW        | / S 8164,<br>8165,<br>8166               |                                          |                                          |                                          |                                          |                                          |                                          |                                          | SS                                       | Ad                                                                                |                                          | Ad                                                                                   |                                          | Sep                                                                                      |
|                                   |                                 | γlin                             | Fan       | Prodigy S                                |                                          | Prodigy SR                               |                                          | Sensia DR                                |                                          | Sensia SR                                |                                          | Sigma<br>100 S                           |                                                                                   | Sigma 200<br>DR                          |                                                                                      | Sigma 200<br>SR                          |                                                                                          |

# Device Survival Summary continued

| 'U                              | Implantal                                                                                                                                                                    | bie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Pulse (                                  | ∍enera                                         | tors, c                                  | ontinu                                   | ed                                       |                                                      |                                            |                                          |                                             |                                          |                                          |                                          |                                            |                                          |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------------------|--------------------------------------------|------------------------------------------|---------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|--------------------------------------------|------------------------------------------|
|                                 |                                                                                                                                                                              | 16 yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                          |                                                |                                          |                                          |                                          |                                                      |                                            |                                          |                                             |                                          |                                          |                                          |                                            |                                          |
|                                 |                                                                                                                                                                              | 14 yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                          |                                                |                                          |                                          |                                          |                                                      |                                            |                                          |                                             |                                          |                                          |                                          | 100.0<br>+0.0/-0.3<br>at 148 mo            | 73.2<br>+4.3/-4.9<br>at 148 mo           |
|                                 |                                                                                                                                                                              | 12 yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                          |                                                |                                          |                                          |                                          |                                                      | 100.0<br>+0.0/-0.2<br>at 143 mo            | 47.2<br>+4.5/-4.7<br>at 143 mo           | 99.9<br>+0.0/-0.0<br>at 140 mo              | 9.0<br>+1.0/-0.9<br>at 140 mo            |                                          |                                          | 100.0                                      | 76.5<br>+3.7/-4.3                        |
|                                 |                                                                                                                                                                              | 10 yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 99.8<br>+0.0/-0.0<br>at 109 mo           | 90.7<br>+1.7/-2.1<br>at 109 mo                 | 99.9<br>+0.0/-0.1<br>at 107 mo           | 88.9<br>+2.2/-2.8<br>at 107 mo           |                                          |                                                      | 100.0                                      | 79.2<br>+2.4/-2.6                        | 99.9                                        | 68.7<br>+0.5/-0.5                        | 99.9<br>+0.1/-0.2<br>at 119 mo           | 37.8<br>+4.3/-4.3<br>at 119 mo           | 100.0                                      | 90.0                                     |
|                                 |                                                                                                                                                                              | 8 yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 99.8                                     | 96.1                                           | 99.9                                     | 94.9<br>+0.6/-0.7                        | 100.0<br>+0.0/-0.0<br>at 87 mo           | 97.6<br>+1.4/-3.1<br>at 87 mo                        | 100.0 +0.0/-0.2                            | 93.8<br>+1.1/-1.4                        | 99.9                                        | 92.8<br>+0.2/-0.2                        | 99.9                                     | 75.9<br>+2.3/-2.5                        | 100.0 +0.0/-0.3                            | 95.9                                     |
|                                 |                                                                                                                                                                              | 7 yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 99.8<br>+0.0/-0.0                        | 98.1 +0.2/-0.2                                 | 99.9<br>+0.0/-0.1                        | 97.7 +0.3/-0.3                           | 100.0 +0.0/-0.0                          | 97.6 +1.4/-3.1                                       | 100.0                                      | 96.2<br>+0.8/-1.0                        | 99.9                                        | 96.6 +0.1/-0.1                           | 99.9<br>+0.1/-0.2                        | 88.7<br>+1.4/-1.6                        | 100.0                                      | 97.5                                     |
|                                 |                                                                                                                                                                              | 6 yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 99.9<br>+0.0/-0.0                        | 99.0                                           | 99.9<br>+0.0/-0.1                        | 98.6 +0.2/-0.2                           | 100.0 +0.0/-0.0                          | 98.7 +0.8/-2.1                                       | 100.0                                      | 97.4 +0.6/-0.8                           | 99.9                                        | 98.1 +0.1/-0.1                           | 99.9<br>+0.1/-0.2                        | 94.0 +1.0/-1.1                           | 100.0                                      | 98.1                                     |
| (9                              |                                                                                                                                                                              | 5 yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 99.9<br>+0.0/-0.0                        | 99.4<br>+0.1/-0.1                              | 99.9<br>+0.0/-0.0                        | 99.4<br>+0.1/-0.1                        | 100.0                                    | 99.4<br>+0.4/-1.7                                    | 100.0                                      | 98.9                                     | 100.0                                       | 99.0                                     | 99.9<br>+0.1/-0.2                        | 97.0 +0.6/-0.8                           | 100.0                                      | 98.9                                     |
| bility (%                       |                                                                                                                                                                              | 4 yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 99.9                                     | 99.7                                           | 100.0 +0.0/-0.0                          | 99.7                                     | 100.0 +0.0/-0.0                          | 100.0 +0.0/-0.0                                      | 100.0                                      | 99.3<br>+0.3/-0.4                        | 100.0                                       | 99.4<br>+0.0/-0.1                        | 99.9<br>+0.1/-0.2                        | 98.6<br>+0.4/-0.6                        | 100.0                                      | 99.2                                     |
| al Proba                        | plant                                                                                                                                                                        | 3 yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100.0 +0.0/-0.0                          | 99.9                                           | 100.0 +0.0/-0.0                          | 99.8 +0.0/-0.1                           | 100.0 +0.0/-0.0                          | 100.0 +0.0/-0.0                                      | 100.0                                      | 99.5<br>+0.2/-0.4                        | 100.0                                       | 99.7                                     | 99.9<br>+0.1/-0.2                        | 99.5<br>+0.2/-0.3                        | 100.0                                      | 99.7                                     |
| Device Survival Probability (%) | Years After Implant                                                                                                                                                          | 2 yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100.0                                    | 99.9                                           | 100.0 +0.0/-0.0                          | 99.9                                     | 100.0 +0.0/-0.0                          | 100.0 +0.0/-0.0                                      | 100.0                                      | 99.9                                     | 100.0                                       | 99.9                                     | 100.0                                    | 99.8 +0.1/-0.2                           | 100.0                                      | 99.8                                     |
| Device                          | Years ,                                                                                                                                                                      | 1 yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100.0                                    | 100.0                                          | 100.0                                    | 100.0 +0.0/-0.0                          | 100.0+0.0/-0.0                           | 100.0 +0.0/-0.0                                      | 100.0                                      | 100.0 +0.0/-0.0                          | 100.0                                       | 100.0 +0.0/-0.0                          | 100.0                                    | 100.0 +0.0/-0.0                          | 100.0                                      | 99.9                                     |
|                                 |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | B > 6                                          |                                          |                                          |                                          |                                                      |                                            |                                          |                                             |                                          |                                          |                                          |                                            |                                          |
|                                 |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Excluding<br>Normal Battery<br>Depletion | Including<br>Normal Battery<br>Depletion       | Excluding<br>Normal Battery<br>Depletion | Including<br>Normal Battery<br>Depletion | Excluding<br>Normal Battery<br>Depletion | Including<br>Normal Battery<br>Depletion             | Excluding<br>Normal Battery<br>Depletion   | Including<br>Normal Battery<br>Depletion | Excluding<br>Normal Battery<br>Depletion    | Including<br>Normal Battery<br>Depletion | Excluding<br>Normal Battery<br>Depletion | Including<br>Normal Battery<br>Depletion | Excluding<br>Normal Battery<br>Depletion   | Including<br>Normal Battery<br>Depletion |
|                                 | и                                                                                                                                                                            | ŏtoT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 92                                       |                                                | 15                                       |                                          | 0                                        | (0)<br>ubset)                                        | 1 Excluding<br>Normal Battery<br>Depletion | Including<br>Normal Battery<br>Depletion | 50 Excluding<br>Normal Battery<br>Depletion | Including<br>Normal Battery<br>Depletion | 3 Excluding Normal Battery Depletion     | Including<br>Normal Battery<br>Depletion | 1 Excluding<br>Normal Battery<br>Depletion | Including<br>Normal Battery<br>Depletior |
| ıctions                         | rapy<br>ction Mot<br>npromised<br>il                                                                                                                                         | uoɔ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5 = 76                                   |                                                | 2 = 15                                   |                                          | 0 = 0                                    | = (0)<br>subset)                                     |                                            | Including<br>Normal Battery<br>Depletion |                                             | Including<br>Normal Battery<br>Depletion |                                          | Including<br>Normal Battery<br>Depletion |                                            | Including<br>Normal Battery<br>Depletior |
| Malfunctions                    | npromised                                                                                                                                                                    | Con<br>The<br>mo<br>Con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | = 76                                     | = (15)<br>ed subset)                           | = 15                                     | = (4)<br>ed subset)                      | 0                                        | = (0)<br>ed subset)                                  |                                            | Including<br>Normal Battery<br>Depletion |                                             | Including<br>Normal Battery<br>Depletion |                                          | Including<br>Normal Battery<br>Depletion |                                            | Including<br>Normal Battery<br>Depletion |
| Malfunctions                    | npromised<br>rapy<br>ction Not<br>npromised                                                                                                                                  | Dep<br>The<br>The<br>Fund                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | + 5 = 76                                 |                                                | + 2 = 15                                 |                                          | 0   0 +                                  | = (0)<br>subset)                                     |                                            | Including Normal Battery Depletion       |                                             | Including Normal Battery Depletion       |                                          | Including Normal Battery Depletion       |                                            | Including Normal Battery Depletion       |
| Malfunctions                    | rapy Function<br>rapy Function<br>rapy<br>ction Not<br>ction Not<br>rapromised                                                                                               | Acti<br>Mori<br>Dep<br>The<br>Con<br>The<br>Fund                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 71 + 5 = 76                              | (15) + (0) = (15)<br>(advisory-related subset) | 13 + 2 = 15                              | $\frac{(4)}{(advisory-related subset)}$  | 0 = 0 + 0                                | otential $(0) + (0) = (0)$ (advisory-related subset) | -                                          | Including Normal Battery Depletion       | 50                                          | Including Normal Battery Depletion       | - 3                                      | Including Normal Battery Depletion       |                                            | Including Normal Battery Depletion       |
| Malfunctions                    | ve US lants mal Battery aletions rapy Function promised rapy rapy rapy rapy                                                                                                  | Estin<br>Actil<br>Imp<br>Morr<br>Morr<br>Dep<br>The<br>Com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 394 71 + 5 = 76                          | (15) + (0) = (15)<br>(advisory-related subset) | 191 13 + 2 = 15                          | $\frac{(4)}{(advisory-related subset)}$  | 2 0 + 0 = 0                              | otential $(0) + (0) = (0)$ (advisory-related subset) | 195 — 1                                    | Including Normal Battery Depletion       | 10,066 - 50                                 | Including Normal Battery Depletion       | 295 — 3                                  | Including Normal Battery Depletion       | 84 - 1                                     | Including Normal Battery Depletion       |
| Malfunctions                    | mated ve US lants lants mal Battery letions rapy Function rapy Function rapy Function rapy Function rapy Function rapy Function rapy rapy rapy                               | Rege<br>USI<br>Estii<br>Mori<br>Mori<br>Dep<br>The<br>Com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 53,000 394 71 + 5 = 76                   | (15) + (0) = (15)<br>(advisory-related subset) | 20,000 191 13 + 2 = 15                   | $\frac{(4)}{(advisory-related subset)}$  | 200 5 0 + 0 = 0                          | otential $(0) + (0) = (0)$ (advisory-related subset) | 300 195 - 1                                | Including Normal Battery Depletion       | 7,000 10,066 - 50                           | Including Normal Battery Depletion       | 100 295 — — 3                            | Including Normal Battery Depletion       | 500 84 - 1                                 | Including Normal Battery Depletion       |
| Malfunctions                    | Market<br>sase<br>istered<br>mplants<br>we US<br>lants<br>lants<br>mal Battery<br>lants<br>rapy Function<br>rapy Function<br>rapy Function<br>rapy Function<br>rapy Function | Regient Regien | 107,000 53,000 394 71 + 5 = 76           |                                                | 54,000 20,000 191 13 + 2 = 15            |                                          | 1,000 $200$ $5$ $0$ $+$ $0$ $=$ $0$      | = (0)<br>subset)                                     | 3,000 300 195 — — 1                        | Including Normal Battery Depletion       | 122,000 7,000 10,066 — — 50                 | Including Normal Battery Depletion       | 4,000 100 295 — — 3                      | Including Normal Battery Depletion       | 4,000 500 84 - 1                           | Including Normal Battery Depletion       |

| U                               | Implanta                                                                                                                                                                                                                              | DIE                                                               | Pulse G                                  | enera                                                                                                 | lors, co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | munu                                                                                                                   | eu                                       |                                          |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------|
|                                 |                                                                                                                                                                                                                                       | 16 yr                                                             |                                          |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                        |                                          |                                          |
|                                 |                                                                                                                                                                                                                                       | 10 yr   12 yr   14 yr   16 yr                                     | 100.0<br>+0.0/-0.0<br>at 153 mo          | 43.2<br>+2.3/-2.4<br>at 153 mo                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                        |                                          |                                          |
|                                 |                                                                                                                                                                                                                                       | 12 yr                                                             | 100.0                                    | 994 989 982 96.9 94.5 80.6 52.5 +0.1/-0.1 +0.1/-0.1 +0.2/-0.2 +0.2/-0.2 +0.3/-0.3 +0.7/-0.7 +1.5/-1.5 | 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 53.4<br>+4.7/-5.0                                                                                                      |                                          |                                          |
|                                 |                                                                                                                                                                                                                                       |                                                                   | 100.0<br>+0.0/-0.0<br>+0.0/-0.0          | 80.6                                                                                                  | 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 | 998 99.6 99.5 99.2 99.1 99.0 98.3 88.7 +0.1/-0.2 +0.2/-0.3 +0.2/-0.3 +0.3/-0.4 +0.3/-0.4 +0.3/-0.4 +0.4/-0.6 +1.5/-1.7 |                                          |                                          |
|                                 |                                                                                                                                                                                                                                       | 8 yr                                                              | 100.0 +0.0/-0.0                          | 94.5                                                                                                  | 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 98.3                                                                                                                   |                                          |                                          |
|                                 |                                                                                                                                                                                                                                       | 7 yr                                                              | 100.0                                    | 96.9                                                                                                  | 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 99.0                                                                                                                   |                                          |                                          |
|                                 |                                                                                                                                                                                                                                       | 6 yr                                                              | 100.0                                    | 98.2 +0.2/-0.2                                                                                        | 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 99.1                                                                                                                   |                                          |                                          |
| (%)                             |                                                                                                                                                                                                                                       | 5 yr                                                              | 100.0                                    | 98.9                                                                                                  | 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 99.2                                                                                                                   |                                          |                                          |
| Device Survival Probability (%) |                                                                                                                                                                                                                                       | 4 yr                                                              | 100.0                                    | 99.4 +0.1/-0.1                                                                                        | 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 99.5                                                                                                                   |                                          |                                          |
| al Proba                        | nplant                                                                                                                                                                                                                                | 3 yr                                                              | 100.0<br>+0.0/-0.0<br>+0.0/-0.0          | 99.9<br>+0.0/-0.0<br>+0.1/-0.1                                                                        | 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 99.6                                                                                                                   | 100.0<br>+0.0/-0.0<br>at 26 mo           | 99.9<br>+0.0/-0.1<br>at 26 mo            |
| e Surviv                        | Years After Implant                                                                                                                                                                                                                   | 2 yr                                                              |                                          | 99.9                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                        | 100.0                                    | 99.9<br>+0.0/-0.1                        |
| Devic                           | Years                                                                                                                                                                                                                                 | 1 yr                                                              | 100.0                                    | 100.0 +0.0/-0.0                                                                                       | 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 99.9<br>+0.1/-0.1                                                                                                      | 100.0                                    | 100.0                                    |
|                                 |                                                                                                                                                                                                                                       |                                                                   |                                          |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                        |                                          |                                          |
|                                 |                                                                                                                                                                                                                                       |                                                                   | Excluding<br>Normal Battery<br>Depletion | Including<br>Normal Battery<br>Depletion                                                              | Excluding<br>Normal Battery<br>Depletion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Including<br>Normal Battery<br>Depletion                                                                               | Excluding<br>Normal Battery<br>Depletion | Including<br>Normal Battery<br>Depletion |
|                                 | ין                                                                                                                                                                                                                                    | 510T                                                              | 7 Excluding Normal Battery Depletion     | Including<br>Normal Battery<br>Depletion                                                              | 0 Excluding Normal Battery Depletion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Including<br>Normal Battery<br>Depletion                                                                               | 2 Excluding Normal Battery Depletion     | Including<br>Normal Battery<br>Depletion |
| ctions                          | yder<br>ction Not<br>npromised<br>il                                                                                                                                                                                                  | Fun                                                               | Nor                                      | Including<br>Normal Battery<br>Depletion                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Including<br>Normal Battery<br>Depletion                                                                               |                                          | Including<br>Normal Battery<br>Depletion |
| Malfunctions                    | ction Not<br>pesimorqr                                                                                                                                                                                                                | Con<br>The<br>Tun<br>Con                                          | 7 Norm                                   | Including<br>Normal Battery<br>Depletion                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Including<br>Normal Battery<br>Depletion                                                                               | = 2                                      | Including<br>Normal Battery<br>Depletion |
| Malfunctions                    | npromised<br>rapy<br>ction Not<br>npromised                                                                                                                                                                                           | Dep<br>The<br>The<br>Fund                                         | . – 7 Norm                               | Including<br>Normal Battery<br>Depletion                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Including<br>Normal Battery<br>Depletion                                                                               | + 2 = 2                                  | Including<br>Normal Battery<br>Depletion |
| Malfunctions                    | letions<br>rapy Function<br>rapy<br>rapy<br>ction Not<br>ction Not<br>rapy                                                                                                                                                            | Acti<br>Imp<br>Nor<br>Dep<br>The<br>Com<br>The<br>Fund            | _ 7 Norm                                 | Including Normal Battery Depletion                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Including<br>Normal Battery<br>Depletion                                                                               | + 2 = 2                                  | Including<br>Normal Battery<br>Depletion |
| Malfunctions                    | ve US<br>lants<br>mal Battery<br>letions<br>rapy Function<br>promised<br>rapy<br>repy<br>rapy                                                                                                                                         | Estin<br>Acti<br>Imp<br>Nor<br>Nor<br>Dep<br>The<br>Com           | 2,012 — 7 Norm                           | Including Normal Battery Depletion                                                                    | 196 — — 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Including Normal Battery Depletion                                                                                     | 1 0 + 2 = 2                              | Including Normal Battery Depletion       |
| Malfunctions                    | istered<br>mplants<br>we US<br>ve US<br>lants<br>mal Battery<br>rapy Function<br>ppromised<br>rapy<br>rapy                                                                                                                            | Regele<br>USI<br>Actifump<br>Mori<br>Inp<br>Dep<br>The<br>Com     | 5,000 2,012 — 7 Norm                     | Including Normal Battery Depletion                                                                    | 1,000 196 — — 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Including Normal Battery Depletion                                                                                     | 34,000 1 0 + 2 = 2                       | Including Normal Battery Depletion       |
| Malfunctions                    | Market<br>istered<br>istered<br>mplants<br>we US<br>we US<br>lants<br>mal Battery<br>lants<br>mal Battery<br>lants<br>mal Battery<br>mal Battery<br>rapy Function<br>rapy Function<br>rapy Function<br>rapy Function<br>rapy Function | US N<br>Regle<br>US I<br>Mori<br>Inp<br>Mori<br>Inp<br>The<br>Com | 50,000 5,000 2,012 — 7 Norm              | Including Normal Battery Depletion                                                                    | 5,000 1,000 196 — — 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Including Normal Battery Depletion                                                                                     | 38,000 $34,000$ $1$ $0$ $+$ $2$ $=$ $2$  | Including Normal Battery Depletion       |



#### **Reference Chart**

The longevity estimates provided are mean values calculated for the parameters given. The longevity estimates shown here assume a lower rate of 60 ppm, 100% pacing, and pulse width of 0.4 ms unless noted otherwise. The actual longevity achieved for any device while implanted will depend on the actual programmed parameters and patient factors, and may differ significantly from these estimates. The elective replacement time is indicated via telemetry indication, and rate and mode change to 65 ppm and VVI respectively (VOO/65 with magnet), unless noted otherwise.

|               |                                        | Estimated I                                                      | ongevity           | _                   |                                                                                   |  |  |  |
|---------------|----------------------------------------|------------------------------------------------------------------|--------------------|---------------------|-----------------------------------------------------------------------------------|--|--|--|
| Family        | Model<br>Number                        | Amplitude Setting                                                | 500<br>Lead Ω      | 1000<br>Lead Ω      | Elective Replacement Indicators                                                   |  |  |  |
| Adapta DR     | ADDR01,<br>ADDR03,<br>ADDR06,<br>ADD01 | Low 2.5 V (A, RV)<br>Nominal 3.5 V (A, RV)<br>High 5.0 V (A, RV) | 7.4<br>6.0<br>4.5  | 8.2<br>7.3<br>6.0   | **                                                                                |  |  |  |
| Adapta DR     | ADDRS1                                 | Low 2.5 V (A, RV)<br>Nominal 3.5 V (A, RV)<br>High 5.0 V (A, RV) | 5.5<br>4.3<br>3.2  | 6.1<br>5.4<br>4.4   | **                                                                                |  |  |  |
| Adapta DR     | ADDRL1                                 | Low 2.5 V (A, RV)<br>Nominal 3.5 V (A, RV)<br>High 5.0 V (A, RV) | 9.1<br>7.4<br>5.4  | 10.1<br>9.0<br>7.3  | **                                                                                |  |  |  |
| Adapta SR     | ADSR01,<br>ADSR03,<br>ADSR06           | Low 2.5 V (RV)<br>Nominal 3.5 V (RV)<br>High 5.0 V (RV)          | 7.3<br>6.4<br>5.0  | 7.8<br>7.4<br>6.2   | **                                                                                |  |  |  |
| Adapta VDD    | ADVDD01                                | Low 2.5 V (RV)<br>Nominal 3.5 V (RV)<br>High 5.0 V (RV)          | 6.2<br>5.5<br>4.4  | 6.5<br>6.2<br>5.4   | **                                                                                |  |  |  |
| AT500         | AT501,<br>7253                         | Low 2.0 V (A, RV)<br>Nominal 3.0 V (A, RV)<br>High 5.0 V (A, RV) | 7.7<br>5.8<br>3.7  | 8.3<br>7.0<br>5.2   | Telemetry indication. Pacing mode and rate (magnet and non-magnet) as programmed. |  |  |  |
| EnPulse DR    | E1DR01,<br>E1DR03,<br>E1DR06           | Low 2.5 V (A, RV)<br>Nominal 3.5 V (A, RV)<br>High 5.0 V (A, RV) | 7.5<br>6.2<br>4.4  | 8.5<br>7.6<br>5.9   | **                                                                                |  |  |  |
| EnPulse DR    | E1DR21                                 | Low 2.5 V (A, RV)<br>Nominal 3.5 V (A, RV)<br>High 5.0 V (A, RV) | 5.4<br>4.3<br>3.0  | 6.0<br>5.4<br>4.2   | **                                                                                |  |  |  |
| EnPulse 2 DR  | E2DR01,<br>E2DR03,<br>E2DR06           | Low 2.5 V (A, RV)<br>Nominal 3.5 V (A, RV)<br>High 5.0 V (A, RV) | 7.5<br>6.2<br>4.4  | 8.5<br>7.6<br>5.9   | **                                                                                |  |  |  |
| EnPulse 2 DR  | E2DR21                                 | Low 2.5 V (A, RV)<br>Nominal 3.5 V (A, RV)<br>High 5.0 V (A, RV) | 5.4<br>4.3<br>3.0  | 6.0<br>5.4<br>4.2   | **                                                                                |  |  |  |
| EnPulse 2 DR  | E2DR31,<br>E2DR33                      | Low 2.5 V (A, RV)<br>Nominal 3.5 V (A, RV)<br>High 5.0 V (A, RV) | 9.0<br>7.4<br>5.2  | 10.1<br>9.1<br>7.1  | **                                                                                |  |  |  |
| EnPulse 2 SR  | E2SR01,<br>E2SR03,<br>E2SR06           | Low 2.5 V (A, RV)<br>Nominal 3.5 V (A, RV)<br>High 5.0 V (A, RV) | 7.2<br>6.3<br>4.8  | 7.7<br>7.3<br>6.1   | **                                                                                |  |  |  |
| EnPulse 2 VDD | E2VDD01                                | Low 2.5 V (RV)<br>Nominal 3.5 V (RV)<br>High 5.0 V (RV)          | 6.1<br>5.5<br>4.3  | 6.5<br>6.2<br>5.4   | **                                                                                |  |  |  |
| EnRhythm DR   | P1501DR                                | Low 2.5 V (A, RV)<br>Nominal 3.5 V (A, RV)<br>High 5.0 V (A, RV) | 10.6<br>8.0<br>5.4 | 12.3<br>10.3<br>7.8 | **                                                                                |  |  |  |
| Kappa 400 DR  | KDR401,<br>KDR403                      | Low 2.5 V (A, RV)<br>Nominal 3.5 V (A, RV)<br>High 5.0 V (A, RV) | 7.8<br>6.4<br>5.1  | 8.5<br>7.5<br>6.5   | **                                                                                |  |  |  |
| Kappa 400 SR  | KSR401,<br>KSR403                      | Low 2.5 V (RV)<br>Nominal 3.5 V (RV)<br>High 5.0 V (RV)          | 7.9<br>6.9<br>5.8  | 8.4<br>7.7<br>7.0   | **                                                                                |  |  |  |
| Kappa 600 DR  | KDR601,<br>KDR603,<br>KDR606           | Low 2.5 V (A, RV)<br>Nominal 3.5 V (A, RV)<br>High 5.0 V (A, RV) | 7.7<br>6.3<br>4.4  | 8.6<br>7.7<br>6.0   | **                                                                                |  |  |  |
| Kappa 600 DR  | KDR651,<br>KDR653                      | Low 2.5 V (A, RV)<br>Nominal 3.5 V (A, RV)<br>High 5.0 V (A, RV) | 7.7<br>6.3<br>4.4  | 8.6<br>7.7<br>6.0   | **                                                                                |  |  |  |

<sup>\*\*</sup>Telemetry indication. Rate and mode change to 65 ppm and VVI respectively (VOO/65 with magnet).



#### Reference Chart continued

|               | Estimated Long                            | evity                                                                                       |                     |                      |                                                                                                                                                                                                                                                 |
|---------------|-------------------------------------------|---------------------------------------------------------------------------------------------|---------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Family        | Model<br>Number                           | Amplitude Setting                                                                           | 500<br>Lead Ω       | 1000<br>Lead Ω       | Elective Replacement Indicators                                                                                                                                                                                                                 |
| Kappa 700 D   | KD701,<br>KD703,<br>KD706                 | Low 2.5 V (A, RV)<br>Nominal 3.5 V (A, RV)<br>High 5.0 V (A, RV)                            | 7.7<br>6.3<br>4.4   | 8.6<br>7.7<br>6.0    | **                                                                                                                                                                                                                                              |
| Kappa 700 DR  | KDR701,<br>KDR703,<br>KDR706              | Low 2.5 V (A, RV)<br>Nominal 3.5 V (A, RV)<br>High 5.0 V (A, RV)                            | 7.7<br>6.3<br>4.4   | 8.6<br>7.7<br>6.0    | **                                                                                                                                                                                                                                              |
| Kappa 700 DR  | KDR721                                    | Low 2.5 V (A, RV)<br>Nominal 3.5 V (A, RV)<br>High 5.0 V (A, RV)                            | 5.5<br>4.4<br>3.0   | 6.1<br>5.5<br>4.2    | **                                                                                                                                                                                                                                              |
| Kappa 700 SR  | KSR701,<br>KSR703,<br>KSR706              | Low 2.5 V (RV)<br>Nominal 3.5 V (RV)<br>High 5.0 V (RV)                                     | 7.4<br>6.5<br>4.9   | 7.9<br>7.5<br>6.2    | **                                                                                                                                                                                                                                              |
| Kappa 700 VDD | KVDD701                                   | Low 2.5 V (RV)<br>Nominal 3.5 V (RV)<br>High 5.0 V (RV)                                     | 6.2<br>5.6<br>4.4   | 6.6<br>6.3<br>5.3    | **                                                                                                                                                                                                                                              |
| Kappa 800 DR  | KDR801,<br>KDR803                         | Low 2.5 V (A, RV)<br>Nominal 3.5 V (A, RV)<br>High 5.0 V (A, RV)                            | 7.7<br>6.3<br>4.4   | 8.6<br>7.7<br>6.0    | **                                                                                                                                                                                                                                              |
| Kappa 900 DR  | KDR901,<br>KDR903,<br>KDR906              | Low 2.5 V (A, RV)<br>Nominal 3.5 V (A, RV)<br>High 5.0 V (A, RV)                            | 7.7<br>6.3<br>4.4   | 8.6<br>7.7<br>6.0    | **                                                                                                                                                                                                                                              |
| Kappa 920 DR  | KDR921                                    | Low 2.5 V (A, RV)<br>Nominal 3.5 V (A, RV)<br>High 5.0 V (A, RV)                            | 5.5<br>4.4<br>3.0   | 6.1<br>5.5<br>4.3    | **                                                                                                                                                                                                                                              |
| Kappa 900 SR  | KSR901,<br>KSR903,<br>KSR906              | Low 2.5 V (RV)<br>Nominal 3.5 V (RV)<br>High 5.0 V (RV)                                     | 7.3<br>6.4<br>4.9   | 7.9<br>7.4<br>6.1    | **                                                                                                                                                                                                                                              |
| Kappa 900 VDD | KVDD901                                   | Low 2.5 V (RV)<br>Nominal 3.5 V (RV)<br>High 5.0 V (RV)                                     | 6.2<br>5.6<br>4.4   | 6.6<br>6.3<br>5.4    | **                                                                                                                                                                                                                                              |
| Legend        | 8416,<br>8417,<br>8417M,<br>8418,<br>8419 | Low 2.5 V (RV)<br>Nominal 3.3 V (RV)<br>High 5.0 V (RV)                                     | 15.6<br>11.3<br>9.0 | 17.7<br>14.5<br>12.5 | If programmed to non-rate responsive mode (e.g., VVI), rate decrease of 10% from programmed rate. Telemetry indication. If programmed to rate responsive mode (e.g., VVIR), rate change to 65 ppm and mode change to VVI. Telemetry indication. |
| Legend II     | 8424,<br>8426,<br>8427                    | Low 2.5 V, 0.36 ms (RV)<br>Nominal 3.3 V, 0.36 ms (RV)<br>High 5.0 V, 0.36 ms (RV)          | 12.9<br>9.4<br>7.8  | 14.5<br>11.8<br>10.5 | If programmed to non-rate responsive mode (e.g., VVI), rate decrease of 10% from programmed rate. Telemetry indication. If programmed to rate responsive mode (e.g., VVIR), rate change to 65 ppm and mode change to VVI. Telemetry indication. |
| Minix         | 8340,<br>8341,<br>8341M,<br>8342          | Low 2.5 V (RV)<br>Nominal 3.3 V (RV)<br>High 5.0 V (RV)                                     | 14.9<br>10.2<br>7.9 | 17.3<br>13.6<br>11.3 | Telemetry indication. Rate decrease of 10% from programmed rate.                                                                                                                                                                                |
| Minix ST      | 8330,<br>8331,<br>8331M                   | Low 2.5 V (RV)<br>Nominal 5.0 V (RV)<br>High 8.0 V (RV)                                     | 14.9<br>7.9<br>4.0  | 17.3<br>11.4<br>7.0  | Telemetry indication. Rate decrease of 10% from programmed rate.                                                                                                                                                                                |
| Minuet        | 7107,<br>7108                             | Low 2.5 V, 0.36 ms (A, RV)<br>Nominal 4.0 V, 0.36 ms (A, RV)<br>High 5.0 V, 0.36 ms (A, RV) | 12.5<br>7.7<br>4.7  | 15.6<br>10.9<br>7.6  | **                                                                                                                                                                                                                                              |
| Preva DR      | 7088,<br>7089                             | Low 2.5 V (A, RV)<br>Nominal 3.5 V (A, RV)<br>High 5.0 V (A, RV)                            | 9.9<br>7.4<br>5.4   | 11.3<br>9.4<br>7.5   | **                                                                                                                                                                                                                                              |
| Preva SR      | 8088,<br>8089                             | Low 2.5 V (RV)<br>Nominal 3.5 V (RV)<br>High 5.0 V (RV)                                     | 9.8<br>8.0<br>6.4   | 10.7<br>9.5<br>8.1   | **                                                                                                                                                                                                                                              |
| Prevail S     | 8085,<br>8086                             | Low 2.5 V, 0.42 ms (RV)<br>Nominal 3.3 V, 0.42 ms (RV)<br>High 5.0 V, 0.42 ms (RV)          | 16.4<br>10.8<br>8.6 | 19.4<br>14.4<br>12.4 | Telemetry indication. Rate decrease of 10% from programmed rate.                                                                                                                                                                                |

 $<sup>^{**}\</sup>mbox{Telemetry}$  indication. Rate and mode change to 65 ppm and VVI respectively (VOO/65 with magnet).



#### Reference Chart continued

| Estimated | Longevity |
|-----------|-----------|
|           |           |

|               |                                 | Estimated L                                                      | ongevity           |                     |                                 |
|---------------|---------------------------------|------------------------------------------------------------------|--------------------|---------------------|---------------------------------|
| Family        | Model<br>Number                 | Amplitude Setting                                                | 500<br>Lead Ω      | 1000<br>Lead Ω      | Elective Replacement Indicators |
| Prodigy D     | 7864,<br>7865,<br>7866          | Low 2.5 V (A, RV)<br>Nominal 3.5 V (A, RV)<br>High 5.0 V (A, RV) | 10.0<br>7.4<br>5.4 | 11.4<br>9.5<br>7.6  | **                              |
| Prodigy DR    | 7860,<br>7861,<br>7862          | Low 2.5 V (A, RV)<br>Nominal 3.5 V (A, RV)<br>High 5.0 V (A, RV) | 9.9<br>7.4<br>5.4  | 11.3<br>9.4<br>7.5  | **                              |
| Prodigy S     | 8164,<br>8165,<br>8166          | Low 2.5 V (RV)<br>Nominal 3.5 V (RV)<br>High 5.0 V (RV)          | 10.0<br>8.1<br>6.4 | 10.9<br>9.6<br>8.2  | **                              |
| Prodigy SR    | 8158,<br>8160,<br>8161,<br>8162 | Low 2.5 V (RV)<br>Nominal 3.5 V (RV)<br>High 5.0 V (RV)          | 9.8<br>8.0<br>6.4  | 10.7<br>9.5<br>8.1  | **                              |
| Sensia DR     | SEDR01,<br>SED01                | Low 2.5 V (A, RV)<br>Nominal 3.5 V (A, RV)<br>High 5.0 V (A, RV) | 7.5<br>6.1<br>4.5  | 8.3<br>7.4<br>6.0   | **                              |
| Sensia DR     | SEDRL1                          | Low 2.5 V (A, RV)<br>Nominal 3.5 V (A, RV)<br>High 5.0 V (A, RV) | 9.1<br>7.4<br>5.4  | 10.1<br>9.0<br>7.3  | **                              |
| Sensia SR     | SESR01,<br>SES01                | Low 2.5 V (RV)<br>Nominal 3.5 V (RV)<br>High 5.0 V (RV)          | 7.3<br>6.4<br>5.0  | 7.8<br>7.4<br>6.2   | **                              |
| Sigma 100 S   | SS103,<br>SS106                 | Low 2.5 V (RV)<br>Nominal 3.5 V (RV)<br>High 5.0 V (RV)          | 10.1<br>8.2<br>6.4 | 11.1<br>9.8<br>8.4  | **                              |
| Sigma 200 DR  | SDR203                          | Low 2.5 V (A, RV)<br>Nominal 3.5 V (A, RV)<br>High 5.0 V (A, RV) | 10.1<br>7.5<br>5.5 | 11.7<br>9.6<br>7.8  | **                              |
| Sigma 200 SR  | SSR203                          | Low 2.5 V (RV)<br>Nominal 3.5 V (RV)<br>High 5.0 V (RV)          | 10.1<br>8.2<br>6.4 | 11.1<br>9.8<br>8.4  | **                              |
| Sigma 300 DR  | SDR303,<br>SDR306               | Low 2.5 V (A, RV)<br>Nominal 3.5 V (A, RV)<br>High 5.0 V (A, RV) | 10.1<br>7.5<br>5.5 | 11.7<br>9.6<br>7.8  | **                              |
| Sigma 300 SR  | SSR303,<br>SSR306               | Low 2.5 V (RV)<br>Nominal 3.5 V (RV)<br>High 5.0 V (RV)          | 10.1<br>8.2<br>6.4 | 11.1<br>9.8<br>8.4  | **                              |
| Sigma 300 VDD | SVDD303                         | Low 2.5 V (RV)<br>Nominal 3.5 V (RV)<br>High 5.0 V (RV)          | 8.9<br>7.3<br>5.8  | 9.7<br>8.6<br>7.4   | **                              |
| Thera-i D     | 7964i,<br>7965i,<br>7966i       | Low 2.5 V (A, RV)<br>Nominal 3.5 V (A, RV)<br>High 5.0 V (A, RV) | 10.0<br>7.4<br>5.4 | 11.4<br>9.5<br>7.6  | **                              |
| Thera-i DR    | 7960i,<br>7961i,<br>7962i       | Low 2.5 V (A, RV)<br>Nominal 3.5 V (A, RV)<br>High 5.0 V (A, RV) | 9.9<br>7.4<br>5.4  | 11.3<br>9.4<br>7.5  | **                              |
| Thera-i DR    | 7968i                           | Low 2.5 V (A, RV)<br>Nominal 3.5 V (A, RV)<br>High 5.0 V (A, RV) | 7.2<br>5.4<br>3.9  | 8.3<br>6.9<br>5.5   | **                              |
| Thera-i S     | 8964i,<br>8965i,<br>8966i       | Low 2.5 V (RV)<br>Nominal 3.5 V (RV)<br>High 5.0 V (RV)          | 10.0<br>8.1<br>6.4 | 10.9<br>9.6<br>8.2  | **                              |
| Thera-i SR    | 8960i,<br>8961i,<br>8962i       | Low 2.5 V (RV)<br>Nominal 3.5 V (RV)<br>High 5.0 V (RV)          | 9.8<br>8.0<br>6.4  | 10.7<br>9.5<br>8.1  | **                              |
| Thera-i VDD   | 8968i                           | Low 2.5 V (RV)<br>Nominal 3.5 V (RV)<br>High 5.0 V (RV)          | 11.5<br>9.6<br>7.7 | 12.4<br>11.1<br>9.7 | **                              |
| Versa DR      | VEDR01                          | Low 2.5 V (A, RV)<br>Nominal 3.5 V (A, RV)<br>High 5.0 V (A, RV) | 7.5<br>6.1<br>4.5  | 8.3<br>7.4<br>6.0   | **                              |

 $<sup>^{**}\</sup>mbox{Telemetry}$  indication. Rate and mode change to 65 ppm and VVI respectively (VOO/65 with magnet).

## **Method for Estimating Lead Performance**

Medtronic CRDM has tracked lead survival for over 20 years with its multicenter, global chronic lead studies.

#### **Leads Performance Analysis**

Implanted leads operate in the challenging biochemical environment of the human body and the body's response to foreign objects. Implanted leads are also subject to mechanical stresses associated with heart motion, body motion, and patient anatomy.

In this environment, pacemaker and defibrillation leads cannot be expected to last forever. While IPGs and ICDs have a battery that will deplete after a predictable length of time, a lead's longevity cannot be predicted, nor are there simple indicators that a lead is approaching the end of its service life. Therefore, regular monitoring while implanted, and evaluation of lead integrity upon IPG or ICD replacement, is necessary to determine if a lead may be approaching the end of its service life.

#### **Returned Product Analysis Shortfalls**

All leads and lead segments returned to Medtronic are analyzed to determine whether or not they meet performance limits established by Medtronic. Although returned product analyses are valuable for gaining insight into lead failure mechanisms, this data cannot be used by itself for determining the survival probability of leads because only a small fraction of leads are explanted and returned for analysis. Additionally, those leads that are returned cannot be assumed to be statistically representative of the performance of the total population for a given lead model. Partial or total lead extraction can result in significant damage to a lead, making a definitive analysis of a suspected failure and its cause impossible. Thus, lead survival probabilities are more appropriately determined through a clinical surveillance study. Although returned product analysis results are presented in this report, Medtronic tracks lead survival through its System Longevity Study.

#### System Longevity Study (SLS)

The SLS is a prospective, multicenter, global study designed to monitor the performance of marketreleased cardiac therapy products. Medtronic has been monitoring the performance of its cardiac therapy products for 26 years and has evaluated the performance of more than 75,000 leads, with data reported from 14 countries on four continents.

Patients are eligible for enrollment in the study if:

- 1 They are within 6 months post-implant of a Medtronic market-released lead connected to a market-released CRT, ICD, or IPG device, and the lead is used for a pacing, sensing, or defibrillation application, or
- 2 They participated in a qualifying study of a market-released Medtronic cardiac therapy product; complete implant and follow-up data are available; and the data is appropriately and legally released for use in the study.

#### **Lead Complications**

The SLS complication criteria are defined below. These criteria do not, however, enable a lead integrity or "hardware" failure to be conclusively differentiated from other clinical events such as an undetected lead dislodgement, exit block, or concurrent pulse generator failure manifested as a sensing or capture problem.

A lead-related complication is considered to have occurred if at least one of the following clinical observations is reported and at least one of the following clinical actions is made 30 days or more after the implant.

#### **Clinical Observations**

- Failure to capture
- Failure to sense/undersensing
- Oversensing
- Abnormal pacing impedance (based on lead model, but normal range is typically 200-3,000 ohms)
- Abnormal defibrillation impedance (based on lead model, but normal range is typically 20-200 ohms)
- Insulation breach, observed visually, that has degraded system performance
- Conductor fracture, observed visually or radiographically
- Extracardiac stimulation
- Cardiac perforation
- Lead dislodgement

## Method for Estimating Lead Performance continued

#### The Standard Actuarial Method is used to determine estimates of lead survival.

#### **Clinical Actions**

- Lead surgically abandoned/capped
- Lead electrically abandoned/capped
- Lead explanted
- Lead replaced
- Polarity reprogrammed (i.e., bipolar to unipolar; unipolar to bipolar)
- Lead use continued based on medical judgment despite a known clinical performance issue
- Other lead-related surgery performed (e.g., lead mechanical alteration or unsuccessful repositioning)

**Note:** Successful lead repositioning is not a qualifying action.

#### Methods

The performance of leads is expressed in terms of lead survival estimates, where "survival" refers to the function of the lead, not the survival of the patient. These survival estimates are intended to illustrate the probability that a lead will survive for a given number of years without a lead-related complication.

The survival estimates are determined from the analysis of the data collected through the SLS. These data are presented graphically and numerically.

The SLS protocol requires regular follow-up reporting on all leads actively followed in the study. Each study center must inform Medtronic whenever a lead complication has occurred or when a patient is no longer participating in the study. Under the study protocol, each lead is assumed to be normally active unless a lead-related complication is confirmed, the lead is abandoned or explanted, or the patient is no longer available for follow-up. The data analyses assume that the patient is still part of the study and there are no lead complications at the time of the report cutoff date unless specifically reported by the center.

Medtronic evaluates center compliance with study protocol through, at a minimum, annual clinical monitoring at each study site. Additionally, study center personnel must be trained in the study procedures prior to participating, and they must adhere to the policies and procedures of their local ethics boards.

Implant times are calculated from the implant date to the earlier of the complication date, out-of-service date (for example, patient leaves the study or the lead is no longer being used), or the cutoff date of the report. If a lead experiences more than one complication, the first is used to calculate survival time; although all complications associated with a lead are reported in PPR tables.

Of the several different statistical methods available for survival analysis, the Standard Actuarial Method, with suspensions assumed distributed across the intervals (Cutler-Ederer Method), is used to determine estimates of lead survival. This method is commonly used by medical researchers and clinicians.

On the following pages, each graph includes a survival curve where events include qualifying lead-related complications. This survival estimate is a good representation of the probability a lead will survive a period of time without a lead-related complication. For example, if a survival probability is 95% after 5 years of service, then the lead has a 5% chance of experiencing a lead-related complication in the first 5 years following implant.

Since the survival estimate can become very imprecise with small effective sample sizes, Medtronic truncates the survival curve when the number of leads entering an interval is less than 50 leads. When the number of leads entering an interval reaches 50, the next data point is added to the survival curve.

Although the report provides tabular data in 1-year intervals, the curves are actually computed and plotted using 3-month intervals.

The data in the tables is rounded to the nearest tenth of one percent. Occasionally, a graph may show 100% survival, but have one or more complications. This occurs because even with the complications, the data rounds to 100%.

The survival curves are statistical estimates. As performance experience accumulates, the estimation improves. Confidence intervals are provided as a way to indicate the degree of certainty of the estimates. Greenwood's formula is used to calculate corresponding 95% confidence intervals for the standard errors, and the complementary log-log method is used to produce the confidence bounds.

## Method for Estimating Lead Performance continued

Medtronic urges all physicians to return explanted products and to notify Medtronic when a product is no longer in use, regardless of reason for explant or removal from use.

#### Sample Size and How the Population and Population Samples Are Defined

The population sample from which the survival estimates are derived is comprised of the patients successfully enrolled in the SLS as of the report cutoff date. The number of enrolled implants is listed for each model.

This sample based on SLS enrollments is considered to be representative of the worldwide population, including data from 14 countries on four continents, and therefore the survival estimates shown in this report should be representative of the performance worldwide of these models.

In general, a model or model family will be included in this report when more than 100 leads have been enrolled and no fewer than 50 leads followed for at least 6 months. Models will remain in the report as long as Medtronic estimates at least 500 leads remain active in the United States, based on estimated US implants.

#### **Returned Product Analysis Results**

Every lead or lead portion returned to Medtronic receives an analysis. Although the returned product analysis data is not used to generate the survival estimates, the data provides valuable insight into the causes of lead malfunction.

For reporting returned product analysis results, Medtronic CRDM considers a lead as having malfunctioned whenever the analysis shows that any parameter was outside the performance limits established by Medtronic while implanted and in service. To be considered a malfunction for returned product analysis reporting, the lead must have been returned to Medtronic and analyzed.

Lead malfunctions are divided into three categories: Implant Damage, Electrical, and Other. Typical examples of implant damage are stylet perforation, cut or torn insulation, bent or distorted conductors, over-retracted helixes, and conductor fracture due to over-torquing. An electrical malfunction is defined as a hardware malfunction resulting in a break in the insulation or a break in the conductor that could affect the electrical performance of the lead. A break in the insulation is defined as a breach allowing entry of body fluids or inappropriate current flow between the conductors, or between the conductor and the body. Examples include cuts, tears, depressions, environmental stress cracking (ESC), and metal ion

oxidation (MIO). A break in the conductor of a lead is defined as the loss of continuity in the metallic components that could interrupt the current flow or voltage. Examples include fractured conductors and defective crimps.

Leads damaged after explant or damaged due to failure to heed warnings or contraindications in the labeling are not considered device malfunctions.

A lead subject to a safety advisory is not considered to have malfunctioned unless it has been returned to Medtronic CRDM and found, through analysis, to actually have performed outside the performance limits established by Medtronic.

For leads designed for either ventricular or atrial use, the numbers listed in the Returned Product Analysis tables include both.

The numbers of malfunctions listed in the Returned Product Analysis tables are the actual numbers confirmed in the returned product analysis from the United States. The numbers of complications listed in the complications tables are the actual numbers observed in the SLS centers around the world.

#### **Estimated Number of Implanted** and Active Leads in the United States

In addition to providing the number of leads enrolled in the SLS, this report also provides the number of leads registered as implanted and the number remaining active based on the status recorded in the Medtronic Device Registration System.

Some lead models do not have a survival curve presented in this report. These lead models do not have a survival curve because they have insufficient sample size in the System Longevity Study. Returned Product Analysis results for these models are included here for reference and comparison.

## **Left-Heart Leads**

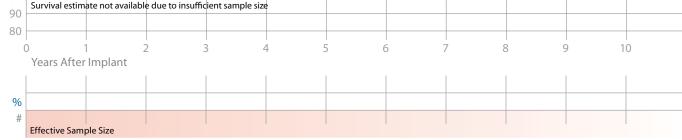
#### 2187 Attain

#### **Product Characteristics**

| US Market Release                   | Aug-01 | Serial Number Prefix | LEY                                                                    | US Returned Product Ana | alysis |
|-------------------------------------|--------|----------------------|------------------------------------------------------------------------|-------------------------|--------|
| Registered US Implants              | 12,000 | Type and/or Fixation | Transvenous, Left Ventricular Cardiac<br>Vein, Distal Continuous Curve | Implant Damage          | 7      |
| <b>Estimated Active US Implants</b> | 4,300  | Polarity             | Unipolar                                                               | Electrical Malfunction  | 0      |
| Advisories                          | None   | Steroid              | No                                                                     | Other                   | 16     |

#### **System Longevity Study Results**

**Qualifying Complications** 1 Total


Number of Leads Enrolled in Study 134 Cumulative Months of Follow-Up 5,978 Number of Leads Active in Study 38 Failure to Capture

100 Lead Survival Probability (%) 90 80 2 3 4 9 5 6 10 Years After Implant 1 yr 2 yr 3 yr 4 yr at 54 mo % 99.1 99.1 99.1 99.1 99.1 47 108 88 70 57 Effective Sample Size

#### 2188 Attain

#### **Product Characteristics**

| U              | JS Market Release                   | Aug-01          | Serial Number Pr | efix LEB                                    |         | US Returned Product Ana | llysis |
|----------------|-------------------------------------|-----------------|------------------|---------------------------------------------|---------|-------------------------|--------|
| F              | Registered US Implants              | 1,800           | Type and/or Fixa | tion Transvenous, Core<br>Cardiac Vein, Can |         | Implant Damage          | 1      |
| E              | Estimated Active US Implants        | 400             | Polarity         | Bipolar                                     |         | Electrical Malfunction  | 1      |
| A              | Advisories                          | None            | Steroid          | No                                          |         | Other                   | (      |
| stem l         | Longevity Study Results             |                 | (                | Qualifying Complications                    | 1 Total |                         |        |
| ١              | Number of Leads Enrolled in Stu     | dy 14           | ļ                | Extra Cardiac Stimulation                   | 1       |                         |        |
|                | Cumulative Months of Follow-Up      | •               | <b>.</b>         |                                             |         |                         |        |
|                | Number of Leads Active in Study     |                 |                  |                                             |         |                         |        |
|                | variable of Leads Netive in Study   |                 |                  |                                             |         |                         |        |
| 90<br>80<br>80 | Survival estimate not available due | to insufficient | sample size      |                                             |         |                         |        |
| 90             |                                     |                 |                  |                                             |         |                         |        |
| 80             |                                     |                 |                  |                                             |         |                         |        |
|                | 0 1 2                               | 3               | 4                | 5 6                                         | 7 8     | 9 10                    |        |
| 3              | Years After Implant                 |                 |                  |                                             |         |                         |        |
|                |                                     |                 |                  |                                             |         |                         |        |
| 5              |                                     |                 |                  |                                             |         |                         |        |
| %              |                                     |                 |                  |                                             |         |                         |        |
| í #            |                                     |                 |                  |                                             |         |                         |        |



## Left-Heart Leads continued

485

Effective Sample Size

376

284

#### 4193 Attain

#### **Product Characteristics**

|        | US Market Re                                     | ease           | May-0            | )2 Sei | rial Number Pre                    | fix BAA      |                |          | US Returne     | d Product Ana  | alysis |
|--------|--------------------------------------------------|----------------|------------------|--------|------------------------------------|--------------|----------------|----------|----------------|----------------|--------|
|        | Registered US Implants 98,100 Type and/or Fixati |                | oe and/or Fixati |        | svenous, Left \<br>, Distal Double |              | nt Damage      | 65       |                |                |        |
|        | Estimated Act                                    | tive US Implar | nts 54,10        | 00 Po  | larity                             | Uni          | oolar          |          | Electrical N   | Malfunction    | 23     |
|        | Advisories                                       |                | Nor              | ne Ste | eroid                              | Yes          |                |          |                | Other          | 64     |
| /ster  | n Longevity S                                    | tudy Results   | ;                |        | Q                                  | ualifying Co | mplications    | 34 Total |                |                |        |
|        | Number of Le                                     | ads Enrolled i | n Study          | 673    |                                    | Condu        | ıctor Fracture | 1        | Lead D         | islodgement    | 13     |
|        | Cumulative M                                     | onths of Follo | ow-Up 2          | 2,161  |                                    | Extra Cardia | c Stimulation  | 6        | Unspecified Cl | inical Failure | 3      |
|        | Number of Le                                     | ads Active in  | Study            | 259    |                                    | Failu        | re to Capture  | 11       |                |                |        |
| R 10   | 00                                               |                |                  |        |                                    |              |                |          |                |                |        |
| 9      | 90                                               |                |                  |        |                                    |              | 1              |          |                |                |        |
| 8      | 30                                               |                |                  |        |                                    |              |                |          |                |                |        |
|        | 0                                                | 1              | 2                | 3      | 4                                  | 5            | 6              | 7 8      | 9              | 10             |        |
| 3      | Years Afte                                       | r Implant      |                  |        |                                    | -            | -              |          |                |                |        |
| 10 9 8 |                                                  | 1 yr           | 2 yr             | 3 yr   | 4 yr                               | 5 yr         | at 69 mo       |          |                |                |        |
|        | %                                                | 95.8           | 94.7             | 93.9   | 93.9                               | 93.9         | 93.9           |          |                |                |        |

94

46

#### 4194 Attain

### **Product Characteristics**

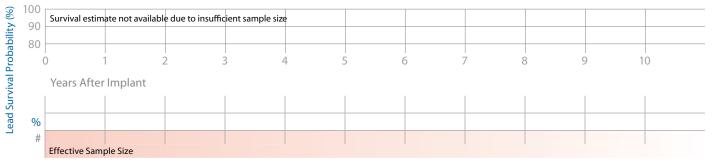
198

| T12T                          | Attuill          |                   |           | Troduct C   | .iiaiacteiist | 1C3                                         |         |                               |         |
|-------------------------------|------------------|-------------------|-----------|-------------|---------------|---------------------------------------------|---------|-------------------------------|---------|
|                               | US Market Rel    | ease              | Aug-04    | Serial Numl | ber Prefix    | LFG                                         |         | US Returned Product A         | nalysis |
|                               | Registered US    | Implants          | 75,000    | Type and/o  | r Fixation    | Transvenous, Left V<br>Cardiac Vein, Distal |         | Implant Damage                | 96      |
|                               | Estimated Act    | ive US Implants   | 57,700    | Polarity    |               | Bipolar                                     |         | <b>Electrical Malfunction</b> | 14      |
|                               | Advisories       |                   | None      | Steroid     |               | Yes                                         |         | Other                         | 7       |
| System                        | n Longevity St   | tudy Results      |           |             | Qualif        | ying Complications                          | 7 Total |                               |         |
|                               | Number of Lea    | ads Enrolled in S | tudy 517  | ,           |               | Failure to Capture                          | 1       |                               |         |
|                               | Cumulative M     | onths of Follow-  | Up 10,982 | 2           |               | Lead Dislodgement                           | 6       |                               |         |
|                               | Number of Lea    | ads Active in Stu | dy 401    |             |               |                                             |         |                               |         |
| _ 10                          | 0                |                   |           |             |               |                                             |         |                               |         |
| %)<br>>: 9!                   |                  |                   |           | _           |               |                                             |         |                               |         |
| abilit<br>8                   |                  |                   |           |             |               |                                             |         |                               |         |
| oba                           |                  | 1 2               |           |             |               |                                             | 7       |                               |         |
| Lead Survival Probability (%) | 0<br>Years After |                   | 3         | 4           | 5             | 6                                           | 7 8     | 9 10                          |         |
| ≥.                            | lears Arter      |                   | 1         | ı           | ı             | 1                                           |         |                               |         |
| l Su                          |                  | 1 yr 2            | yr 3 y    | r at 4      | 42 mo         |                                             |         |                               |         |
| eac<br>%                      | %                | 99.1              | 8.0 98.   | .0 98       | 3.0           |                                             |         |                               |         |
|                               | #                | 324 2             | 14 76     | 41          |               |                                             |         |                               |         |
|                               | Effective Sam    | 1 -               |           |             |               | 1                                           |         |                               |         |

www.CRDMPPR.medtronic.com



#### 4195 Attain


#### **Product Characteristics**

| US Market Release                   | Aug-08 | Serial Number Prefix | AAD                                                                  | US Returned Product An | alysis |
|-------------------------------------|--------|----------------------|----------------------------------------------------------------------|------------------------|--------|
| Registered US Implants              | 2,420  | Type and/or Fixation | Transvenous, Left Ventricular Cardiac Vein, Deployable Lobe Fixation | Implant Damage         | 11     |
| <b>Estimated Active US Implants</b> | 2,400  | Polarity             | Unipolar                                                             | Electrical Malfunction | 2      |
| Advisories                          | None   | Steroid              | Yes                                                                  | Other                  | 8      |

#### **System Longevity Study Results**

**Qualifying Complications** 0 Total

Number of Leads Enrolled in Study 24 Cumulative Months of Follow-Up 373 Number of Leads Active in Study 23



## Left-Heart Leads continued

### **Lead Survival Summary** (95% Confidence Interval)

|                 |        | ase               |               | Study                 |                             | nths of<br>udy                          | Device            | Survival          | Probabil          | ity (%)                       |                               |                               |      |      |      |       |
|-----------------|--------|-------------------|---------------|-----------------------|-----------------------------|-----------------------------------------|-------------------|-------------------|-------------------|-------------------------------|-------------------------------|-------------------------------|------|------|------|-------|
| <u>.</u>        |        | US Market Release | eads Enrolled | Leads Active in Study | Qualifying<br>Complications | Cumulative Months<br>Follow-Up in Study | Years A           | fter Impl         | ant               |                               |                               |                               |      |      |      |       |
| Model<br>Number | Family | US Maı            | Leads         | Leads                 | Qualify<br>Compl            | Cumul                                   | 1 yr              | 2 yr              | 3 yr              | 4 yr                          | 5 yr                          | 6 yr                          | 7 yr | 8 yr | 9 yr | 10 yr |
| 2187            | Attain | Aug-01            | 134           | 38                    | 1                           | 5,978                                   | 99.1<br>+0.8/-5.2 | 99.1<br>+0.8/-5.2 | 99.1<br>+0.8/-5.2 | 99.1<br>+0.8/-5.2             | 99.1<br>+0.8/-5.2<br>at 54 mo |                               |      |      |      |       |
| 2188            | Attain | Aug-01            | 14            | 1                     | 1                           | 383                                     | Survival e        | stimate no        | t available       | due to insu                   | ıfficient saı                 | mple size                     |      |      |      |       |
| 4193            | Attain | May-02            | 673           | 259                   | 34                          | 22,161                                  | 95.8<br>+1.3/-2.0 | 94.7<br>+1.6/-2.2 | 93.9<br>+1.7/-2.5 | 93.9<br>+1.7/-2.5             | 93.9<br>+1.7/-2.5             | 93.9<br>+1.7/-2.5<br>at 69 mo |      |      |      |       |
| 4194            | Attain | Aug-04            | 517           | 401                   | 7                           | 10,982                                  | 99.1<br>+0.6/-1.6 | 98.0<br>+1.1/-2.2 | 98.0<br>+1.1/-2.2 | 98.0<br>+1.1/-2.2<br>at 42 mo |                               |                               |      |      |      |       |
| 4195            | Attain | Aug-08            | 24            | 23                    | 0                           | 373                                     | Survival e        | stimate no        | t available       | due to insu                   | ıfficient sar                 | mple size                     |      |      |      |       |

Source: System Longevity Study Data as of January 31, 2009

## **US Returned Product Analysis Summary**

| Model<br>Number | Family | US Market<br>Release | Estimated<br>US Implants | Estimated<br>US Active | Implant<br>Damage | Electrical<br>Malfunction | Other |
|-----------------|--------|----------------------|--------------------------|------------------------|-------------------|---------------------------|-------|
| 2187            | Attain | Aug-01               | 12,000                   | 4,300                  | 7                 | 0                         | 16    |
| 2188            | Attain | Aug-01               | 1,800                    | 400                    | 1                 | 1                         | 0     |
| 4193            | Attain | May-02               | 98,100                   | 54,100                 | 64                | 19                        | 65    |
| 4194            | Attain | Aug-04               | 75,000                   | 57,700                 | 93                | 6                         | 7     |
| 4195            | Attain | Jun-08               | 2,420                    | 2,400                  | 11                | 2                         | 8     |

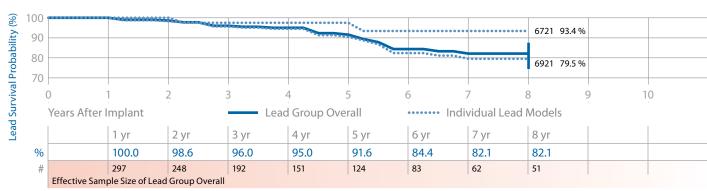
Source: Returned Product Analysis Data as of January 31, 2009

#### **Reference Chart**

| Model<br>Number | Family | Туре                                            | Insulation                                | Conductor<br>Material | Tip<br>Electrode       | Connector<br>Type |
|-----------------|--------|-------------------------------------------------|-------------------------------------------|-----------------------|------------------------|-------------------|
| 2187            | Attain | Transvenous<br>Cardiac Vein<br>Preformed Body   | Polyurethane<br>(55D)                     | MP35N                 | Platinized<br>Platinum | IS-1 UNI          |
| 2188            | Attain | Transvenous<br>Cardiac Vein<br>Preformed Body   | Polyurethane<br>(55D)                     | MP35N                 | Platinized<br>Platinum | IS-1 BI           |
| 4193            | Attain | Transvenous<br>Cardiac Vein<br>Preformed Body   | Polyurethane<br>(55D)                     | MP35N                 | Platinized<br>Platinum | IS-1 UNI          |
| 4194            | Attain | Transvenous<br>Cardiac Vein<br>Preformed Body   | Polyurethane<br>(55D)/<br>Silicone (4719) | MP35N                 | Platinum Alloy         | IS-1 BI           |
| 4195            | Attain | Transvenous Cardiac<br>Vein Deployable<br>Lobes | Polyurethane<br>(55D)                     | MP35N                 | Platinum Alloy         | IS-1 Uni          |

## **Defibrillation Leads**

#### 6721, 6921 Epicardial Patch


#### **Product Characteristics**

| US Market Release                   | Feb-93 | Serial Number Prefix | TBH, TBG, TBB, TAD, TAC, or TAB | US Returned Product Anal | lysis |
|-------------------------------------|--------|----------------------|---------------------------------|--------------------------|-------|
| Registered US Implants              | 8,300  | Type and/or Fixation | Epicardial Defib Patch, Suture  | Implant Damage           | 5     |
| <b>Estimated Active US Implants</b> | 1,300  | Polarity             | Defib Electrode only            | Electrical Malfunction   | 80    |
| Advisories                          | None   | Steroid              | No                              | Other                    | 0     |

#### System Longevity Study Results

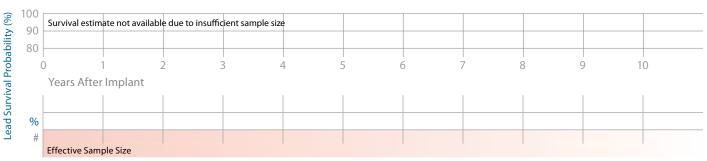
#### Qualifying Complications 28 Total

| Number of Leads Enrolled in Study | 407    | Conductor Fracture     | 20 | Insulation (not further defined) | 3 |
|-----------------------------------|--------|------------------------|----|----------------------------------|---|
| Cumulative Months of Follow-Up    | 18,283 | Failure to Capture     | 2  |                                  |   |
| Number of Leads Active in Study   | 12     | Impedance Out of Range | 3  |                                  |   |



#### **6930 Sprint Fidelis**

#### **Product Characteristics**


| US Market Release                   | Sep-04   | Serial Number Prefix | LFK                                                | US Returned Product Ana | alysis |
|-------------------------------------|----------|----------------------|----------------------------------------------------|-------------------------|--------|
| Registered US Implants              | 400      | Type and/or Fixation | Transvenous, Vent, Defib and Pace/<br>Sense, Tines | Implant Damage          | 0      |
| <b>Estimated Active US Implants</b> | 300      | Polarity             | True Bipolar/One Coil                              | Electrical Malfunction  | 2      |
| Advisories                          | 1        | Steroid              | Yes                                                | Other                   | 0      |
| See page 151 – 2007 Potential Co    | onductor |                      |                                                    |                         |        |

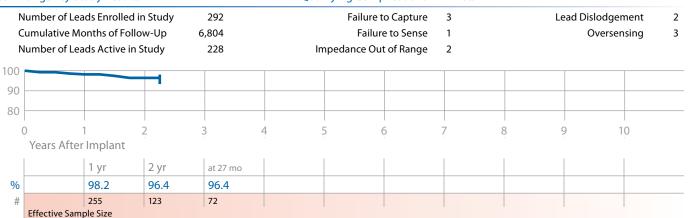
#### **System Longevity Study Results**

Wire Fracture

#### **Qualifying Complications** 0 Total

| Number of Leads Enrolled in Study | 4  |
|-----------------------------------|----|
| Cumulative Months of Follow-Up    | 83 |
| Number of Leads Active in Study   | 4  |




#### **6931 Sprint Fidelis**

#### **Product Characteristics**

| US Market Release                   | Sep-04   | Serial Number Prefix | LFL                                                   | US Returned Product An | alysis |
|-------------------------------------|----------|----------------------|-------------------------------------------------------|------------------------|--------|
| Registered US Implants              | 8,100    | Type and/or Fixation | Transvenous, Vent, Defib and Pace/<br>Sense, Screw-in | Implant Damage         | 28     |
| <b>Estimated Active US Implants</b> | 6,000    | Polarity             | True Bipolar/One Coil                                 | Electrical Malfunction | 102    |
| Advisories                          | 1        | Steroid              | Yes                                                   | Other                  | 0      |
| See page 151 – 2007 Potential Co    | onductor |                      |                                                       |                        |        |
| Wire Fracture                       |          |                      |                                                       |                        |        |

#### System Longevity Study Results

#### Qualifying Complications 11 Total



#### 6932 Sprint

Lead Survival Probability (%)

#### **Product Characteristics**

| US Market Release |                                               | Release Aug-96 Serial Number Prefix TCA |                   |                                       |                   | US Returned Prod    | duct Analys  |  |
|-------------------|-----------------------------------------------|-----------------------------------------|-------------------|---------------------------------------|-------------------|---------------------|--------------|--|
|                   | Registered US Implants                        | 15,000                                  | Type and/or Fixat | ion Transvenous, Vent<br>Sense, Tines | , Defib and Pace/ | Implant Dar         | image        |  |
| 1                 | Estimated Active US Implants                  | 5,700                                   | Polarity          | True Bipolar/One C                    | Coil              | Electrical Malfun   | ction :      |  |
| ,                 | Advisories                                    | None                                    | Steroid           | Yes                                   |                   | C                   | Other        |  |
| tem               | Longevity Study Results                       |                                         | C                 | Qualifying Complications              | 8 Total           |                     |              |  |
|                   | Number of Leads Enrolled in Stud              | dy 410                                  | )                 | Extra Cardiac Stimulation             | 1                 |                     |              |  |
|                   | Cumulative Months of Follow-Up                | 20,997                                  | ,                 | Failure to Capture                    | 2                 |                     |              |  |
| Í                 | Number of Leads Active in Study               | 72                                      | !                 | Failure to Sense                      | 2                 |                     |              |  |
|                   |                                               |                                         |                   | Oversensing                           | 3                 |                     |              |  |
|                   |                                               |                                         |                   |                                       |                   |                     |              |  |
| 100               |                                               |                                         |                   |                                       |                   |                     |              |  |
| 100               |                                               |                                         |                   |                                       |                   |                     |              |  |
|                   |                                               |                                         |                   |                                       |                   |                     |              |  |
| 90                |                                               | 3                                       | 4                 | 5 6                                   | 7 8               | 9                   | 10           |  |
| 90                |                                               | 3                                       | 4                 | 5 6                                   | 7 8               | 9                   | 10           |  |
| 90                | 0 1 2                                         | 1                                       |                   | 5 6                                   | ,                 | 9<br>yr 9 yr        | 10 at 114 mo |  |
| 90                | 0 1 2 Years After Implant 2 yr                | з у                                     | r 4 yr            |                                       | 7 yr 8            | 1                   | 1            |  |
| 90                | 0 1 2 Years After Implant 1 yr 2 yr 99.4 98.4 | з у                                     | r 4 yr            | 5 yr 6 yr                             | 7 yr 8            | yr 9 yr<br>6.7 96.7 | at 114 mc    |  |

#### 6933, 6937, 6937A, 6963 SVC/CS

#### **Product Characteristics**

| <b>US Returned Product Analy</b> | /sis                                     |
|----------------------------------|------------------------------------------|
| Implant Damage                   | 31                                       |
| Electrical Malfunction 2         | 200                                      |
| Other                            | 13                                       |
|                                  | Implant Damage<br>Electrical Malfunction |

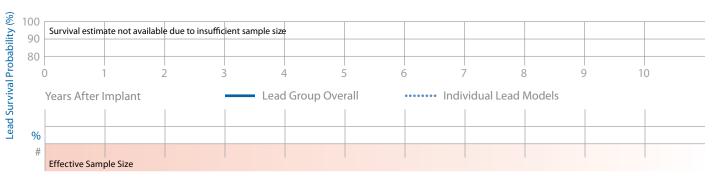
#### **System Longevity Study Results**

#### Qualifying Complications 25 Total

| Number of Leads Enrolled in Study | 966    | Conductor Fracture               | 15 | Lead Dislodgement                    | 1 |
|-----------------------------------|--------|----------------------------------|----|--------------------------------------|---|
| Cumulative Months of Follow-Up    | 47,888 | Failure to Capture               | 1  | <b>Unspecified Clinicial Failure</b> | 4 |
| Number of Leads Active in Study   | 32     | Impedance Out of Range           | 2  |                                      |   |
|                                   |        | Insulation (not further defined) | 2  |                                      |   |



#### **6935** Sprint Quattro Secure


#### **Product Characteristics**

| US  | Market Release             | Nov-08 | Serial Number Prefix | TAU                                | US Returned Product Analys | sis |
|-----|----------------------------|--------|----------------------|------------------------------------|----------------------------|-----|
| Re  | gistered US Implants       | 590    | Type and/or Fixation | Transvenous, Vent, Defib and Pace/ |                            |     |
|     |                            |        |                      | Sense, Screw-in                    | Implant Damage             | 0   |
| Est | timated Active US Implants | 580    | Polarity             | True Bipolar/One Coil              | Electrical Malfunction     | 0   |
| Ad  | lvisories                  | None   | Steroid              | Yes                                | Other                      | 0   |

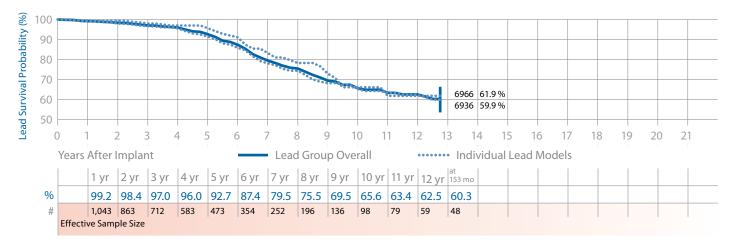
#### System Longevity Study Results

#### Qualifying Complications 0 Total

| Number of Leads Enrolled in Study | 2 |
|-----------------------------------|---|
| Cumulative Months of Follow-Up    | 0 |
| Number of Leads Active in Study   | 2 |



#### 6936, 6966 Transvene


#### **Product Characteristics**

| US Market Release                   | Dec-93 | Serial Number Prefix | TAV or TAL                                        | US Returned Product Ar | nalysis |
|-------------------------------------|--------|----------------------|---------------------------------------------------|------------------------|---------|
| Registered US Implants              | 23,700 | Type and/or Fixation | Transvenous, Vent, Defib and Pace/Sense, Screw-in | Implant Damage         | 90      |
| <b>Estimated Active US Implants</b> | 3,200  | Polarity             | True Bipolar/One Coil                             | Electrical Malfunction | 487     |
| Advisories                          | None   | Steroid              | No                                                | Other                  | 19      |

#### System Longevity Study Results

#### Qualifying Complications 150 Total

| 5  | Impedance Out of Range           | 18 | Conductor Fracture        | 1,350  | Number of Leads Enrolled in Study |
|----|----------------------------------|----|---------------------------|--------|-----------------------------------|
| 14 | Insulation (not further defined) | 2  | Extra Cardiac Stimulation | 67,840 | Cumulative Months of Follow-Up    |
| 93 | Oversensing                      | 9  | Failure to Capture        | 40     | Number of Leads Active in Study   |
| 5  | Unspecified Clinical Failure     | 4  | Failure to Sense          |        |                                   |



#### 6939, 6999 Sub-Q Patch

#### **Product Characteristics**

| US Market Release                   | Dec-93 | Serial Number Prefix | TBA or TAP                       | US Returned Product An | alysis |
|-------------------------------------|--------|----------------------|----------------------------------|------------------------|--------|
| Registered US Implants              | 3,600  | Type and/or Fixation | Subcutaneous Defib Patch, Suture | Implant Damage         | 4      |
| <b>Estimated Active US Implants</b> | 300    | Polarity             | Defib Electrode Only             | Electrical Malfunction | 33     |
| Advisories                          | None   | Steroid              | No                               | Other                  | 1      |

#### System Longevity Study Results

#### Qualifying Complications 20 Total

| Number of Leads Enrolled in Study | 384    | Conductor Fracture               | 10 | Unspecified Clinical Failure |
|-----------------------------------|--------|----------------------------------|----|------------------------------|
| Cumulative Months of Follow-Up    | 17,726 | Failure to Capture               | 2  |                              |
| Number of Leads Active in Study   | 5      | Insulation (not further defined) | 6  |                              |



2

## 6942 Sprint

#### **Product Characteristics**

|                              | US Market Release                   |                | Jul-97          | Serial Number Prefix |        | t TCB                | TCB   |                  |                                                | US Returned Product Ana |                              |                      |     |  |
|------------------------------|-------------------------------------|----------------|-----------------|----------------------|--------|----------------------|-------|------------------|------------------------------------------------|-------------------------|------------------------------|----------------------|-----|--|
|                              |                                     | Registered US  | Implants        |                      | 17,700 | Type and/or Fixation |       |                  | Transvenous, Vent, Defib and Pace/Sense, Tines |                         |                              | Implant Damage       |     |  |
|                              | <b>Estimated Active US Implants</b> |                |                 | ts                   | 7,400  | Polarity             |       | Integr           | ated Bipolar/                                  | Two Coils               | Ele                          | ectrical Malfunction | 37  |  |
|                              |                                     | Advisories     |                 |                      | None   | Steroid              |       | Yes              |                                                |                         |                              | Other                | 5   |  |
| Sys                          | tem                                 | n Longevity St | udy Results     |                      |        |                      | Qua   | llifying Com     | nplications                                    | 7 Total                 |                              |                      |     |  |
|                              |                                     | Number of Lea  | ads Enrolled i  | ո Study              | 351    |                      |       | Conduc           | tor Fracture                                   | 1                       |                              | Oversensin           | g 3 |  |
|                              | Cumulative Months of Follow-Up      |                | w-Up            | 15,650               | )      |                      | Failu | Failure to Sense |                                                | Unspe                   | Unspecified Clinical Failure |                      |     |  |
|                              |                                     | Number of Lea  | ads Active in S | Study                | 57     | ,                    |       | Lead Dis         | slodgement                                     | 1                       |                              |                      |     |  |
| <u></u>                      | 100                                 | )              | ,               |                      |        |                      |       |                  |                                                |                         |                              |                      |     |  |
| ead Survival Probability (%) | 9(                                  |                |                 |                      |        |                      |       |                  |                                                |                         |                              |                      |     |  |
| pabili                       | 8(                                  |                |                 |                      |        |                      |       |                  |                                                |                         |                              |                      |     |  |
| Prok                         |                                     | 0              | 1 :             | 2                    | 3      | 4                    |       | 5                | 6                                              | 7                       | 8                            | 9 10                 |     |  |
| ival                         |                                     | Years After    | Implant         |                      |        |                      |       |                  |                                                |                         |                              |                      |     |  |
| Surv                         |                                     |                | 1 yr            | 2 yr                 | 3 y    | r                    | 4 yr  | 5 yr             | 6 yr                                           | 7 yr                    | 8 yr                         | at 102 mo            |     |  |
| ead                          | 9                                   | 6              | 98.9            | 98.9                 | 97.    | 8                    | 97.2  | 96.3             | 96.3                                           | 96.3                    | 96.3                         | 96.3                 |     |  |
| _                            |                                     | ,,             | 240             | 202                  | 45.0   |                      | 400   | 400              | 00                                             | 70                      |                              | 50                   |     |  |

#### Years After Implant 1 yr 2 yr 3 yr 4 yr 5 yr 6 yr 7 yr 8 yr at 102 mo 98.9 98.9 97.8 97.2 96.3 96.3 96.3 96.3 96.3 % 248 156 108 202 128 83 70 60 50 Effective Sample Size

#### 6943 Sprint

#### **Product Characteristics**

|                               | US Market Release |                       | Oct-97              | Oct-97 Serial Number Prefix |          | TCE                                               | <b>US Returned Product Analysis</b> |                                     |                        |          |    |
|-------------------------------|-------------------|-----------------------|---------------------|-----------------------------|----------|---------------------------------------------------|-------------------------------------|-------------------------------------|------------------------|----------|----|
|                               | Registered        | I US Implants         | 20,800              | Type and/or F               | ixation  | Transvenous, Vent, Defib and Pace/Sense, Screw-in |                                     | Implant Damage                      |                        | amage    | 51 |
|                               | Estimated         | Active US Implants    | 8,800               | Polarity                    |          | True Bipolar/One Coil                             |                                     |                                     | Electrical Malfunction |          |    |
|                               | Advisories        |                       | None                | Steroid                     |          | Yes                                               |                                     |                                     | Other                  |          | 8  |
| Syster                        | n Longevit        | y Study Results       |                     |                             | Qualifyi | ng Complications                                  | 67 Total                            |                                     |                        |          |    |
|                               | Number of         | f Leads Enrolled in : | Study 1,31          |                             | (        | Conductor Fracture                                | 15                                  | Insulation                          | (not further           | defined) | 1  |
|                               | Cumulativ         | e Months of Follow    | <i>y</i> -Up 65,157 | 7                           |          | Failure to Capture 7                              |                                     |                                     | Lead Dislodgement      |          |    |
|                               | Number of         | f Leads Active in St  | udy 38°             |                             |          | Failure to Sense                                  | 5                                   |                                     | Oversensing            |          | 31 |
|                               |                   |                       |                     |                             |          | pedance Out of Range 4                            |                                     | <b>Unspecified Clinical Failure</b> |                        |          | 3  |
| <b>a</b> 10                   | 0                 |                       |                     |                             |          |                                                   |                                     |                                     |                        |          |    |
| %) \<br>\                     | 00                |                       |                     |                             |          |                                                   |                                     |                                     |                        |          |    |
| bilit                         |                   |                       |                     |                             |          |                                                   |                                     |                                     |                        |          |    |
| oba                           | 80                |                       |                     |                             |          |                                                   |                                     |                                     |                        |          |    |
| Pre                           | 0                 | 1 2                   | 3                   | 4                           | 5        | 6                                                 | 7                                   | 8                                   | 9                      | 10       |    |
| Lead Survival Probability (%) | Years A           | fter Implant          |                     |                             |          |                                                   |                                     |                                     |                        |          |    |
| d Sur                         |                   | 1 yr                  | 2 yr 3 y            | r 4 yr                      | 5 y      | r 6 yr                                            | 7 yr                                | 8 yr                                | 9 yr                   | at 111 i | mo |
| Геас                          | %                 | 98.8                  | 98.0 96             | .8 95.8                     | 93.      | 6 91.8                                            | 91.2                                | 90.8                                | 88.8                   | 88.8     |    |
| _                             | #                 | 1,074                 | 927 789             | 643                         | 471      | 346                                               | 230                                 | 118                                 | 64                     | 53       |    |
|                               | Effective         | Sample Size           |                     |                             |          |                                                   |                                     |                                     |                        |          |    |

### **6944** Sprint Quattro

#### **Product Characteristics**

| US Market Release                   | Dec-00 | Serial Number Prefix | TDC                                            | US Returned Product Ana | alysis |
|-------------------------------------|--------|----------------------|------------------------------------------------|-------------------------|--------|
| Registered US Implants              | 31,900 | Type and/or Fixation | Transvenous, Vent, Defib and Pace/Sense, Tines | Implant Damage          | 31     |
| <b>Estimated Active US Implants</b> | 19,200 | Polarity             | True Bipolar/Two Coils                         | Electrical Malfunction  | 35     |
| Advisories                          | None   | Steroid              | Yes                                            | Other                   | 8      |

#### System Longevity Study Results

#### Qualifying Complications 3 Total

| Number of Leads Enrolled in Study | 188   | Oversensing                  | 2 |
|-----------------------------------|-------|------------------------------|---|
| Cumulative Months of Follow-Up    | 7,482 | Unspecified Clinical Failure | 1 |
| Number of Leads Active in Study   | 75    |                              |   |



#### 6945 Sprint

#### **Product Characteristics**

|      | эртин                     |          |        | Troduct Cit | aracteristi |             |                          |                 |      |                 |          |        |
|------|---------------------------|----------|--------|-------------|-------------|-------------|--------------------------|-----------------|------|-----------------|----------|--------|
|      | US Market Release         | Se       | ep-97  | Serial Numb | er Prefix   | TDA         |                          |                 | US   | Returned Pro    | oduct An | alysis |
|      | Registered US Implants    | 4        | 2,800  | Type and/or | Fixation    |             | ous, Vent,<br>nse, Screw | Defib and<br>in |      | Implant D       | amage    | 198    |
|      | Estimated Active US Impla | nts 1    | 8,100  | Polarity    |             | Integrate   | ed Bipolar/              | Two Coils       | El   | ectrical Malfu  | ınction  | 118    |
|      | Advisories                |          | None   | Steroid     |             | Yes         |                          |                 |      |                 | Other    | 11     |
| stem | Longevity Study Result    | S        |        |             | Qualify     | ing Comp    | ications                 | 27 Total        |      |                 |          |        |
|      | Number of Leads Enrolled  | in Study | 1,157  |             |             | Conductor   | Fracture                 | 3               | lmp  | edance Out o    | of Range | 5      |
|      | Cumulative Months of Foll | ow-Up    | 54,899 |             | Extra       | Cardiac Sti | mulation                 | 1               | •    | Ove             | rsensing | 12     |
|      | Number of Leads Active in | •        | 229    |             |             | Failure to  | Capture                  | 1               | Unsp | ecified Clinica | •        | 1      |
|      |                           | ,        |        |             |             |             | to Sense                 | 4               |      |                 |          |        |
| 100  |                           |          |        |             |             |             |                          |                 |      |                 |          |        |
| 90   |                           |          |        |             |             |             |                          |                 |      | _               |          |        |
| 80   |                           |          |        |             |             |             |                          |                 |      |                 |          |        |
|      | 0 1                       | 2        | 3      | 4           | 5           | 6           |                          | 7               | 8    | 9               | 10       |        |
|      | Years After Implant       |          |        |             |             |             |                          |                 |      |                 |          |        |
|      | 1 yr                      | 2 yr     | 3 yı   | 4 yı        | 5           | yr          | 6 yr                     | 7 yr            | 8 yr | 9 yr            | at 111   | mo     |
| %    | 99.6                      | 99.1     | 98.    | 98.         | 1 97        | 7.0         | 95.9                     | 95.5            | 94.0 | 94.0            | 94.0     |        |
| #    | 910                       | 745      | 618    | 483         | 37          | 78          | 300                      | 243             | 158  | 72              | 56       |        |
|      | Effective Sample Size     |          |        |             |             |             |                          |                 |      |                 |          |        |

#### **6947** Sprint Quattro Secure

#### **Product Characteristics**

| US Market Release            | Nov-01                                              | Serial Number Prefix                                                | TDG                                                                                                | US Returned Product An                                                                                                                              | alysis                                                                                                                                                                                                                    |
|------------------------------|-----------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Registered US Implants       | 206,100                                             | Type and/or Fixation                                                | Transvenous, Vent, Defib and Pace/Sense, Screw-in                                                  | Implant Damage                                                                                                                                      | 476                                                                                                                                                                                                                       |
| Estimated Active US Implants | 151,200                                             | Polarity                                                            | True Bipolar/Two Coils                                                                             | Electrical Malfunction                                                                                                                              | 137                                                                                                                                                                                                                       |
| Advisories                   | None                                                | Steroid                                                             | Yes                                                                                                | Other                                                                                                                                               | 25                                                                                                                                                                                                                        |
|                              | Registered US Implants Estimated Active US Implants | Registered US Implants 206,100 Estimated Active US Implants 151,200 | Registered US Implants 206,100 Type and/or Fixation  Estimated Active US Implants 151,200 Polarity | Registered US Implants  206,100  Type and/or Fixation Pace/Sense, Screw-in  Estimated Active US Implants  151,200  Polarity  True Bipolar/Two Coils | Registered US Implants  206,100  Type and/or Fixation  Transvenous, Vent, Defib and Pace/Sense, Screw-in  Implant Damage  Estimated Active US Implants  151,200  Polarity  True Bipolar/Two Coils  Electrical Malfunction |

#### System Longevity Study Results

#### Qualifying Complications 23 Total

| Number of Leads Enrolled in Study | 1,397  | Conductor Fracture               | 3 | Lead Dislodgement                   | 3 |
|-----------------------------------|--------|----------------------------------|---|-------------------------------------|---|
| Cumulative Months of Follow-Up    | 54,528 | Failure to Sense                 | 2 | Oversensing                         | 7 |
| Number of Leads Active in Study   | 597    | Impedance Out of Range           | 4 | <b>Unspecified Clinical Failure</b> | 2 |
|                                   |        | Insulation (not further defined) | 2 |                                     |   |



#### **6948 Sprint Fidelis**

#### **Product Characteristics**

| US Market Release               | Sep-04   | Serial Number Prefix | LFH                                                | US Returned Product An | alysis |
|---------------------------------|----------|----------------------|----------------------------------------------------|------------------------|--------|
| Registered US Implants          | 10,400   | Type and/or Fixation | Transvenous, Vent, Defib and Pace/<br>Sense, Tines | Implant Damage         | 9      |
| Estimated Active US Implants    | 7,900    | Polarity             | True Bipolar/Two Coils                             | Electrical Malfunction | 17     |
| Advisories                      | 1        | Steroid              | Yes                                                | Other                  | 4      |
| See page 151 - 2007 Potential ( | onductor |                      |                                                    |                        |        |

#### System Longevity Study Results

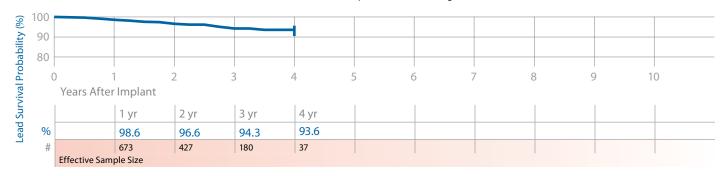
Wire Fracture

#### Qualifying Complications 0 Total

| Number of Leads Enrolled in Study | 30  |
|-----------------------------------|-----|
| Cumulative Months of Follow-Up    | 797 |
| Number of Leads Active in Study   | 26  |



### **6949** Sprint Fidelis


#### **Product Characteristics**

| US Market Release                           | t Release Sep-04 Serial Number Prefix Lf                             |          | LFJ                                                   | US Returned Product Analysis |       |  |  |  |  |
|---------------------------------------------|----------------------------------------------------------------------|----------|-------------------------------------------------------|------------------------------|-------|--|--|--|--|
| Registered US Implants                      | ts 186,700 Type and/or Fixation  mplants 135,900 Polarity  1 Steroid |          | Transvenous, Vent, Defib and Pace/<br>Sense, Screw-in | Implant Damage               | 461   |  |  |  |  |
| <b>Estimated Active US Implants</b>         | 135,900                                                              | Polarity | True Bipolar/Two Coils                                | Electrical Malfunction       | 1,435 |  |  |  |  |
| Advisories See page 151 – 2007 Potential Co | 1<br>onductor                                                        | Steroid  | Yes                                                   | Other                        | 45    |  |  |  |  |

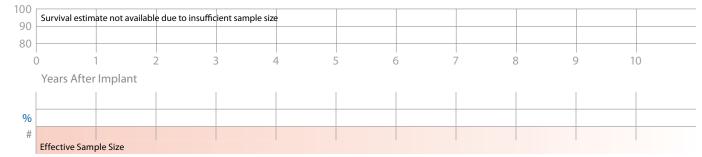
#### **System Longevity Study Results**

#### Qualifying Complications 30 Total

| Number of Leads Enrolled in Study | 789    | Conductor Fracture     | 9 | Insulation (not further defined) | 1  |
|-----------------------------------|--------|------------------------|---|----------------------------------|----|
| Cumulative Months of Follow-Up    | 21,439 | Failure to Capture     | 2 | Lead Dislodgement                | 1  |
| Number of Leads Active in Study   | 576    | Failure to Sense       | 2 | Oversensing                      | 11 |
|                                   |        | Impedance Out of Range | 4 |                                  |    |



#### 6996 Sub-Q Lead


#### **Product Characteristics**

| US Market Release                   | Jun-01 | Serial Number Prefix | TCR                             | US Returned Product Ana | lysis |
|-------------------------------------|--------|----------------------|---------------------------------|-------------------------|-------|
| Registered US Implants              | 2,300  | Type and/or Fixation | Subcutaneous Defib Coil, Suture | Implant Damage          | 1     |
| <b>Estimated Active US Implants</b> | 1,600  | Polarity             | One Defib Coil                  | Electrical Malfunction  | 3     |
| Advisories                          | None   | Steroid              | No                              | Other                   | 0     |
|                                     |        | 0 116                |                                 |                         |       |

#### System Longevity Study Results

#### Qualifying Complications 0 Total

Number of Leads Enrolled in Study 17 Cumulative Months of Follow-Up 445 Number of Leads Active in Study 14



|                                      |                     | vr   14 yr   16 yr   18 yr   20 yr |                     |                                                                 |                                          |                |                                          |                                | 92.2<br>+2.9/-4.6<br>at 141 mo   |                                                                 | 62.5 60.3<br>+5.6/-6.2 +6.1/-6.7 at 153 mo |                               |                                |                                |                               |                                |                               |                                                                 |                                          |                |                                                                 |  |
|--------------------------------------|---------------------|------------------------------------|---------------------|-----------------------------------------------------------------|------------------------------------------|----------------|------------------------------------------|--------------------------------|----------------------------------|-----------------------------------------------------------------|--------------------------------------------|-------------------------------|--------------------------------|--------------------------------|-------------------------------|--------------------------------|-------------------------------|-----------------------------------------------------------------|------------------------------------------|----------------|-----------------------------------------------------------------|--|
|                                      |                     | 10 yr   12 yr                      |                     |                                                                 |                                          |                |                                          | 96.7<br>+1.9/-4.1<br>at 114 mo | 92.2 92.2<br>+2.9/-4.6 +2.9      |                                                                 | 65.6 62.5<br>+5.1/-5.8 +5.6                | 86.1<br>+5.2/-7.9<br>at 99 mo | 96.3<br>+2.0/-4.1<br>at 102 mo | 88.8<br>+3.1/-4.3<br>at 111 mo |                               | 94.0<br>+2.1/-3.1<br>at 111 mo |                               |                                                                 |                                          |                |                                                                 |  |
|                                      |                     | 8 yr                               | 82.1<br>+5.5/-7.7   |                                                                 |                                          |                |                                          | 96.7                           | 94.6 +2.0/-3.1                   |                                                                 | 75.5<br>+3.9/-4.5                          | 86.1<br>+5.2/-7.9             | 96.3<br>+2.0/-4.1              | 90.8<br>+2.1/-2.6              |                               | 94.0<br>+2.1/-3.1              |                               |                                                                 |                                          |                |                                                                 |  |
|                                      |                     | 7 yr                               | 82.1<br>+5.5/-7.7   |                                                                 |                                          |                |                                          | 97.8<br>+1.2/-2.9              | 95.2                             |                                                                 | 79.5                                       | 87.7<br>+4.7/-7.1             | 96.3                           | 91.2 +2.0/-2.5                 |                               | 95.5                           | 97.0<br>+1.1/-1.8<br>at 78 mo |                                                                 |                                          |                |                                                                 |  |
|                                      |                     | 6 yr                               | 84.4 +4.9/-7.0      | Survival estimate not available due to insufficient sample size | •                                        |                |                                          | 97.8 +1.2/-2.9                 | 96.4                             | Survival estimate not available due to insufficient sample size | 87.4 +2.4/-3.1                             | 91.1                          | 96.3 +2.0/-4.1                 | 91.8 +1.9/-2.3                 | 95.9<br>+2.8/-8.1<br>at 69 mo | 95.9                           | 97.0                          | Survival estimate not available due to insufficient sample size | -                                        |                | Survival estimate not available due to insufficient sample size |  |
|                                      |                     | 5 yr                               | 91.6 +3.2/-4.9      | sufficient s                                                    |                                          |                |                                          | 97.8                           | 97.0 +1.2/-2.0                   | nsufficient s                                                   | 92.7                                       | 94.1                          | 96.3                           | 93.6                           | 95.9 +2.8/-8.1                | 97.0                           | 97.4                          | sufficient s                                                    |                                          |                | nsufficient s                                                   |  |
| oility (%)                           |                     | 4 yr                               | 95.0                | ole due to ir                                                   |                                          |                | 0                                        | 98.4 +0.9/-2.3                 | 98.6                             | ole due to ir                                                   | 96.0                                       | 98.2 +1.0/-2.6                | 97.2 +1.5/-3.6                 | 95.8                           | 97.6                          | 98.1                           | 98.1                          | ole due to ir                                                   |                                          | 93.6 +2.1/-3.1 | ole due to ir                                                   |  |
| al Probal                            | ıplant              | 3 yr                               | 3 +1.9/-3.3         | notavailak                                                      |                                          | 96.4           |                                          | 98.4 +0.9/-2.3                 | 99.2 +0.4/-1.0                   | not availak                                                     | 97.0 +1.0/-1.3                             | 98.2<br>3 +1.0/-2.6           | 97.8                           | 96.8                           | 98.9                          | 98.8 +0.6/-1.0                 | 98.5                          | not availak                                                     |                                          | 94.3           | not availak                                                     |  |
| ,<br>Device Survival Probability (%) | Years After Implant | 2 yr                               | 98.6 +0.9/-2.3      | al estimate                                                     |                                          | 96.4           |                                          | 98.4 +0.9/-2.3                 | 99.2 +0.4/-1.0                   | al estimate                                                     | 98.4 +0.6/-1.0                             | 98.7                          | 98.9                           | 98.0 +0.6/-1.1                 | 100.0                         | 99.1                           | 98.9 +0.5/-0.8                | al estimate                                                     |                                          | 96.6           | alestimate                                                      |  |
| Devie                                | Years               | 1 yr                               | 100.0               |                                                                 |                                          | 98.2 +1.0/-2.5 |                                          | , 99.4<br>+0.4/-1.8            | 99.6 +0.3/-0.8                   | 0 Surviv                                                        | 99.2                                       | 99.0                          | 98.9                           | , 98.8<br>+0.5/-0.8            | 100.0                         | 99.6                           | 99.2                          |                                                                 |                                          | 98.6 +0.7/-1.2 |                                                                 |  |
| sn<br>Months<br>Sin Study            | 1 əvita             |                                    | 28 18,283           | - 83                                                            | Wire Fractur                             | 11 6,804       | Wire Fractur                             | 8 20,997                       | 25 47,888                        | 0                                                               | 150 67,840                                 | 20 17,726                     | 7 15,650                       | 67 65,157                      | 3 7,482                       | 27 54,899                      | 23 54,528                     | 0 797                                                           | Wire Fractur                             | 30 21,439      | Wire Fractur                                                    |  |
| γpn12 ni ε                           | 6ui/                | (TilsuQ                            | 12                  | 4                                                               | – 2007 Potential Conductor Wire Fracture | 228            | – 2007 Potential Conductor Wire Fracture | 72                             | 32                               | 7                                                               | 40 1                                       | 7.                            | 57                             | 381                            | 75                            | 229                            | 597                           | 56                                                              | – 2007 Potential Conductor Wire Fracture | 576            | – 2007 Potential Conductor Wire Fracture                        |  |
| pə                                   | llo≀n∃              | l sba91                            | 407                 | 4                                                               | 2007 Potenti                             | 292            | 2007 Potenti                             | 410                            | 996                              | 2                                                               | 1,350                                      | 384                           | 351                            | 1,311                          | 188                           | 1,157                          | 1,397                         | 30                                                              | 2007 Potenti                             | 789            | 2007 Potenti                                                    |  |
| əseələ                               | ket Re              | isM 2U                             | Feb-93              | Sep-04                                                          |                                          | Sep-04         | See page 151 – 2                         | Aug-96                         | Dec-93                           | Nov-08                                                          | Dec-93                                     | Dec-93                        | Jul-97                         | Oct-97                         | Dec-00                        | Sep-97                         | Nov-01                        | Sep-04                                                          | page 151 – .                             | Sep-04         | See page 151 – 2                                                |  |
|                                      |                     | Family                             | Epicardial<br>Patch | Sprint Fidelis                                                  | Advisories: See page 151                 | Sprint Fidelis | Advisories: See                          | Sprint                         | SNC/CS                           | Sprint<br>Quattro<br>Secure                                     | Transvene                                  | Sub-Q Patch                   | Sprint                         | Sprint                         | Sprint<br>Quattro             | Sprint                         | Sprint Quattro Nov-01         | Sprint Fidelis                                                  | Advisories: See page 151                 | Sprint Fidelis | Advisories: See                                                 |  |
|                                      |                     | ləboM<br>dmuM                      | 6721,<br>6921       | 6930                                                            |                                          | 6931           |                                          | 6932                           | 6933,<br>6937,<br>6937A,<br>6963 | 6935                                                            | 6936,                                      | 6669                          | 6942                           | 6943                           | 6944                          | 6945                           | 6947                          | 6948                                                            |                                          | 6949           |                                                                 |  |

Lead Survival Summary (95% Confidence Interval)

## **US Returned Product Analysis Summary**

| Model<br>Number         | Family                | US Market<br>Release | Estimated<br>US Implants | Estimated<br>US Active | Implant<br>Damage | Electrical<br>Malfunction | Other |
|-------------------------|-----------------------|----------------------|--------------------------|------------------------|-------------------|---------------------------|-------|
| 6721, 6921              | Epicardial Patch      | Feb-93               | 8,300                    | 1,300                  | 5                 | 80                        | 0     |
| 6930                    | Sprint Fidelis        | Sep-04               | 400                      | 300                    | 0                 | 2                         | 0     |
| 6931                    | Sprint Fidelis        | Sep-04               | 8,100                    | 6,000                  | 28                | 102                       | 0     |
| 6932                    | Sprint                | Aug-96               | 15,000                   | 5,700                  | 16                | 39                        | 7     |
| 6933, 6937, 6937A, 6963 | SVC/CS                | Dec-93               | 15,700                   | 2,700                  | 31                | 200                       | 13    |
| 6935                    | Sprint Quattro Secure | Nov-08               | 590                      | 580                    | 0                 | 0                         | 0     |
| 6936, 6966              | Transvene             | Dec-93               | 23,700                   | 3,200                  | 90                | 487                       | 19    |
| 6939, 6999              | Sub-Q Patch           | Dec-93               | 3,600                    | 300                    | 4                 | 33                        | 1     |
| 6942                    | Sprint                | Jul-97               | 17,700                   | 7,400                  | 31                | 37                        | 5     |
| 6943                    | Sprint                | Oct-97               | 20,800                   | 8,800                  | 51                | 71                        | 8     |
| 6944                    | Sprint Quattro        | Dec-00               | 31,900                   | 19,200                 | 31                | 35                        | 8     |
| 6945                    | Sprint                | Sep-97               | 42,800                   | 18,100                 | 198               | 118                       | 11    |
| 6947                    | Sprint Quattro Secure | Nov-01               | 206,100                  | 151,200                | 476               | 137                       | 25    |
| 6948                    | Sprint Fidelis        | Sep-04               | 10,400                   | 7,900                  | 9                 | 17                        | 4     |
| 6949                    | Sprint Fidelis        | Sep-04               | 186,700                  | 135,900                | 461               | 1,435                     | 45    |
| 6996                    | Sub-Q Lead            | Jun-01               | 2,300                    | 1,600                  | 1                 | 3                         | 0     |

### **Reference Chart**

|                 |                          |                                              | Pin Conf    | figuration      |                       |                                                        |                   |
|-----------------|--------------------------|----------------------------------------------|-------------|-----------------|-----------------------|--------------------------------------------------------|-------------------|
| Model<br>Number | Family                   | Туре                                         | Pace/Sense  | High<br>Voltage | Lead Body<br>Diameter | Insulation,<br>Lead Body                               | Fixation, Steroid |
| 6721            | <b>Epicardial Patch</b>  | Epi Patch                                    | _           | DF-1            | S, M, L               | Silicone, Single Lumen                                 | Suture            |
| 6921            | <b>Epicardial Patch</b>  | Epi Patch                                    | _           | 6.5 mm          | S, M, L               | Silicone, Single Lumen                                 | Suture            |
| 6930            | Sprint Fidelis           | Endo RV<br>True Bipolar Sensing              | IS-1        | DF-1            | 6.6 Fr                | Silicone with<br>Polyurethane Overlay,<br>Multilumen   | Passive, Steroid  |
| 6931            | Sprint Fidelis           | Endo RV<br>True Bipolar Sensing              | IS-1        | DF-1            | 6.6 Fr                | Silicone with<br>Polyurethane Overlay,<br>Multilumen   | Active, Steroid   |
| 6932            | Sprint                   | Endo RV<br>True Bipolar Sensing              | IS-1        | DF-1            | 7.8 Fr                | Silicone, Multilumen                                   | Passive, Steroid  |
| 6933            | SVC/CS                   | Endo SVC/CS<br>Coil                          | _           | DF-1            | 7 Fr                  | Silicone, Single Lumen                                 | Passive           |
| 6934S           | Transvene                | Endo RV<br>True Bipolar Sensing              | IS-1        | DF-1            | 12 Fr                 | Silicone, Coaxial                                      | Passive, Steroid  |
| 6935            | Sprint Quattro<br>Secure | Endo RV True Bipolar<br>Sensing              | IS-1        | DF-1            | 8.2 Fr                | Silicone with<br>Polyurethane Overlay,<br>Multilumen   | Active, Steroid   |
| 6936            | Transvene                | Endo RV<br>True Bipolar Sensing              | IS-1        | DF-1            | 10 Fr                 | Polyurethane, Coaxial                                  | Active            |
| 6937            | SVC/CS                   | Endo SVC<br>Coil                             | _           | DF-1            | 5.5 Fr                | Silicone, Single Lumen                                 | Passive           |
| 6937A           | SVC/CS                   | Endo SVC<br>Coil                             | _           | DF-1            | 7.5 Fr                | Silicone with<br>Polyurethane Overlay,<br>Single Lumen | Passive           |
| 6939            | Sub-Q Patch              | SQ Patch                                     | _           | DF-1            | One Size              | Silicone, Single Lumen                                 | Suture            |
| 6942            | Sprint                   | Endo RV/SVC<br>Integrated Bipolar<br>Sensing | IS-1        | 2 DF-1          | 7.8 Fr                | Silicone, Multilumen                                   | Passive, Steroid  |
| 6943            | Sprint                   | Endo RV<br>True Bipolar Sensing              | IS-1        | DF-1            | 7.8 Fr                | Silicone, Multilumen                                   | Active, Steroid   |
| 6944            | Sprint Quattro           | Endo RV/SVC<br>True Bipolar Sensing          | IS-1        | 2 DF-1          | 8.2 Fr                | Silicone with<br>Polyurethane Overlay,<br>Multilumen   | Passive, Steroid  |
| 6945            | Sprint                   | Endo RV/SVC<br>Integrated Bipolar<br>Sensing | IS-1        | 2 DF-1          | 7.8 Fr                | Silicone, Multilumen                                   | Active, Steroid   |
| 6947            | Sprint Quattro<br>Secure | Endo RV/SVC<br>True Bipolar Sensing          | IS-1        | 2 DF-1          | 8.2 Fr                | Silicone with<br>Polyurethane Overlay,<br>Multilumen   | Active, Steroid   |
| 6948            | Sprint Fidelis           | Endo RV/SVC<br>True Bipolar Sensing          | IS-1        | 2 DF-1          | 6.6 Fr                | Silicone with<br>Polyurethane Overlay,<br>Multilumen   | Passive, Steroid  |
| 6949            | Sprint Fidelis           | Endo RV/SVC<br>True Bipolar Sensing          | IS-1        | 2 DF-1          | 6.6 Fr                | Silicone with<br>Polyurethane Overlay,<br>Multilumen   | Active, Steroid   |
| 6963            | SVC/CS                   | Endo SVC/CS<br>Coil                          | _           | 6.5 mm          | 7 Fr                  | Silicone, Single Lumen                                 | Passive           |
| 6966            | Transvene                | Endo RV<br>True Bipolar Sensing              | 3.2 mm L.P. | 6.5 mm          | 10 Fr                 | Polyurethane, Coaxial                                  | Active            |
| 6996            | Sub-Q Lead               | SQ Coil                                      | _           | DF-1            | 7.5 Fr                | Silicone, Single Lumen                                 | Passive           |
| 6999            | Sub-Q Patch              | SQ Patch                                     | _           | 6.5 mm          | One Size              | Silicone, Single Lumen                                 | Suture            |
|                 |                          |                                              |             |                 |                       |                                                        |                   |

## **Pacing Leads**

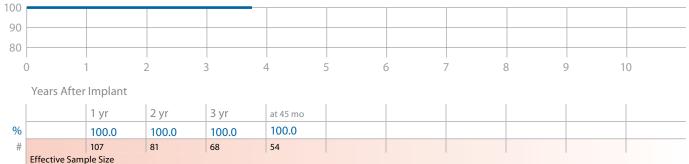
#### 3830 SelectSecure

#### **Product Characteristics**

| US Market Release                   | Aug-05 | Serial Number Prefix | LFF                           | US Returned Product Ana | alysis |
|-------------------------------------|--------|----------------------|-------------------------------|-------------------------|--------|
| Registered US Implants              | 12,200 | Type and/or Fixation | Transvenous, V or A, Screw-in | Implant Damage          | 21     |
| <b>Estimated Active US Implants</b> | 10,600 | Polarity             | Bipolar                       | Electrical Malfunction  | 5      |
| Advisories                          | None   | Steroid              | Yes                           | Other                   | 1      |

**Atrial Placement** System Longevity Study Results **Qualifying Complications** 1 Total Number of Leads Enrolled in Study 166 Failure to Sense Cumulative Months of Follow-Up 5,129 Number of Leads Active in Study 95 Lead Survival Probability (%) 100 90 80 2 3 4 5 6 8 9 10 Years After Implant 1 yr 2 yr 3 yr 4 yr 99.4 % 99.4 99.4 99.4 114 78 68 45

#### **Ventricular Placement**


System Longevity Study Results

**Effective Sample Size** 

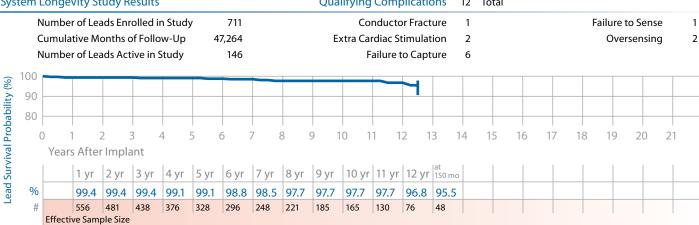
Qualifying Complications 0 Total

Number of Leads Enrolled in Study 148 Cumulative Months of Follow-Up 4,983 Number of Leads Active in Study 82





#### 4003, 4003M CapSure


#### **Product Characteristics**

| US Market Release                   | Jul-86 | Serial Number Prefix | IH or LAX                 | US Returned Product Ana | alysis |
|-------------------------------------|--------|----------------------|---------------------------|-------------------------|--------|
| Registered US Implants              | 38,000 | Type and/or Fixation | Transvenous, Vent., Tines | Implant Damage          | 24     |
| <b>Estimated Active US Implants</b> | 5,300  | Polarity             | Unipolar                  | Electrical Malfunction  | 60     |
| Advisories                          | None   | Steroid              | Yes                       | Other                   | 2      |

#### **Ventricular Placement**



#### **Qualifying Complications** 12 Total



Source: Medtronic Device Registration and Returned Product Analysis

Data as of January 31, 2009

#### 4004, 4004M CapSure

#### **Product Characteristics**

| US Market Release Feb-89        |          | Serial Number Prefix PS or LAV |                           | US Returned Product Ana | Analysis |  |
|---------------------------------|----------|--------------------------------|---------------------------|-------------------------|----------|--|
| Registered US Implants          | 72,600   | Type and/or Fixation           | Transvenous, Vent., Tines | Implant Damage          | 56       |  |
| Estimated Active US Implants    | 5,800    | Polarity                       | Bipolar                   | Electrical Malfunction  | 688      |  |
| Advisories                      | 1        | Steroid                        | Yes                       | Other                   | 19       |  |
| See page 157 – 1993 Lead Surviv | al Below |                                |                           |                         |          |  |

#### **Ventricular Placement**

Expectations

**System Longevity Study Results** 

#### Qualifying Complications 277 Total

| Number of Leads Enrolled in Study | 1,640  | Conductor Fracture        | 7   | Insulation (ESC)                 | 4  |
|-----------------------------------|--------|---------------------------|-----|----------------------------------|----|
| Cumulative Months of Follow-Up    | 71,653 | Electrical Abandonment    | 1   | Insulation (MIO)                 | 4  |
| Number of Leads Active in Study   | 4      | Extra Cardiac Stimulation | 2   | Insulation (not further defined) | 7  |
|                                   |        | Failure to Capture        | 131 | Medical Judgment                 | 1  |
|                                   |        | Failure to Sense          | 62  | Oversensing                      | 25 |
|                                   |        | Impedance Out of Range    | 32  | Unspecified Clinical Failure     | 1  |



#### **4011 Target Tip**

#### **Product Characteristics**

| US Market Release                   | Nov-82 | Serial Number Prefix | IB                        | US Returned Product Ana | alysis |
|-------------------------------------|--------|----------------------|---------------------------|-------------------------|--------|
| Registered US Implants              | 58,400 | Type and/or Fixation | Transvenous, Vent., Tines | Implant Damage          | 29     |
| <b>Estimated Active US Implants</b> | 6,200  | Polarity             | Unipolar                  | Electrical Malfunction  | 152    |
| Advisories                          | None   | Steroid              | No                        | Other                   | 5      |

#### **Ventricular Placement**

Lead Survival Probability (%)

System Longevity Study Results Qualifying Complications 25 Total

 475
 414
 353
 299
 250
 219
 189
 165
 134

| C               | Numbe<br>Lumula<br>Numbe | tive Mo | onths o              | f Follo             | w-Up |             | 851<br>1,409<br>2 |               |      | Ex          | ktra Cai | nducto<br>diac St<br>ailure t | imulat | ion  | 1<br>4<br>9 |      | Insulat | ion (no |     | er def<br>versei | ,  | 10<br>1 |
|-----------------|--------------------------|---------|----------------------|---------------------|------|-------------|-------------------|---------------|------|-------------|----------|-------------------------------|--------|------|-------------|------|---------|---------|-----|------------------|----|---------|
| 100<br>90<br>80 |                          |         |                      |                     |      |             |                   |               |      |             |          |                               |        |      |             | 1    |         |         |     |                  |    |         |
| (               | Years                    | 1       | 2 3<br>Impla<br>2 yr | 3 4<br>int<br> 3 yr | 4    | 5 (<br>5 yr | 6 yr              | 7 8<br>  7 yr | 8 yr | 9 1<br>9 yr | 0 1      | 1 1<br>1<br>11 yr             | - 1    |      | 4 1.        | 5 10 |         | 7 1     | 3 1 | 9 2              | 20 | 21      |
| %               |                          | 99.4    | 99.2                 | 99.1                | 98.8 | 97.6        | 96.4              | 96.0          | 96.0 | 96.0        | 95.0     | 93.6                          | 92.8   | 91.9 | 91.9        | 91.9 | 91.9    |         |     |                  |    |         |

109 81

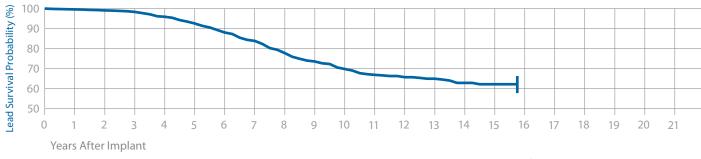
556

626

**Effective Sample Size** 

#### 4012 Target Tip

#### **Product Characteristics**


| US Market Release                             | Jul-83     | Serial Number Prefix | HQ                        | US Returned Product Analysis |
|-----------------------------------------------|------------|----------------------|---------------------------|------------------------------|
| Registered US Implants                        | 93,700     | Type and/or Fixation | Transvenous, Vent., Tines | Implant Damage 50            |
| Estimated Active US Implants                  | 6,500      | Polarity             | Bipolar                   | Electrical Malfunction 827   |
| Advisories                                    | 1          | Steroid              | No                        | Other 34                     |
| See page 158 – 1991 Lead Surv<br>Expectations | ival Below |                      |                           |                              |

#### **Ventricular Placement**

System Longevity Study Results

#### Qualifying Complications 316 Total

| Number of Leads Enrolled in Study | 2,543   | Conductor Fracture        | 6   | Insulation (ESC)                 | 9  |
|-----------------------------------|---------|---------------------------|-----|----------------------------------|----|
| Cumulative Months of Follow-Up    | 151,162 | Extra Cardiac Stimulation | 3   | Insulation (MIO)                 | 4  |
| Number of Leads Active in Study   | 10      | Failure to Capture        | 126 | Insulation (not further defined) | 16 |
|                                   |         | Failure to Sense          | 77  | Medical Judgment                 | 1  |
|                                   |         | Impedance Out of Range    | 26  | Oversensing                      | 48 |



|   |         | 1 yr   | 2 yr     | 3 yr  | 4 yr  | 5 yr  | 6 yr | 7 yr | 8 yr | 9 yr | 10 yr | 11 yr | 12 yr | 13 yr | 14 yr | 15 yr | at<br>189 mo |  |  |  |
|---|---------|--------|----------|-------|-------|-------|------|------|------|------|-------|-------|-------|-------|-------|-------|--------------|--|--|--|
| % |         | 99.6   | 99.1     | 98.4  | 95.9  | 92.6  | 88.1 | 83.9 | 77.8 | 73.6 | 69.8  | 66.9  | 65.7  | 65.0  | 62.9  | 62.2  | 62.2         |  |  |  |
| # |         | 1,935  | 1,714    | 1,528 | 1,310 | 1,084 | 888  | 698  | 522  | 400  | 307   | 243   | 200   | 144   | 98    | 69    | 51           |  |  |  |
|   | Effecti | ve Sam | ole Size |       |       |       |      |      |      |      |       |       |       |       |       |       |              |  |  |  |

#### 4023 CapSure SP

#### **Product Characteristics**

| US Market Release                   | Aug-91 | Serial Number Prefix | LAK                       | US Returned Product Analy | sis |
|-------------------------------------|--------|----------------------|---------------------------|---------------------------|-----|
| Registered US Implants              | 41,200 | Type and/or Fixation | Transvenous, Vent., Tines | Implant Damage            | 47  |
| <b>Estimated Active US Implants</b> | 9,600  | Polarity             | Unipolar                  | Electrical Malfunction    | 21  |
| Advisories                          | None   | Steroid              | Yes                       | Other                     | 6   |

#### **Ventricular Placement**

886

**Effective Sample Size** 

765

**System Longevity Study Results Qualifying Complications** 20 Total Number of Leads Enrolled in Study 1,158 Extra Cardiac Stimulation 1 Insulation (not further defined) 1 Cumulative Months of Follow-Up 65,853 Failure to Capture 15 Lead Dislodgement 2 Number of Leads Active in Study Impedance Out of Range 341 1 100 Lead Survival Probability (%) 90 80 9 10 11 12 13 15 16 Years After Implant 1 yr | 2 yr | 3 yr | 4 yr | 5 yr | 6 yr | 7 yr | 8 yr | 9 yr | 10 yr | 11 yr | 12 yr | at <sub>147 mo</sub> % 99.9 | 99.3 | 98.8 | 98.6 | 98.6 98.2 97.2 96.8 96.8 96.3 95.0 95.0 95.0

111

65

602

513

435

238

171

#### 4024 CapSure SP

#### **Product Characteristics**

| US Market Release                   | Oct-91  | Serial Number Prefix | LAJ                       | US Returned Product An | nalysis |
|-------------------------------------|---------|----------------------|---------------------------|------------------------|---------|
| Registered US Implants              | 222,100 | Type and/or Fixation | Transvenous, Vent., Tines | Implant Damage         | 264     |
| <b>Estimated Active US Implants</b> | 56,100  | Polarity             | Bipolar                   | Electrical Malfunction | 135     |
| Advisories                          | None    | Steroid              | Yes                       | Other                  | 34      |

#### **Ventricular Placement**

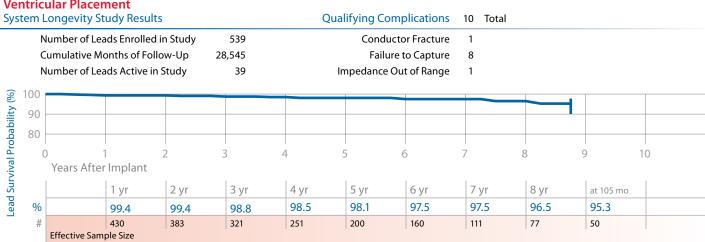
Lead Survival Probability (%)

**System Longevity Study Results** 

**Qualifying Complications** 3 Total Failure to Capture

3

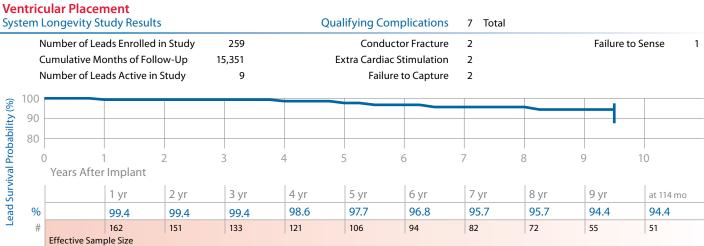
Number of Leads Enrolled in Study 1,214 Cumulative Months of Follow-Up 52,403 Number of Leads Active in Study 23




#### 4033 CapSure Z

#### **Product Characteristics**

| US Market Release            | Not US<br>released | Serial Number Prefix | LCA                       | US Returned Product Ana | lysis |
|------------------------------|--------------------|----------------------|---------------------------|-------------------------|-------|
| Registered US Implants       | NA                 | Type and/or Fixation | Transvenous, Vent., Tines | Implant Damage          | 2     |
| Estimated Active US Implants | NA                 | Polarity             | Unipolar                  | Electrical Malfunction  | 0     |
| Advisories                   | None               | Steroid              | Yes                       | Other                   | 0     |


#### **Ventricular Placement**



#### 4057, 4057M Screw-In

#### **Product Characteristics**

| US Market Release            | Aug-88                                                    | Serial Number Prefix | US Returned Product Analy     |                               |    |  |  |
|------------------------------|-----------------------------------------------------------|----------------------|-------------------------------|-------------------------------|----|--|--|
| Registered US Implants       | 10,100 Type and/or Fixation Transvenous, V or A, Screw-in |                      | Transvenous, V or A, Screw-in | Implant Damage                | 39 |  |  |
| Estimated Active US Implants | 1,800                                                     | Polarity             | Unipolar                      | <b>Electrical Malfunction</b> | 6  |  |  |
| Advisories                   | None                                                      | Steroid              | No                            | Other                         | 4  |  |  |



#### 4058, 4058M Screw-In

#### **Product Characteristics**

| US Market Release                   | Jan-89  | Serial Number Prefix | ZY or LAW                     | US Returned Product An | alysis |
|-------------------------------------|---------|----------------------|-------------------------------|------------------------|--------|
| Registered US Implants              | 101,900 | Type and/or Fixation | Transvenous, V or A, Screw-in | Implant Damage         | 388    |
| <b>Estimated Active US Implants</b> | 20,800  | Polarity             | Bipolar                       | Electrical Malfunction | 261    |
| Advisories                          | None    | Steroid              | No                            | Other                  | 23     |

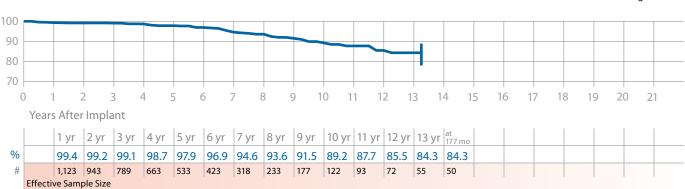
#### **Atrial Placement**

**System Longevity Study Results** 

#### Qualifying Complications 33 Total

| Number of Leads Enrolled in Study | 2,364   | Extra Cardiac Stimulation | 1  | Insulation (not further defined) | 1 |
|-----------------------------------|---------|---------------------------|----|----------------------------------|---|
| Cumulative Months of Follow-Up    | 131,441 | Failure to Capture        | 15 | Lead Dislodgement                | 3 |
| Number of Leads Active in Study   | 44      | Failure to Sense          | 7  | Oversensing                      | 1 |
|                                   |         | Impedance Out of Range    | 5  |                                  |   |

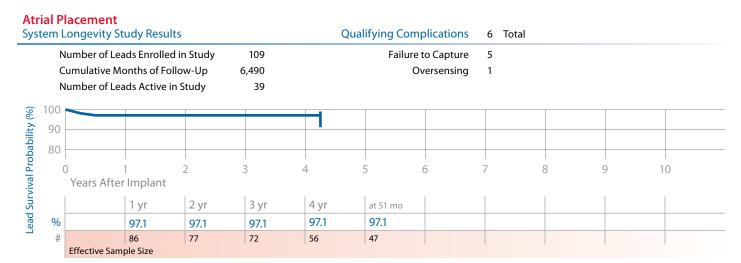



#### **Ventricular Placement**

Lead Survival Probability (%)

**System Longevity Study Results** 

#### Qualifying Complications 53 Total


| Number of Leads Enrolled in Study | 1,690  | Conductor Fracture        | 5  | Impedance Out of Range           | 7 |
|-----------------------------------|--------|---------------------------|----|----------------------------------|---|
| Cumulative Months of Follow-Up    | 77,493 | Extra Cardiac Stimulation | 3  | Insulation (not further defined) | 4 |
| Number of Leads Active in Study   | 49     | Failure to Capture        | 22 | Lead Dislodgement                | 1 |
|                                   |        | Failure to Sense          | 10 | Oversensing                      | 1 |
|                                   |        |                           |    |                                  |   |



### 4067 CapSureFix

#### **Product Characteristics**

| US Market Release            | Jan-97 | Serial Number Prefix | LCV            | <b>US Returned Product Analys</b> | is |
|------------------------------|--------|----------------------|----------------|-----------------------------------|----|
| Registered US Implants       | 1,000  | Type and/or Fixation | Implant Damage | 3                                 |    |
| Estimated Active US Implants | 300    | Polarity             | Unipolar       | <b>Electrical Malfunction</b>     | 1  |
| Advisories                   | None   | Steroid              | Yes            | Other                             | 1  |



#### 4068 CapSureFix

#### **Product Characteristics**

| US Market Release                   | Mar-96  | Serial Number Prefix | LCE                           | US Returned Product An | nalysis |
|-------------------------------------|---------|----------------------|-------------------------------|------------------------|---------|
| Registered US Implants              | 124,800 | Type and/or Fixation | Transvenous, V or A, Screw-in | Implant Damage         | 406     |
| <b>Estimated Active US Implants</b> | 43,900  | Polarity             | Bipolar                       | Electrical Malfunction | 111     |
| Advisories                          | None    | Steroid              | Yes                           | Other                  | 11      |

#### **Atrial Placement**

System Longevity Study Results

#### Qualifying Complications 60 Total

| 2 | Insulation (ESC)                 | 2  | Conductor Fracture        | 2,411   | Number of Leads Enrolled in Study |
|---|----------------------------------|----|---------------------------|---------|-----------------------------------|
| 1 | Insulation (not further defined) | 1  | Extra Cardiac Stimulation | 124,306 | Cumulative Months of Follow-Up    |
| 8 | Lead Dislodgement                | 19 | Failure to Capture        | 552     | Number of Leads Active in Study   |
| 7 | Oversensing                      | 11 | Failure to Sense          |         |                                   |
| 3 | Unspecified Clinical Failure     | 6  | Impedance Out of Range    |         |                                   |



164

90

#### **Ventricular Placement**

Lead Survival Probability (%)

System Longevity Study Results

Effective Sample Size

1,906 1,630 1,368 1,116 885

691

508

363

263

#### Qualifying Complications 38 Total

| C   | umu | lative | Month       | ns of Fo | ed in Sti<br>ollow-U<br>in Stud | Jр | 1,79<br>89,24<br>45 | 11 |   |   | Extra | a Cardia<br>Failt | ac Stim<br>ure to C | racture<br>ulation<br>apture<br>Sense | 2<br>2<br>20<br>3 |    |    |    | • |    | Ov | of Ra<br>ersen<br>cal Fai | sing |    | 5<br>4<br>2 |
|-----|-----|--------|-------------|----------|---------------------------------|----|---------------------|----|---|---|-------|-------------------|---------------------|---------------------------------------|-------------------|----|----|----|---|----|----|---------------------------|------|----|-------------|
| 100 |     |        |             |          |                                 |    |                     |    |   |   |       |                   |                     |                                       |                   |    |    |    |   |    |    |                           |      |    |             |
| 90  |     |        |             |          |                                 |    |                     |    |   |   |       | _                 |                     |                                       |                   |    |    |    |   | -  |    |                           |      |    |             |
| 80  |     | _      |             |          |                                 | _  |                     |    |   |   |       |                   |                     |                                       | -                 |    |    |    |   | -  |    |                           |      | -  |             |
| (   | 0   | 1      | 2<br>ter Im | 3        | 4                               | 5  | 6                   | 7  | 8 | 9 | 10    | 11                | 12                  | 13                                    | 14                | 15 | 16 | 1. | 7 | 18 | 19 | 2                         | 0 2  | 21 |             |

|   | Years   | s After | Impla    | ant   |      |      |      |      |      |      |       |              |  |  |  |  |  |
|---|---------|---------|----------|-------|------|------|------|------|------|------|-------|--------------|--|--|--|--|--|
|   |         | 1 yr    | 2 yr     | 3 yr  | 4 yr | 5 yr | 6 yr | 7 yr | 8 yr | 9 yr | 10 yr | at<br>129 mo |  |  |  |  |  |
| % |         | 99.3    | 98.8     | 98.8  | 98.3 | 98.0 | 97.5 | 96.4 | 96.0 | 94.2 | 94.2  | 94.2         |  |  |  |  |  |
| # |         | 1,426   | 1,213    | 1,029 | 836  | 671  | 472  | 333  | 202  | 123  | 66    | 51           |  |  |  |  |  |
|   | Effecti | ve Sam  | ole Size |       |      |      |      |      |      |      |       |              |  |  |  |  |  |

#### **4073** CapSure Sense

#### **Product Characteristics**

| US Market Release                   | Jun-02                                | Serial Number Prefix | BBF                       | US Returned Product Analysi |   |  |  |  |  |
|-------------------------------------|---------------------------------------|----------------------|---------------------------|-----------------------------|---|--|--|--|--|
| Registered US Implants              | 600 Type and/or Fixation Transvenous, |                      | Transvenous, Vent., Tines | Implant Damage              | 1 |  |  |  |  |
| <b>Estimated Active US Implants</b> | 400                                   | Polarity             | Unipolar                  | Electrical Malfunction      | 0 |  |  |  |  |
| Advisories                          | None                                  | Steroid              | Yes                       | Other                       | 0 |  |  |  |  |

#### **Atrial Placement**

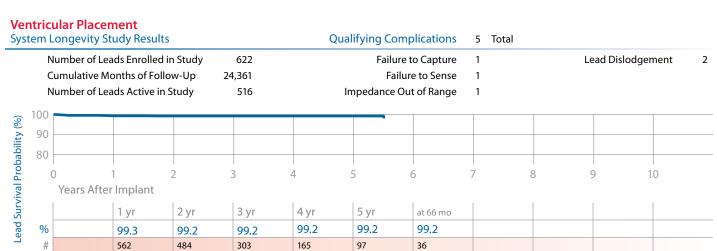
**System Longevity Study Results Qualifying Complications** 0 Total


Number of Leads Enrolled in Study 1 Cumulative Months of Follow-Up 52 Number of Leads Active in Study 1



#### **Ventricular Placement**

**System Longevity Study Results Qualifying Complications** 0 Total

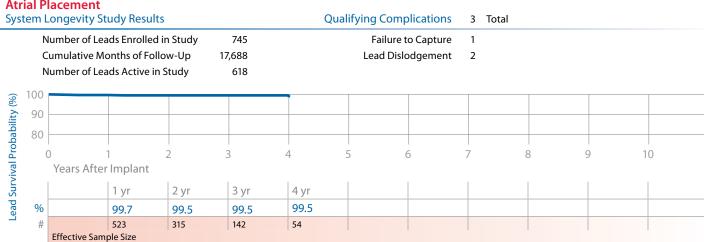

Number of Leads Enrolled in Study 100 Cumulative Months of Follow-Up 4,770 Number of Leads Active in Study 83



#### **4074** CapSure Sense

Effective Sample Size

| US Market Release            | Jun-02 | Serial Number Prefix | BBD                       | <b>US Returned Product Analysis</b> |    |  |
|------------------------------|--------|----------------------|---------------------------|-------------------------------------|----|--|
| Registered US Implants       | 63,000 | Type and/or Fixation | Transvenous, Vent., Tines | Implant Damage                      | 13 |  |
| Estimated Active US Implants | 45,200 | Polarity             | Bipolar                   | <b>Electrical Malfunction</b>       | 8  |  |
| Advisories                   | None   | Steroid              | Yes                       | Other                               | 1  |  |




#### **4076** CapSureFix Novus

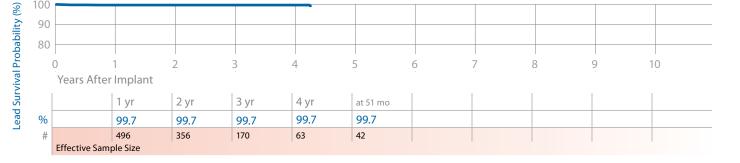
#### **Product Characteristics**

| US Market Release                   | arket Release Feb-04 |                      | BBL                           | US Returned Product Analysis |    |  |
|-------------------------------------|----------------------|----------------------|-------------------------------|------------------------------|----|--|
| Registered US Implants              | 199,200              | Type and/or Fixation | Transvenous, V or A, Screw-in | Implant Damage               | 96 |  |
| <b>Estimated Active US Implants</b> | 165,500              | Polarity             | Bipolar                       | Electrical Malfunction       | 13 |  |
| Advisories                          | None                 | Steroid              | Yes                           | Other                        | 8  |  |

#### **Atrial Placement**



#### **Ventricular Placement**


100

90

**System Longevity Study Results** 

**Qualifying Complications** 2 Total Failure to Capture

Number of Leads Enrolled in Study 668 Cumulative Months of Follow-Up 17,812 Number of Leads Active in Study 555



#### 4081 Target Tip

#### **Product Characteristics**

| US Market Release                   | : Release Jul-89 |                      | erial Number Prefix LAC   |                        | sis |
|-------------------------------------|------------------|----------------------|---------------------------|------------------------|-----|
| Registered US Implants              | 3,900            | Type and/or Fixation | Transvenous, Vent., Tines | Implant Damage         | 4   |
| <b>Estimated Active US Implants</b> | 800              | Polarity             | Unipolar                  | Electrical Malfunction | 5   |
| Advisories                          | None             | Steroid              | No                        | Other                  | 0   |

**Ventricular Placement System Longevity Study Results Qualifying Complications** 3 Total Number of Leads Enrolled in Study 260 **Conductor Fracture** 1 Cumulative Months of Follow-Up 9,940 Failure to Sense 2 Number of Leads Active in Study 9 100 Lead Survival Probability (%) 90 80 3 4 5 6 8 9 10 Years After Implant 2 yr 3 yr 4 yr 5 yr 1 yr at 63 mo % 100.0 100.0 100.0 100.0 100.0 98.2

55

47

#### 4092 CapSure SP Novus

191

**Effective Sample Size** 

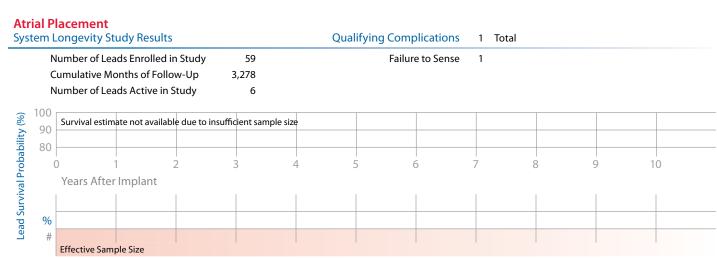
156

116

#### **Product Characteristics**

81

| US Market Release            | Sep-98                                                         | Serial Number Prefix LEP |                           | US Returned Product Anal |    |  |
|------------------------------|----------------------------------------------------------------|--------------------------|---------------------------|--------------------------|----|--|
| Registered US Implants       | d US Implants 151,000 Type and/or Fixation Transvenous, Vent., |                          | Transvenous, Vent., Tines | Implant Damage           | 39 |  |
| Estimated Active US Implants | 83,100                                                         | Polarity                 | Bipolar                   | Electrical Malfunction   | 19 |  |
| Advisories                   | None                                                           | Steroid                  | Yes                       | Other                    | 5  |  |


#### **Ventricular Placement**

System Longevity Study Results **Qualifying Complications** 17 Total Number of Leads Enrolled in Study 1,145 **Conductor Fracture** 3 Impedance Out of Range 1 Cumulative Months of Follow-Up Lead Dislodgement 55,839 Extra Cardiac Stimulation 1 4 Number of Leads Active in Study 512 8 Failure to Capture 100 Lead Survival Probability (%) 90 80 3 5 6 8 9 4 10 Years After Implant 5 yr 7 yr 1 yr 2 yr 3 yr 4 yr 6 yr at 90 mo 98.0 98.0 % 98.9 98.8 98.7 98.4 98.0 98.0 925 826 732 618 450 283 134 61 Effective Sample Size

#### 4503, 4503M CapSure

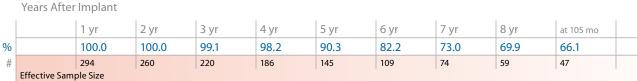
#### **Product Characteristics**

| US Market Release                   | Narket Release Jul-86 |                      | Serial Number Prefix MQ, LAY |                        | alysis |
|-------------------------------------|-----------------------|----------------------|------------------------------|------------------------|--------|
| Registered US Implants              | 8,000                 | Type and/or Fixation | Transvenous, Atrial-J, Tines | Implant Damage         | 2      |
| <b>Estimated Active US Implants</b> | 1,500                 | Polarity             | Unipolar                     | Electrical Malfunction | 12     |
| Advisories                          | None                  | Steroid              | Yes                          | Other                  | 0      |



#### 4504, 4504M CapSure

#### **Product Characteristics**


| US Market Release                   | ket Release Mar-90             |                      | QM or LBA                    | US Returned Product An | <b>US Returned Product Analysis</b> |  |  |
|-------------------------------------|--------------------------------|----------------------|------------------------------|------------------------|-------------------------------------|--|--|
| Registered US Implants 15,400       |                                | Type and/or Fixation | Transvenous, Atrial-J, Tines | Implant Damage         | 5                                   |  |  |
| <b>Estimated Active US Implants</b> | mated Active US Implants 1,700 |                      | Bipolar                      | Electrical Malfunction | 172                                 |  |  |
| Advisories                          | 1                              | Steroid              | Yes                          | Other                  | 4                                   |  |  |
| See page 156 – 1996 Lead Surviv     | al Below                       |                      |                              |                        |                                     |  |  |

#### **Atrial Placement**

System Longevity Study Results **Qualifying Complications** 48 Total

|            |                                 |   | ads Enrolled in S | , | 368 Electrical Abandonment 19,879 Extra Cardiac Stimulation |   |                  | Ir              | Impedance Out of Range<br>Insulation (MIO)<br>Lead Dislodgement |   |   |             |   |
|------------|---------------------------------|---|-------------------|---|-------------------------------------------------------------|---|------------------|-----------------|-----------------------------------------------------------------|---|---|-------------|---|
|            | Number of Leads Active in Study |   | udy               | 1 |                                                             | F | ailure to Captur | re 14           |                                                                 |   |   |             |   |
|            |                                 |   |                   |   |                                                             |   |                  | Failure to Sens | se 16                                                           |   | ( | Oversensing | 3 |
| (%)        | 100                             |   |                   |   |                                                             |   |                  |                 |                                                                 |   |   |             |   |
| _          | 90                              |   |                   |   |                                                             |   |                  |                 |                                                                 |   |   |             |   |
| robability | 80                              |   |                   |   |                                                             |   |                  |                 |                                                                 |   |   |             |   |
| <u> </u>   | 70                              |   |                   |   |                                                             |   |                  |                 |                                                                 |   |   |             |   |
| rviva      | 60                              |   |                   |   |                                                             |   |                  |                 |                                                                 |   |   |             |   |
| ad Sur     | 50                              |   |                   |   |                                                             |   |                  |                 |                                                                 |   |   |             |   |
| Lea        | (                               | ) | 1 2               |   | 3                                                           | 4 | 5                | 6               | 7                                                               | 8 | 9 | 10          |   |





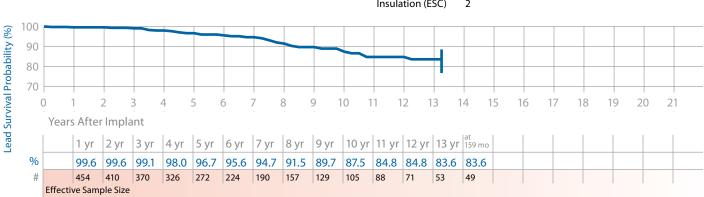
#### 4512 Target Tip

#### **Product Characteristics**

| US Market Release Jul-83     |        | Serial Number Prefix | PF                           | <b>US Returned Product Analysis</b> |    |  |
|------------------------------|--------|----------------------|------------------------------|-------------------------------------|----|--|
| Registered US Implants       | 10,300 | Type and/or Fixation | Transvenous, Atrial-J, Tines | Implant Damage                      | 4  |  |
| Estimated Active US Implants | 1,200  | Polarity             | Bipolar                      | Electrical Malfunction              | 85 |  |
| Advisories                   | None   | Steroid              | No                           | Other                               | 8  |  |

#### **Atrial Placement**

Custom Langavity Ctudy Docults

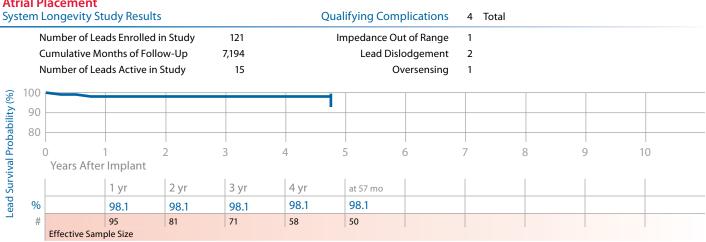

|   | System Longevity Study Results    |        | Qualifying Complications | 35 | iotai                            |   |
|---|-----------------------------------|--------|--------------------------|----|----------------------------------|---|
| Ī | Number of Leads Enrolled in Study | 600    | Electrical Abandonment   | 1  | Insulation (MIO)                 | 4 |
|   | Cumulative Months of Follow-Up    | 39,833 | Failure to Capture       | 6  | Insulation (not further defined) | 2 |
|   | Number of Leads Active in Study   | 4      | Failure to Sense         | 14 | Lead Dislodgement                | 1 |

Insulation (ESC)

Oversensing

Impedance Out of Range

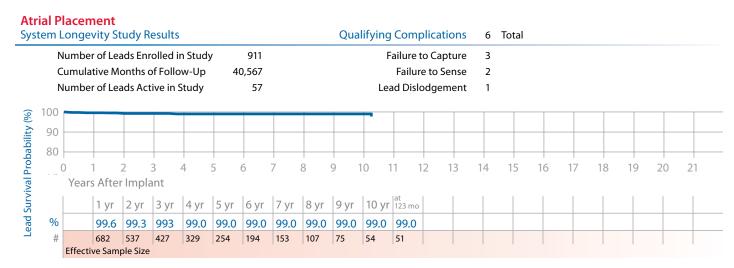
Qualifying Complications 25 Tatal




#### 4523 CapSure SP

#### **Product Characteristics**

| US Market Release Aug |                                     | Aug-91 | Serial Number Prefix | ZE                           | US Returned Product Analy | sis |
|-----------------------|-------------------------------------|--------|----------------------|------------------------------|---------------------------|-----|
|                       | Registered US Implants              | 11,200 | Type and/or Fixation | Transvenous, Atrial-J, Tines | Implant Damage            | 5   |
|                       | <b>Estimated Active US Implants</b> | 3,200  | Polarity             | Unipolar                     | Electrical Malfunction    | 2   |
|                       | Advisories                          | None   | Steroid              | Yes                          | Other                     | 1   |


#### **Atrial Placement**



#### 4524 CapSure SP

#### **Product Characteristics**

| US Market Release                   | Oct-91                   | Serial Number Prefix | LAR                          | US Returned Product Analysis |    |  |  |
|-------------------------------------|--------------------------|----------------------|------------------------------|------------------------------|----|--|--|
| Registered US Implants              | ints 101,700 Type and/oi |                      | Transvenous, Atrial-J, Tines | Implant Damage               | 47 |  |  |
| <b>Estimated Active US Implants</b> | 32,300                   | Polarity             | Bipolar                      | Electrical Malfunction       | 31 |  |  |
| Advisories                          | None                     | Steroid              | Yes                          | Other                        | 8  |  |  |



#### 4533 CapSure Z

#### **Product Characteristics**

|                               | US Market Release                       |               |          | Not US Serial Number Prefix released |                    | Prefix LCI   | В                |           |   | US Return  | ed Product Ana | alysis |
|-------------------------------|-----------------------------------------|---------------|----------|--------------------------------------|--------------------|--------------|------------------|-----------|---|------------|----------------|--------|
|                               | Registered US                           | Implants      |          | NA -                                 | Type and/or Fix    | kation Tra   | nsvenous, Atrial | -J, Tines |   | lmp        | lant Damage    | 0      |
|                               | Estimated Active US Implants Advisories |               | nts      | NA I                                 | Polarity           | Un           | ipolar           |           |   | Electrical | Malfunction    | 0      |
|                               |                                         |               | N        | one !                                | Steroid            | Yes          | 5                |           |   | Other      |                | 0      |
|                               | I Placement<br>m Longevity St           | udy Result    | 5        |                                      |                    | Qualifying C | omplications     | 4 Total   |   |            |                |        |
|                               | Number of Lea                           | ads Enrolled  | in Study | 206                                  |                    | Fail         | ure to Capture   | 1         |   |            | Oversensing    | 1      |
|                               | Cumulative M                            | onths of Foll | ow-Up    | 11,286                               | Failure to Sense 1 |              |                  |           |   |            |                |        |
|                               | Number of Lea                           | ads Active in | Study    | 16                                   | Lead Dislodger     |              |                  | 1         |   |            |                |        |
| <b>©</b> 10                   | 00                                      |               |          |                                      |                    |              |                  |           |   |            |                |        |
| ty (9                         | 90                                      |               |          |                                      |                    |              | <u> </u>         |           |   |            |                |        |
| abilli                        | 30                                      |               |          |                                      |                    |              |                  |           |   |            |                |        |
| rob                           | 0                                       | 1             | 2        | 3                                    | 4                  | 5            | 6                | 7         | 8 | 9          | 10             |        |
| Lead Survival Probability (%) | Years After                             | r Implant     | 2        | 5                                    | 4                  | 5            | 0                | /         | 0 | 9          | 10             |        |
| Sun                           |                                         | 1 yr          | 2 yr     | 3 yr                                 | 4 yr               | 5 yr         | 6 yr             | at 78 mo  |   |            |                |        |
| ead                           | %                                       | 100.0         | 99.4     | 98.8                                 | 97.9               | 97.9         | 97.9             | 97.9      |   |            |                |        |
| _                             | #                                       | 176           | 158      | 132                                  | 101                | 77           | 60               | 51        |   |            | İ              |        |

Effective Sample Size

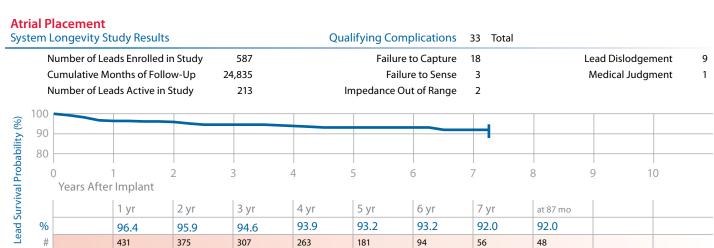
#### 4557, 4557M Screw-In

#### **Product Characteristics**

| US Market Release            | Aug-88 | Serial Number Prefix | VQ or LAM                       | US Returned Product An | alysis |
|------------------------------|--------|----------------------|---------------------------------|------------------------|--------|
| Registered US Implants       | 19,700 | Type and/or Fixation | Transvenous, Atrial-J, Screw-in | Implant Damage         | 53     |
| Estimated Active US Implants | 4,400  | Polarity             | Unipolar                        | Electrical Malfunction | 14     |
| Advisories                   | None   | Steroid              | No                              | Other                  | 4      |

|                           | А   | dvisor        | ies      |          |          |         | Non  | e S    | steroid |      |      |         | No           |       |         |    |       |    |    |    |      | Other   |    | 4 |
|---------------------------|-----|---------------|----------|----------|----------|---------|------|--------|---------|------|------|---------|--------------|-------|---------|----|-------|----|----|----|------|---------|----|---|
|                           |     | lacen<br>onge |          | udy R    | esults   |         |      |        |         |      | Qua  | lifying | g Com        | plica | ations  | 6  | Total |    |    |    |      |         |    |   |
|                           | Ν   | lumbe         | r of Lea | ads Enr  | olled i  | n Study | /    | 294    |         |      | E    | xtra Ca | rdiac S      | Stimu | ılation | 1  |       |    |    |    | Over | sensing | j  | 1 |
|                           | C   | umula         | tive M   | onths c  | of Follo | w-Up    | 18   | 3,465  |         |      |      | ı       | Failure      | to Ca | apture  | 3  |       |    |    |    |      |         |    |   |
|                           | Ν   | lumbe         | r of Lea | ads Act  | ive in S | Study   |      | 10     |         |      |      |         | Failu        | re to | Sense   | 1  |       |    |    |    |      |         |    |   |
| (%)                       | 100 |               |          |          |          |         |      |        |         |      |      |         |              |       |         |    |       |    |    |    |      |         |    |   |
|                           | 90  |               |          |          |          |         |      |        |         |      |      |         |              |       |         |    |       |    |    |    |      |         |    |   |
| abil                      | 80  |               |          |          |          |         |      |        |         |      |      |         |              |       |         |    |       |    |    |    |      |         |    |   |
| Prob                      | (   | )             | 1        | 2        | 3        | 4       | 5    | 1<br>6 | 1<br>7  | 8    | 9    | 10      | 11           | 12    | 13      | 14 | 15    | 16 | 17 | 18 | 19   | 20      | 21 |   |
| ival                      |     | Years         | s Aftei  | r Impla  | ant      |         |      |        |         |      |      |         |              |       |         |    |       |    |    |    |      |         |    |   |
| -ead Survival Probability |     |               | 1 yr     | 2 yr     | 3 yr     | 4 yr    | 5 yr | 6 yr   | 7 vr    | 8 yr | 9 yr | 10 vr   | at<br>126 mo |       |         |    |       |    |    |    |      |         |    |   |
| ead                       | %   |               | 99.1     | 99.1     | 99.1     | 97.8    | 97.8 | 97.8   | 96.9    | 96.9 | 96.9 |         |              |       |         |    |       |    |    |    |      |         | _  |   |
| _                         | #   |               | 197      | 179      | 163      | 142     | 125  | 112    | 101     | 86   | 65   | 56      | 49           |       |         |    |       |    |    |    |      |         |    |   |
|                           |     | Effecti       |          | ple Size | 1        | _       | -    | _      | 1       | 1    | 1    | 1       | 1 -          |       | '       |    | '     |    |    | 1  | 1    |         | 1  |   |

#### 4558M Screw-In


| US Market Release            | Nov-94 | Serial Number Prefix | LDC                             | US Returned Product Ana       | alysis |
|------------------------------|--------|----------------------|---------------------------------|-------------------------------|--------|
| Registered US Implants       | 20,000 | Type and/or Fixation | Transvenous, Atrial-J, Screw-in | Implant Damage                | 111    |
| Estimated Active US Implants | 5,400  | Polarity             | Bipolar                         | <b>Electrical Malfunction</b> | 12     |
| Advisories                   | None   | Steroid              | No                              | Other                         | 1      |

| em l | ongevity St   | udy Result    | S        |        | Q    | ualifying Co | mplications    | 11 Total |            |                      |     |
|------|---------------|---------------|----------|--------|------|--------------|----------------|----------|------------|----------------------|-----|
| ١    | Number of Lea | ds Enrolled   | in Study | 539    |      | Electrical A | bandonment     | 1        | Imp        | edance Out of Rar    | nge |
| C    | Cumulative M  | onths of Foll | ow-Up    | 22,441 |      | Failu        | ire to Capture | 3        | Insulation | n (not further defin | ed) |
| ١    | Number of Lea | ds Active in  | Study    | 25     |      | Fa           | ilure to Sense | 2        |            | Oversens             | ing |
| 100  |               |               |          |        |      |              |                |          |            |                      |     |
| 90   |               |               |          |        |      |              |                |          |            | 1                    |     |
| 80   |               |               |          |        |      |              |                |          |            |                      |     |
|      | 0             | 1             | 2        | 3      | 4    | 5            | 6              | 7        | 8          | 9 10                 |     |
|      | Years After   | Implant       |          |        |      |              |                |          |            |                      |     |
|      |               | 1 yr          | 2 yr     | 3 yr   | 4 yr | 5 yr         | 6 yr           | 7 yr     | 8 yr       | 9 yr                 |     |
| %    |               | 99.3          | 99.3     | 99.3   | 99.3 | 99.3         | 97.6           | 96.5     | 96.5       | 91.6                 |     |
| #    |               | 353           | 296      | 249    | 191  | 139          | 96             | 83       | 64         | 49                   |     |

#### 4568 CapSureFix

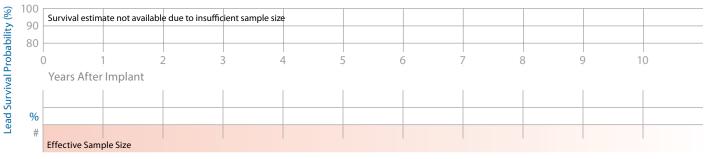
#### **Product Characteristics**

| US Market Release                   | Jan-97 | Serial Number Prefix | LDD                             | US Returned Product An | alysis |
|-------------------------------------|--------|----------------------|---------------------------------|------------------------|--------|
| Registered US Implants              | 69,700 | Type and/or Fixation | Transvenous, Atrial-J, Screw-in | Implant Damage         | 198    |
| <b>Estimated Active US Implants</b> | 31,700 | Polarity             | Bipolar                         | Electrical Malfunction | 18     |
| Advisories                          | None   | Steroid              | Yes                             | Other                  | 4      |



#### **4574** CapSure Sense

**Effective Sample Size** 


#### **Product Characteristics**

| US Market Release            | Jun-02 | Serial Number Prefix | BBE                          | US Returned Product Analysis |
|------------------------------|--------|----------------------|------------------------------|------------------------------|
| Registered US Implants       | 39,900 | Type and/or Fixation | Transvenous, Atrial-J, Tines | Implant Damage 7             |
| Estimated Active US Implants | 30,300 | Polarity             | Bipolar                      | Electrical Malfunction 2     |
| Advisories                   | None   | Steroid              | Yes                          | Other 0                      |

#### **Atrial Placement**

System Longevity Study Results Qualifying Complications 0 Total

Number of Leads Enrolled in Study 18 Cumulative Months of Follow-Up 325 Number of Leads Active in Study 16



#### **4592** CapSure SP Novus

#### **Product Characteristics**

| US Market Release                   | Oct-98 | Serial Number Prefix | LER                          | US Returned Product Ana       | alysis |
|-------------------------------------|--------|----------------------|------------------------------|-------------------------------|--------|
| Registered US Implants              | 74,400 | Type and/or Fixation | Transvenous, Atrial-J, Tines | Implant Damage                | 13     |
| <b>Estimated Active US Implants</b> | 43,500 | Polarity             | Bipolar                      | <b>Electrical Malfunction</b> | 5      |
| Advisories                          | None   | Steroid              | Yes                          | Other                         | 0      |

| N        | lumber of Leads Enrolle  | d in Study | 244    |      | Failu  | re to Capture  | 2    |   |   |    |
|----------|--------------------------|------------|--------|------|--------|----------------|------|---|---|----|
|          | Cumulative Months of Fo  | •          | 11,373 |      |        | ilure to Sense | 1    |   |   |    |
|          | lumber of Leads Active i | •          | 84     |      | Lead [ | Dislodgement   | 2    |   |   |    |
| 00<br>90 |                          |            |        |      |        |                | 1    |   |   |    |
| 30       |                          |            |        |      |        |                |      |   |   |    |
| (        | Years After Implant      | 2          | 3      | 4    | 5      | 6              | 7    | 8 | 9 | 10 |
|          |                          | 12         | 3 yr   | 4 yr | 5 yr   | 6 yr           | 7 yr |   |   |    |
|          | 1 yr                     | 2 yr       | J y    |      |        |                |      |   |   |    |
| %        | 97.8                     | 97.8       | 97.8   | 97.8 | 97.0   | 97.0           | 97.0 |   |   |    |

#### 5023, 5023M CapSure SP

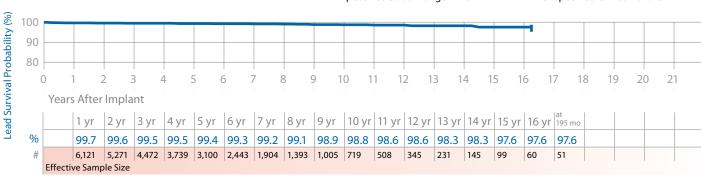
#### **Product Characteristics**

| US Market Release                   | Nov-88 | Serial Number Prefix | SX or LAS                 | US Returned Product Ana | alysis |
|-------------------------------------|--------|----------------------|---------------------------|-------------------------|--------|
| Registered US Implants              | 9,900  | Type and/or Fixation | Transvenous, Vent., Tines | Implant Damage          | 15     |
| <b>Estimated Active US Implants</b> | 2,300  | Polarity             | Unipolar                  | Electrical Malfunction  | 7      |
| Advisories                          | None   | Steroid              | Yes                       | Other                   | 0      |

**Ventricular Placement System Longevity Study Results Qualifying Complications** 15 Total Number of Leads Enrolled in Study 1,353 **Conductor Fracture** 2 Impedance Out of Range Cumulative Months of Follow-Up 70,587 Extra Cardiac Stimulation 4 Number of Leads Active in Study 470 Failure to Capture 8 Lead Survival Probability (%) 100 90 9 12 13 14 16 17 10 11 15 18 Years After Implant 1 yr | 2 yr | 3 yr | 4 yr | 5 yr | 6 yr | 7 yr | 8 yr | 9 yr | 10 yr | 123 mo % 99.7 | 99.6 | 99.5 99.4 99.0 97.3 97.3 96.8 96.8 96.8 99.4 1,053 915 289 114 58 **Effective Sample Size** 

#### 5024, 5024M CapSure SP

#### **Product Characteristics**


| US Market Release                   | Mar-90  | Serial Number Prefix | SY or LAT                 | US Returned Product Ar | nalysis |
|-------------------------------------|---------|----------------------|---------------------------|------------------------|---------|
| Registered US Implants              | 201,500 | Type and/or Fixation | Transvenous, Vent., Tines | Implant Damage         | 723     |
| <b>Estimated Active US Implants</b> | 56,200  | Polarity             | Bipolar                   | Electrical Malfunction | 115     |
| Advisories                          | None    | Steroid              | Yes                       | Other                  | 29      |

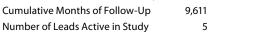
#### **Ventricular Placement**

**System Longevity Study Results** 

#### Qualifying Complications 48 Total

| 1 | Insulation (ESC)                 | 3  | Conductor Fracture        | 8,140   | Number of Leads Enrolled in Study |
|---|----------------------------------|----|---------------------------|---------|-----------------------------------|
| 5 | Insulation (not further defined) | 2  | Extra Cardiac Stimulation | 431,840 | Cumulative Months of Follow-Up    |
| 5 | Lead Dislodgement                | 25 | Failure to Capture        | 594     | Number of Leads Active in Study   |
| 1 | Oversensing                      | 2  | Failure to Sense          |         |                                   |
| 1 | Unspecified Clinical Failure     | 3  | Impedance Out of Range    |         |                                   |




#### 5026 CapSure

#### **Product Characteristics**

| US Market Release                   | Feb-88 | Serial Number Prefix | RZ                        | US Returned Product Ana | ılysis |
|-------------------------------------|--------|----------------------|---------------------------|-------------------------|--------|
| Registered US Implants              | 7,400  | Type and/or Fixation | Transvenous, Vent., Tines | Implant Damage          | 60     |
| <b>Estimated Active US Implants</b> | 1,100  | Polarity             | Bipolar                   | Electrical Malfunction  | 7      |
| Advisories                          | None   | Steroid              | Yes                       | Other                   | 1      |

#### **Ventricular Placement**

System Longevity Study ResultsQualifying Complications4 TotalNumber of Leads Enrolled in Study168Electrical Abandonment1Cumulative Months of Follow-Up9,611Failure to Capture3





#### 5033 CapSure Z

#### **Product Characteristics**

| US Market Release                   | Feb-96 | Serial Number Prefix | LDK                       | US Returned Product Anal | lysis |
|-------------------------------------|--------|----------------------|---------------------------|--------------------------|-------|
| Registered US Implants              | 2,400  | Type and/or Fixation | Transvenous, Vent., Tines | Implant Damage           | 6     |
| <b>Estimated Active US Implants</b> | 700    | Polarity             | Unipolar                  | Electrical Malfunction   | 1     |
| Advisories                          | None   | Steroid              | Yes                       | Other                    | 3     |

#### **Ventricular Placement**

Lead Survival Probability (%)

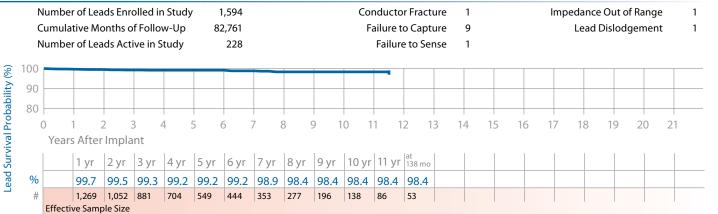
System Longevity Study Results

#### Qualifying Complications 26 Total

| (   | Cumu | ılative | Month  | Enrolle<br>ns of Fo<br>Active i | llow-L | Jp | 1,89<br>96,19<br>26 | 5 |   |   |    | Cond | ac Perfo<br>uctor Fr<br>ure to Ca | acture | 7  |    | Ins |    | edance<br>(not fu<br>Lead | ırther o |    | l) | 4<br>1<br>2 |
|-----|------|---------|--------|---------------------------------|--------|----|---------------------|---|---|---|----|------|-----------------------------------|--------|----|----|-----|----|---------------------------|----------|----|----|-------------|
| 100 |      |         |        |                                 |        |    |                     |   |   |   |    |      |                                   |        |    |    |     |    |                           |          |    |    |             |
| 90  |      |         |        |                                 |        |    |                     |   |   |   |    |      |                                   |        |    |    |     |    |                           |          |    |    |             |
| 90  |      |         |        |                                 |        |    |                     |   |   |   |    |      |                                   |        |    |    |     |    |                           |          |    |    |             |
| 80  |      |         |        |                                 |        |    |                     |   |   |   |    |      |                                   |        |    |    |     |    |                           |          |    |    |             |
|     | 0    | 1       | 2      | 3                               | 4      | 5  | 6                   | 7 | 8 | 9 | 10 | 11   | 12                                | 13     | 14 | 15 | 16  | 17 | 18                        | 19       | 20 | 21 |             |
|     | Yea  | ars Aft | ter lm | plant                           |        |    |                     |   |   |   |    |      |                                   |        |    |    |     |    |                           |          |    |    |             |
|     | 1    |         |        |                                 |        | 1  |                     |   |   |   | 1  |      | lat                               | 1      |    |    |     | 1  | 1                         |          |    |    |             |

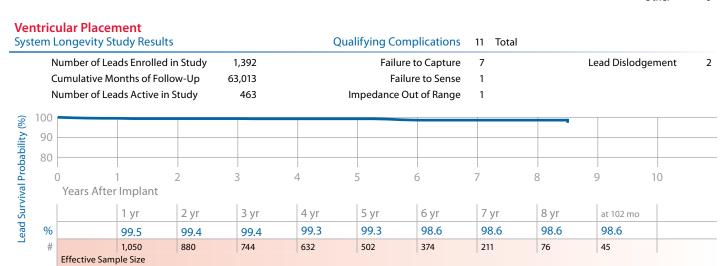
|   | 0       | 1 4     |          | ,    |      | ,    | ,    | ,    |      | , ,  | 0 1   |       | _            | ) ! | <br>) ! | 0 1 | / | <br>17 | 20 | 21 |  |
|---|---------|---------|----------|------|------|------|------|------|------|------|-------|-------|--------------|-----|---------|-----|---|--------|----|----|--|
|   | Years   | After   | Impla    | int  |      |      |      |      |      |      |       |       |              |     |         |     |   |        |    |    |  |
|   |         | 1 yr    | 2 yr     | 3 yr | 4 yr | 5 yr | 6 yr | 7 yr | 8 yr | 9 yr | 10 yr | 11 yr | at<br>141 mo |     |         |     |   |        |    |    |  |
| % |         | 99.7    | 99.6     | 99.1 | 99.0 | 98.7 | 98.3 | 97.7 | 97.2 | 96.4 | 96.4  | 95.7  | 95.7         |     |         |     |   |        |    |    |  |
| # |         | 1,410   | 1,138    | 938  | 784  | 650  | 545  | 468  | 384  | 289  | 207   | 121   | 53           |     |         |     |   |        |    |    |  |
|   | Effecti | ve Samp | ole Size |      |      |      |      |      |      |      |       |       |              |     |         |     |   |        |    |    |  |

#### 5034 CapSure Z


#### **Product Characteristics**

| US Market Release                   | Feb-96 | Serial Number Prefix | LDF                       | US Returned Product Ana | alysis |
|-------------------------------------|--------|----------------------|---------------------------|-------------------------|--------|
| Registered US Implants              | 56,300 | Type and/or Fixation | Transvenous, Vent., Tines | Implant Damage          | 85     |
| <b>Estimated Active US Implants</b> | 17,000 | Polarity             | Bipolar                   | Electrical Malfunction  | 31     |
| Advisories                          | None   | Steroid              | Yes                       | Other                   | 11     |

#### **Ventricular Placement**


System Longevity Study Results

#### Qualifying Complications 13 Total



#### **5054** CapSure Z Novus

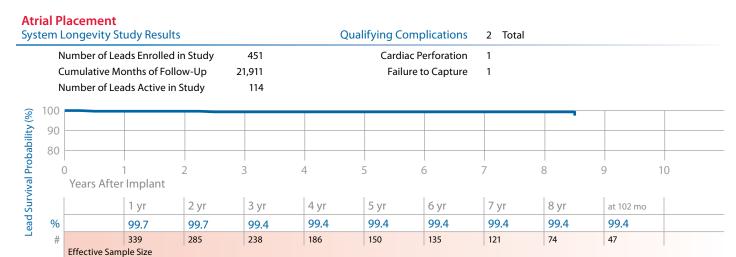
| US Market Release                   | Jun-98 | Serial Number Prefix | LEH                       | US Returned Product Ana       | lysis |
|-------------------------------------|--------|----------------------|---------------------------|-------------------------------|-------|
| Registered US Implants              | 85,400 | Type and/or Fixation | Transvenous, Vent., Tines | Implant Damage                | 43    |
| <b>Estimated Active US Implants</b> | 44,900 | Polarity             | Bipolar                   | <b>Electrical Malfunction</b> | 16    |
| Advisories                          | None   | Steroid              | Yes                       | Other                         | 6     |



#### 5068 CapSureFix

#### **Product Characteristics**

| US Market Release                   | Jan-97  | Serial Number Prefix | LDJ                           | US Returned Product An | alysis |
|-------------------------------------|---------|----------------------|-------------------------------|------------------------|--------|
| Registered US Implants              | 103,100 | Type and/or Fixation | Transvenous, V or A, Screw-in | Implant Damage         | 455    |
| <b>Estimated Active US Implants</b> | 40,600  | Polarity             | Bipolar                       | Electrical Malfunction | 75     |
| Advisories                          | None    | Steroid              | Yes                           | Other                  | 15     |


|    | ongevity Study Resu    |             |        |      | , , ,     | mplications   |      |      |      |          |
|----|------------------------|-------------|--------|------|-----------|---------------|------|------|------|----------|
| Νι | umber of Leads Enrolle | ed in Study | 968    |      | Failu     | re to Capture | 2    |      | Over | rsensing |
| Cι | ımulative Months of F  | ollow-Up    | 32,929 |      | Impedance | Out of Range  | 2    |      |      |          |
| Nι | umber of Leads Active  | in Study    | 65     |      | Lead [    | Dislodgement  | 1    |      |      |          |
| 00 |                        |             |        |      |           |               |      |      |      | _        |
| 90 |                        |             |        |      |           |               |      |      |      |          |
| 80 |                        |             |        |      |           |               |      |      |      |          |
| 0  | 1                      | 2           | 3      | 4    | 5         | 6             | 7    | 8    | 9    | 10       |
|    | Years After Implant    |             |        |      |           |               |      |      |      |          |
|    |                        | 2 yr        | 3 yr   | 4 yr | 5 yr      | 6 yr          | 7 yr | 8 yr | 9 yr | 10 yr    |
| L  | 1 yr                   | 2 y i       |        |      |           |               |      |      |      |          |
| %  | 1 yr<br>99.6           | 99.6        | 99.6   | 99.2 | 99.2      | 99.2          | 99.2 | 98.4 | 98.4 | 98.4     |

#### **Ventricular Placement**

**System Longevity Study Results Qualifying Complications** 6 Total Number of Leads Enrolled in Study 1,359 Conductor Fracture 1 Lead Dislodgement 1 Cumulative Months of Follow-Up 37,307 Failure to Capture 3 Number of Leads Active in Study 119 Insulation (not further defined) 100 Lead Survival Probability (%) 90 80 3 4 5 8 9 10 Years After Implant 2 yr 3 yr 4 yr 5 yr 6 yr 7 yr 8 yr 1 yr at 105 mo % 99.1 99.1 99.1 98.4 98.4 98.4 99.8 99.6 99.4 496 357 265 225 187 130 86 46 Effective Sample Size

#### 5072 SureFix

| US Market Release                   | Jun-98 | Serial Number Prefix | LEM                           | US Returned Product Ana | alysis |
|-------------------------------------|--------|----------------------|-------------------------------|-------------------------|--------|
| Registered US Implants              | 8,900  | Type and/or Fixation | Transvenous, V or A, Screw-in | Implant Damage          | 28     |
| <b>Estimated Active US Implants</b> | 4,500  | Polarity             | Bipolar                       | Electrical Malfunction  | 5      |
| Advisories                          | None   | Steroid              | Yes                           | Other                   | 1      |

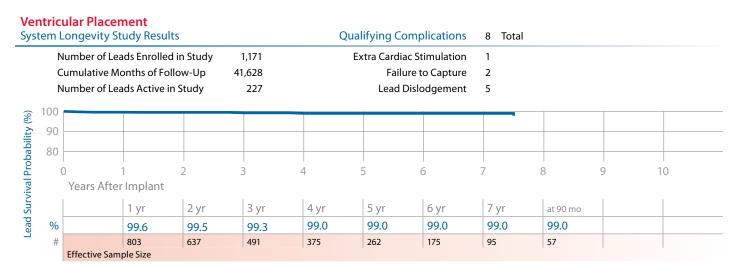


#### **5076** CapSureFix Novus

#### **Product Characteristics**

| US Market Release            | Aug-00    | Serial Number Prefix | PJN                           | US Returned Product An | nalysis |
|------------------------------|-----------|----------------------|-------------------------------|------------------------|---------|
| Registered US Implants       | 1,025,600 | Type and/or Fixation | Transvenous, V or A, Screw-in | Implant Damage         | 949     |
| Estimated Active US Implants | 723,800   | Polarity             | Bipolar                       | Electrical Malfunction | 276     |
| Advisories                   | None      | Steroid              | Yes                           | Other                  | 84      |

|                                            | Advisories                                      |                   |       | None                      | Steroid |      | Yes                   |                                                                      |                  |                | Other                                                                    | 84               |
|--------------------------------------------|-------------------------------------------------|-------------------|-------|---------------------------|---------|------|-----------------------|----------------------------------------------------------------------|------------------|----------------|--------------------------------------------------------------------------|------------------|
|                                            | Placement<br>Longevity St                       | udy Results       |       |                           |         | Qua  | alifying Co           | mplications                                                          | 16 Total         |                |                                                                          |                  |
|                                            | Number of Lea<br>Cumulative Mo<br>Number of Lea | onths of Follov   | w-Up  | 2,678<br>104,689<br>1,207 |         | Ī    | Condu<br>Extra Cardia | ac Perforation<br>actor Fracture<br>ac Stimulation<br>are to Capture | 1<br>1<br>2<br>4 | Insulation (no | nce Out of Range<br>t further defined)<br>ad Dislodgement<br>Oversensing | 2<br>1<br>4<br>1 |
| (%) 900 900 900 900 900 900 900 900 900 90 |                                                 |                   |       |                           |         |      |                       |                                                                      |                  |                |                                                                          |                  |
| Lead Survival Probability (%)              | 0                                               | 1 2               | 2     | 3                         | 4       |      | 5                     | 6                                                                    | 7                | 8 9            | ) 10                                                                     |                  |
| urviva                                     | Years After                                     | Implant<br>1 yr   | 2 yr  | 3 yı                      | r   4   | · yr | 5 yr                  | 6 yr                                                                 | 7 yr             | at 90 mo       |                                                                          |                  |
| ead S                                      | 5                                               | 99.7              | 99.6  | 99.                       |         | 9.2  | 99.2                  | 99.0                                                                 | 99.0             | 99.0           |                                                                          |                  |
| <u> </u>                                   | Effective Sam                                   | 1,965<br>ple Size | 1,683 | 1,37                      | 4 1     | ,020 | 628                   | 425                                                                  | 147              | 55             |                                                                          |                  |


#### **Ventricular Placement**

| N   | lumber of Lea | ds Enrolled in  | Study | 1,521  |      | Cardia | ac Perforation | 1    |          | Failure to Sense    |  |
|-----|---------------|-----------------|-------|--------|------|--------|----------------|------|----------|---------------------|--|
|     |               | onths of Follow | ,     | 55,080 |      | Condu  | uctor Fracture | 1    | Impe     | edance Out of Range |  |
| N   | lumber of Lea | ds Active in S  | tudy  | 556    |      | Failu  | ire to Capture | 3    | ·        | Lead Dislodgement   |  |
| 100 |               |                 |       |        |      |        |                | _    |          |                     |  |
| 90  |               |                 |       |        |      |        |                |      |          |                     |  |
| 80  |               |                 |       |        |      |        |                |      |          |                     |  |
| (   | 0             | 1 2             | 2     | 3      | 4    | 5      | 6              | 7    | 8        | 9 10                |  |
|     | Years After   | Implant         |       |        |      |        |                |      |          |                     |  |
|     |               | 1 yr            | 2 yr  | 3 yr   | 4 yr | 5 yr   | 6 yr           | 7 yr | at 87 mo |                     |  |
| %   |               | 99.6            | 99.4  | 99.3   | 99.1 | 99.1   | 99.1           | 99.1 | 99.1     |                     |  |
| #   |               | 1,036           | 849   | 693    | 556  | 351    | 231            | 74   | 44       |                     |  |

#### **5092** CapSure SP Novus

#### **Product Characteristics**

| US Market Release                   | Jun-98  | Serial Number Prefix | LET                       | US Returned Product Ana | alysis |
|-------------------------------------|---------|----------------------|---------------------------|-------------------------|--------|
| Registered US Implants              | 111,800 | Type and/or Fixation | Transvenous, Vent., Tines | Implant Damage          | 48     |
| <b>Estimated Active US Implants</b> | 61,600  | Polarity             | Bipolar                   | Electrical Malfunction  | 28     |
| Advisories                          | None    | Steroid              | Yes                       | Other                   | 11     |



#### 5524, 5524M CapSure SP

#### **Product Characteristics**

| US Market Release            | Mar-90 | Serial Number Prefix | XV or LAV                    | US Returned Product Analysis |
|------------------------------|--------|----------------------|------------------------------|------------------------------|
| Registered US Implants       | 60,600 | Type and/or Fixation | Transvenous, Atrial-J, Tines | Implant Damage 67            |
| Estimated Active US Implants | 21,000 | Polarity             | Bipolar                      | Electrical Malfunction 25    |
| Advisories                   | None   | Steroid              | Yes                          | Other 7                      |

#### **Atrial Placement**

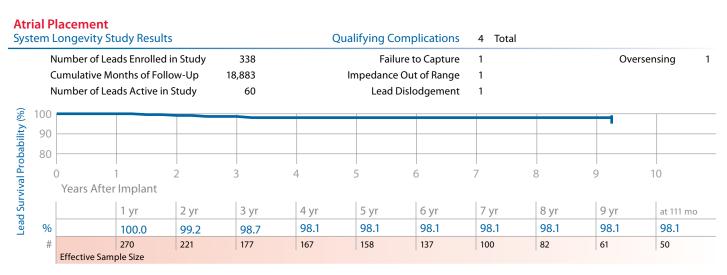
Lead Survival Probability (%)

System Longevity Study Results Qualifying Complications 38 Total

| Number of Leads Enrolled in Study | 4,445   | Conductor Fracture     | 1  | Insulation (not further defined) | 2 |
|-----------------------------------|---------|------------------------|----|----------------------------------|---|
| Cumulative Months of Follow-Up    | 241,326 | Failure to Capture     | 22 | Lead Dislodgement                | 4 |
| Number of Leads Active in Study   | 482     | Failure to Sense       | 4  | Oversensing                      | 4 |
|                                   |         | Impedance Out of Range | 1  |                                  |   |
|                                   |         |                        |    |                                  |   |



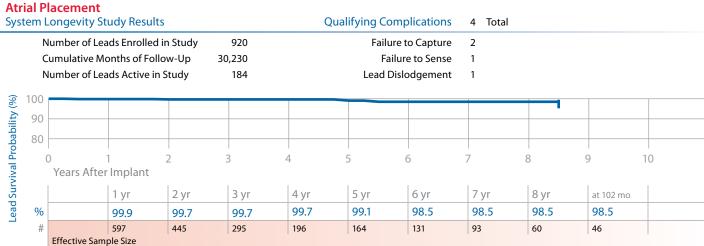
#### 5534 CapSure Z


#### **Product Characteristics**

| US Market Release            | Feb-96 | Serial Number Prefix | LDG                          | US Returned Product Ana | alysis |
|------------------------------|--------|----------------------|------------------------------|-------------------------|--------|
| Registered US Implants       | 26,300 | Type and/or Fixation | Transvenous, Atrial-J, Tines | Implant Damage          | 29     |
| Estimated Active US Implants | 9,300  | Polarity             | Bipolar                      | Electrical Malfunction  | 8      |
| Advisories                   | None   | Steroid              | Yes                          | Other                   | 5      |

| em L | ongevity Study R         | esults         |             |      | Qualifying Co | omplications   | 6 Total         |   |   |    |
|------|--------------------------|----------------|-------------|------|---------------|----------------|-----------------|---|---|----|
| N    | lumber of Leads Enr      | olled in Study | 261         |      | Faile         | ure to Capture | 5               |   |   |    |
| C    | Cumulative Months of     | of Follow-Up   | 12,779      |      | Impedance     | Out of Range   | 1               |   |   |    |
| Ν    | lumber of Leads Act      | ive in Study   | 23          |      |               |                |                 |   |   |    |
| 00   |                          |                |             |      |               |                |                 |   |   |    |
|      |                          |                |             |      |               |                |                 |   |   |    |
| 90   |                          |                |             |      |               |                |                 |   |   |    |
|      |                          |                |             |      |               | 1              |                 |   |   |    |
| 90   | 0 1                      | 2              | 3           | 4    | 5             | 6              | 7               | 8 | 9 | 10 |
| 80   | 0 1<br>Years After Impla | _              | 3           | 4    | 5             | 6              | 7               | 8 | 9 | 10 |
| 80   |                          | _              | 3<br>  3 yr |      | 5<br>5 yr     | 6<br>6 yr      | 7 at 78 mo      | 8 | 9 | 10 |
|      | Years After Impla        | ant            |             | 4 yr |               |                | 7 at 78 mo 97.1 | 8 | 9 | 10 |

#### **5554** CapSure Z Novus

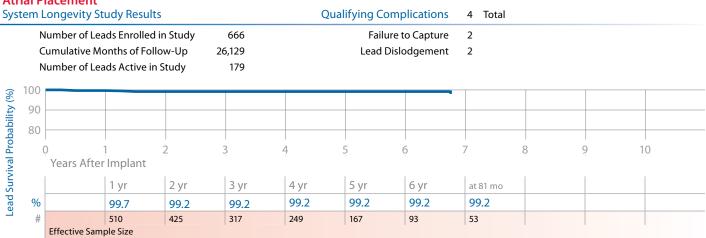

| US Market Release                   | Jun-98 | Serial Number Prefix | LEJ                          | US Returned Product Ana | lysis |
|-------------------------------------|--------|----------------------|------------------------------|-------------------------|-------|
| Registered US Implants              | 54,800 | Type and/or Fixation | Transvenous, Atrial-J, Tines | Implant Damage          | 8     |
| <b>Estimated Active US Implants</b> | 31,500 | Polarity             | Bipolar                      | Electrical Malfunction  | 12    |
| Advisories                          | None   | Steroid              | Yes                          | Other                   | 4     |



#### 5568 CapSureFix

#### **Product Characteristics**

| US Market Release            | Jan-97 | Serial Number Prefix | LDN                             | US Returned Product An        | alysis |
|------------------------------|--------|----------------------|---------------------------------|-------------------------------|--------|
| Registered US Implants       | 70,400 | Type and/or Fixation | Transvenous, Atrial-J, Screw-in | Implant Damage                | 264    |
| Estimated Active US Implants | 45,000 | Polarity             | Bipolar                         | <b>Electrical Malfunction</b> | 15     |
| Advisories                   | None   | Steroid              | Yes                             | Other                         | 12     |




#### **5592** CapSure SP Novus

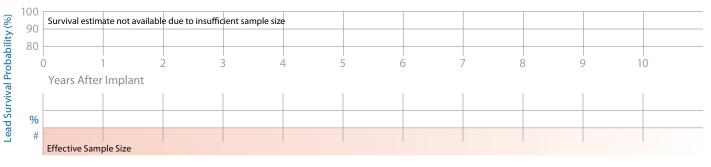
#### **Product Characteristics**

| US Market Release            | Jun-98 | Serial Number Prefix | LEU                          | US Returned Product Ana | alysis |
|------------------------------|--------|----------------------|------------------------------|-------------------------|--------|
| Registered US Implants       | 27,800 | Type and/or Fixation | Transvenous, Atrial-J, Tines | Implant Damage          | 6      |
| Estimated Active US Implants | 18,100 | Polarity             | Bipolar                      | Electrical Malfunction  | 3      |
| Advisories                   | None   | Steroid              | Yes                          | Other                   | 0      |

#### **Atrial Placement**



#### **5594** CapSure SP Novus


#### **Product Characteristics**

| US Market Release                   | Jun-01 | Serial Number Prefix | LFD                          | US Returned Product Analy | /sis |
|-------------------------------------|--------|----------------------|------------------------------|---------------------------|------|
| Registered US Implants              | 10,900 | Type and/or Fixation | Transvenous, Atrial-J, Tines | Implant Damage            | 0    |
| <b>Estimated Active US Implants</b> | 8,100  | Polarity             | Bipolar                      | Electrical Malfunction    | 4    |
| Advisories                          | None   | Steroid              | Yes                          | Other                     | 0    |

#### **Atrial Placement**

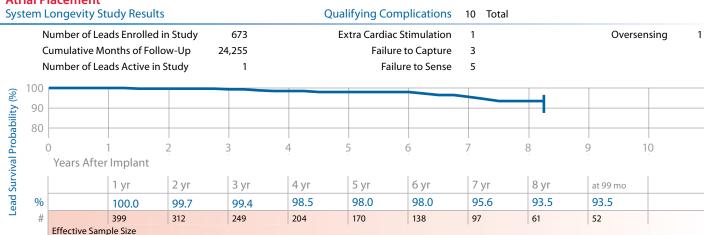
System Longevity Study Results **Qualifying Complications** 0 Total

Number of Leads Enrolled in Study 18 Cumulative Months of Follow-Up 1,068 Number of Leads Active in Study 12



#### 6940 CapSureFix

| US Market Release                   | Oct-98 | Serial Number Prefix | TCP                           | US Returned Product An | alysis |
|-------------------------------------|--------|----------------------|-------------------------------|------------------------|--------|
| Registered US Implants              | 25,500 | Type and/or Fixation | Transvenous, A or V, Screw-in | Implant Damage         | 114    |
| <b>Estimated Active US Implants</b> | 10,100 | Polarity             | Bipolar                       | Electrical Malfunction | 21     |
| Advisories                          | None   | Steroid              | Yes                           | Other                  | 3      |


| tem l | <b>Placement</b><br>Longevity St | udy Result                                                        | ts      |               | Q                                      | ualifying Co | mplications  | 7 Total |      |             |           |   |
|-------|----------------------------------|-------------------------------------------------------------------|---------|---------------|----------------------------------------|--------------|--------------|---------|------|-------------|-----------|---|
|       |                                  | umber of Leads Enrolled in Study<br>umulative Months of Follow-Up |         | 818<br>38,362 | Conductor Fracture<br>Failure to Sense |              | 1<br>2       |         | Ove  | Oversensing |           |   |
| 1     | Number of Lea                    | ads Active in                                                     | n Study | 151           |                                        | Lead [       | Dislodgement | 1       |      |             |           |   |
| 100   |                                  |                                                                   |         |               |                                        |              |              |         |      | _           |           |   |
| 90    |                                  |                                                                   |         |               |                                        |              |              |         |      |             |           | _ |
| 80    |                                  |                                                                   |         |               |                                        |              |              |         |      |             |           |   |
|       | 0                                | 1                                                                 | 2       | 3             | 4                                      | 5            | 6            | 7       | 8    | 9           | 10        |   |
|       | Years Afte                       | Implant                                                           |         |               |                                        |              |              |         |      |             |           |   |
|       |                                  | 1 yr                                                              | 2 yr    | 3 yr          | 4 yr                                   | 5 yr         | 6 yr         | 7 yr    | 8 yr | 9 yr        | at 111 mg | 0 |
| %     |                                  | 99.9                                                              | 99.9    | 98.8          | 98.5                                   | 98.5         | 98.5         | 98.5    | 98.5 | 98.5        | 98.5      |   |
| #     |                                  | 598                                                               | 500     | 400           | 330                                    | 276          | 225          | 195     | 158  | 61          | 48        |   |

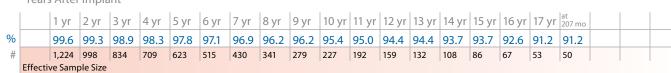
#### 6957 Spectraflex

#### **Product Characteristics**

| US Market Release            | Jul-79 | Serial Number Prefix | VC                            | US Returned Product Ana | alysis |
|------------------------------|--------|----------------------|-------------------------------|-------------------------|--------|
| Registered US Implants       | 29,100 | Type and/or Fixation | Transvenous, V or A, Screw-in | Implant Damage          | 85     |
| Estimated Active US Implants | 2,000  | Polarity             | Unipolar                      | Electrical Malfunction  | 39     |
| Advisories                   | None   | Steroid              | No                            | Other                   | 25     |

#### **Atrial Placement**




#### **Ventricular Placement**

**System Longevity Study Results** 

#### **Qualifying Complications** 42 Total

| Number of Leads Enrolled in Study | 1,853  | Conductor Fracture        | 14 | Impedance Out of Range           | 1 |
|-----------------------------------|--------|---------------------------|----|----------------------------------|---|
| Cumulative Months of Follow-Up    | 96,335 | Extra Cardiac Stimulation | 2  | Insulation (not further defined) | 1 |
| Number of Leads Active in Study   | 17     | Failure to Capture        | 18 | Oversensing                      | 4 |
| ,                                 |        | Failure to Sense          | 2  | 3                                |   |

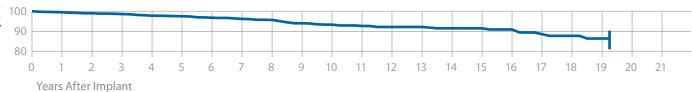




#### **6957J Spectraflex**

#### **Product Characteristics**

| US Market Release                   | Sep-80 | Serial Number Prefix | GG                              | US Returned Product Ana | alysis |
|-------------------------------------|--------|----------------------|---------------------------------|-------------------------|--------|
| Registered US Implants              | 30,000 | Type and/or Fixation | Transvenous, Atrial-J, Screw-in | Implant Damage          | 74     |
| <b>Estimated Active US Implants</b> | 2,100  | Polarity             | Unipolar                        | Electrical Malfunction  | 30     |
| Advisories                          | None   | Steroid              | No                              | Other                   | 30     |


#### **Atrial Placement**

**System Longevity Study Results** 

#### **Qualifying Complications** 88 Total

| Number of Leads Enrolled in Study | 2,348   | Conductor Fracture           | 13  | Insulation (ESC)                 | 1 |
|-----------------------------------|---------|------------------------------|-----|----------------------------------|---|
| Cumulative Months of Follow-Up    | 160,477 | Extra Cardiac Stimulation    | 3   | Insulation (not further defined) | 3 |
| Number of Leads Active in Study   | 22      | Failure to Capture           | 48  | Lead Dislodgement                | 2 |
|                                   |         | Failure to Sense             | 14  | Oversensing                      | 3 |
|                                   |         | land a dam an Out of Dam and | - 1 |                                  |   |

Impedance Out of Range

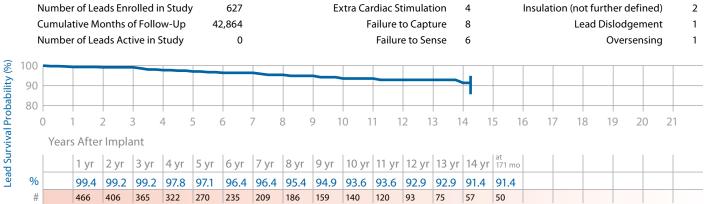


|   |         | 1 yr    | 2 yr     | 3 yr  | 4 yr  | 5 yr  | 6 yr | 7 yr | 8 yr | 9 yr | 10 yr | 11 yr | 12 yr | 13 yr | 14 yr | 15 yr | 16 yr | 17 yr | 18 yr | 19 yr | at<br>231 mo |  |
|---|---------|---------|----------|-------|-------|-------|------|------|------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------------|--|
| % |         | 99.5    | 99.0     | 98.6  | 97.8  | 97.5  | 96.8 | 96.2 | 95.7 | 94.0 | 93.3  | 92.7  | 92.2  | 92.2  | 91.5  | 91.5  | 90.9  | 88.6  | 87.7  | 86.4  | 86.4         |  |
| # |         | 1,775   | 1,556    | 1,359 | 1,204 | 1,075 | 914  | 765  | 651  | 553  | 464   | 393   | 320   | 257   | 207   | 160   | 125   | 99    | 70    | 54    | 49           |  |
|   | Effecti | ve Samı | ole Size |       |       |       |      |      |      |      |       |       |       |       |       |       |       |       |       |       |              |  |

#### **6961 Tenax**

Lead Survival Probability (%)

#### **Product Characteristics**


| US Market Release                   | Jan-78 | Serial Number Prefix | ТВ                        | US Returned Product Analysis |
|-------------------------------------|--------|----------------------|---------------------------|------------------------------|
| Registered US Implants              | 44,700 | Type and/or Fixation | Transvenous, Vent., Tines | Implant Damage 103           |
| <b>Estimated Active US Implants</b> | 2,100  | Polarity             | Unipolar                  | Electrical Malfunction 27    |
| Advisories                          | None   | Steroid              | No                        | Other 0                      |

#### **Ventricular Placement**

**System Longevity Study Results** 

**Effective Sample Size** 

#### **Qualifying Complications** 22 Total



#### **6962 Tenax**

#### **Product Characteristics**

|            | US Market Release            | Jan-78 | Serial Number Prefix | UB                        | US Returned Product An | alysis |
|------------|------------------------------|--------|----------------------|---------------------------|------------------------|--------|
|            | Registered US Implants       | 70,600 | Type and/or Fixation | Transvenous, Vent., Tines | Implant Damage         | 170    |
|            | Estimated Active US Implants | 3,200  | Polarity             | Bipolar                   | Electrical Malfunction | 84     |
| Advisories |                              | None   | Steroid              | No                        | Other                  | 0      |

#### **Ventricular Placement**

**System Longevity Study Results** 

#### Qualifying Complications 52 Total

| Number of Leads Enrolled in Study | 1,483   | Conductor Fracture        | 5  | Impedance Out of Range           | 3 |
|-----------------------------------|---------|---------------------------|----|----------------------------------|---|
| Cumulative Months of Follow-Up    | 109,942 | Extra Cardiac Stimulation | 1  | Insulation (not further defined) | 2 |
| Number of Leads Active in Study   | 2       | Failure to Capture        | 27 | Lead Dislodgement                | 1 |
|                                   |         | Failure to Sense          | 10 | Oversensing                      | 3 |
|                                   |         |                           |    |                                  |   |



|   |         | 1 yr    | 2 yr     | 3 yr | 4 yr | 5 yr | 6 yr | 7 yr | 8 yr | 9 yr | 10 yr | 11 yr | 12 yr | 13 yr | 14 yr | 15 yr | 16 yr | 17 yr | 18 yr | 19 yr | 20 yr |  |
|---|---------|---------|----------|------|------|------|------|------|------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--|
| % |         | 99.0    | 98.2     | 97.4 | 96.9 | 96.7 | 96.5 | 96.4 | 96.2 | 96.0 | 95.3  | 95.0  | 94.6  | 93.5  | 93.5  | 93.5  | 92.1  | 91.3  | 90.4  | 90.4  | 90.4  |  |
| # |         | 1,082   | 968      | 857  | 757  | 676  | 611  | 559  | 489  | 420  | 364   | 306   | 260   | 213   | 177   | 147   | 122   | 103   | 83    | 65    | 51    |  |
|   | Effecti | ve Samı | ple Size |      |      |      |      |      |      |      |       |       |       |       |       |       |       |       |       |       |       |  |

20 yr

18 yr

16 yr

|                                 |                     | _            |                   |                   |                                |                                                             | 01 + 10           | Q + 10                                                          |                                |                                |                                |                                | 01 + 10           |                                |                               |                                |                                |
|---------------------------------|---------------------|--------------|-------------------|-------------------|--------------------------------|-------------------------------------------------------------|-------------------|-----------------------------------------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|-------------------|--------------------------------|-------------------------------|--------------------------------|--------------------------------|
|                                 |                     | 14 yr        |                   |                   | 95.5<br>+2.4/-4.9<br>at 150 mo |                                                             | 91.9<br>+3.1/-4.7 | 62.9<br>+4.0/-4.2                                               | 95.0<br>+2.3/-4.2<br>at 147 mo |                                |                                |                                | 95.0<br>+2.1/-3.4 | 84.3<br>+4.6/-6.4<br>at 159 mo |                               |                                |                                |
|                                 |                     | 12 yr        |                   |                   | 96.8<br>+1.7/-3.3              | 50.6<br>+5.0/-5.2<br>at 129 mo                              | 92.8<br>+2.7/-4.2 | 65.7<br>+3.5/-3.7                                               | 95.0<br>+2.3/-4.2              | 98.3<br>+1.4/-7.5<br>at 126 mo |                                |                                | 96.1<br>+1.4/-2.1 | 85.5<br>+4.2/-5.9              |                               | 92.1<br>+3.0/-4.5<br>at 138 mo | 94.2<br>+2.1/-3.2<br>at 129 mo |
|                                 |                     | 10 yr        |                   |                   | 97.7<br>+1.1/-2.4              | 51.5<br>+4.8/-5.0                                           | 95.0<br>+1.9/-3.0 | 69.8<br>+3.1/-3.4                                               | 96.3<br>+1.5/-2.5              | 99.8<br>+0.1/-0.7              | 95.3<br>+2.5/-5.2<br>at 105 mo | 94.4<br>+3.1/-6.8<br>at 114 mo | 96.1<br>+1.4/-2.1 | 89.2<br>+3.1/-4.1              |                               | 94.8<br>+1.5/-2.1              | 94.2<br>+2.1/-3.2              |
|                                 |                     | 8 yr         |                   |                   | 97.7<br>+1.1/-2.4              | 58.1<br>+4.2/-4.5                                           | 96.0<br>+1.6/-2.4 | 77.8<br>+2.5/-2.7                                               | 96.8<br>+1.3/-1.9              | 99.8<br>+0.1/-0.7              | 96.5<br>+1.9/-3.8              | 95.7<br>+2.5/-5.9              | 97.5<br>+0.8/-1.3 | 93.6<br>+1.9/-2.6              |                               | 96.0<br>+1.1/-1.4              | 96.0                           |
|                                 |                     | 7 yr         |                   |                   | 98.5<br>+0.8/-1.8              | 64.1<br>+3.7/-4.1                                           | 96.0<br>+1.6/-2.4 | 83.9<br>+2.0/-2.2                                               | 97.2<br>+1.1/-1.9              | 99.8<br>+0.1/-0.7              | 97.5<br>+1.3/-2.7              | 95.7<br>+2.5/-5.9              | 98.2<br>+0.6/-1.0 | 94.6<br>+1.7/-2.3              |                               | 97.1<br>+0.8/-1.1              | 96.4                           |
|                                 |                     | 6 yr         |                   |                   | 98.8<br>+0.7/-1.5              | 69.4<br>+3.4/-3.7                                           | 96.4<br>+1.4/-2.3 | 88.1<br>+1.7/-1.9                                               | 98.2<br>+0.8/-1.3              | 99.8<br>+0.1/-0.7              | 97.5<br>+1.3/-2.7              | 96.8<br>+2.0/-5.3              | 98.3<br>+0.6/-0.9 | 96.9                           |                               | 97.2<br>+0.8/-1.0              | 97.5<br>+0.8/-1.2              |
|                                 |                     | 5 yr         |                   |                   | 99.1<br>+0.5/-1.2              | 77.1<br>+2.9/-3.2                                           | 97.6<br>+1.1/-1.8 | 92.6<br>+1.2/-1.5                                               | 98.6<br>+0.6/-1.1              | 99.8                           | 98.1<br>+1.0/-2.2              | 97.7<br>+1.6/-4.7              | 98.7<br>+0.5/-0.7 | 97.9<br>+0.8/-1.2              | 97.1<br>+1.9/-5.9<br>at 51 mo | 97.6<br>+0.6/-0.9              | 98.0                           |
| ity (%)                         |                     | 4 yr         | 99.4<br>+0.5/-3.8 | 100.0<br>at 45 mo | 99.1                           | 87.4<br>+2.1/-2.4                                           | 98.8<br>+0.7/-1.2 | 95.9<br>+0.8/-1.1                                               | 98.6<br>+0.6/-1.1              | 99.8<br>+0.1/-0.7              | 98.5<br>+0.8/-1.9              | 98.6<br>+1.1/-4.1              | 99.1<br>+0.4/-0.6 | 98.7<br>+0.5/-1.0              | 97.1<br>+1.9/-5.9             | 98.1<br>+0.5/-0.8              | 98.3                           |
| Device Survival Probability (%) | ant                 | 3 yr         | 99.4<br>+0.5/-3.8 | 100.0             | 99.4<br>+0.4/-1.1              | 96.3<br>+1.0/-1.4                                           | 99.1<br>+0.5/-1.2 | 98.4<br>+0.5/-0.7                                               | 98.8<br>+0.5/-1.1              | 99.8<br>+0.1/-0.7              | 98.8<br>+0.7/-1.7              | 99.4<br>+0.5/-3.5              | 99.5<br>+0.2/-0.5 | 99.1<br>+0.4/-0.8              | 97.1<br>+1.9/-5.9             | 98.3<br>+0.5/-0.7              | 98.8<br>+0.4/-0.7              |
| Survival                        | Years After Implant | 2 yr         | 99.4<br>+0.5/-3.8 | 100.0             | 99.4<br>+0.4/-1.1              | 99.3<br>+0.4/-0.7                                           | 99.2<br>+0.5/-1.0 | 99.1<br>+0.4/-0.5                                               | 99.3<br>+0.4/-0.9              | 99.8<br>+0.1/-0.7              | 99.4<br>+0.4/-1.4              | 99.4<br>+0.5/-3.5              | 99.6<br>+0.2/-0.4 | 99.2<br>+0.4/-0.7              | 97.1<br>+1.9/-5.9             | 98.8<br>+0.4/-0.6              | 98.8<br>+0.4/-0.7              |
| Device                          | Years A             | 1 yr         | 99.4<br>+0.5/-3.8 | 100.0             | 99.4<br>+0.4/-1.1              | 99.8<br>+0.1/-0.5                                           | 99.4<br>+0.4/-1.0 | 99.6<br>+0.2/-0.3                                               | 99.9<br>+0.1/-0.6              | 99.9<br>+0.1/-0.5              | 99.4<br>+0.4/-1.4              | 99.4<br>+0.5/-3.5              | 99.9<br>+0.1/-0.4 | 99.4<br>+0.3/-0.7              | 97.1<br>+1.9/-5.9             | 99.0<br>+0.4/-0.5              | 99.3                           |
| Months<br>in Study              |                     |              | 5,129             | 4,983             | 47,264                         | 540 4 277 71,653<br>Survival Below Expectations             | 54,409            | 543 10 316 151,162<br>Survival Below Expectations               | 65,853                         | 52,403                         | 28,545                         | 15,351                         | 131,441           | 77,493                         | 6,490                         | 124,306                        | 89,241                         |
| su                              | ifying<br>olicatio  |              | -                 | 0                 | 12                             | 277<br>w Expe                                               | 25                | 316<br>w Expe                                                   | 20                             | ж                              | 10                             | 7                              | 33                | 53                             | 9                             | 28                             | 37                             |
| γbu32 ni s                      | vitoA s             | греэд        | 95                | 82                | 146                            | 4<br>val Belo                                               | 7                 | 10<br>val Belo                                                  | 341                            | 23                             | 39                             | 6                              | 44                | 49                             | 39                            | 552                            | 457                            |
| pə                              | s Enrol             | греэд        | 166               | 148               | 711                            |                                                             | 851               |                                                                 | 1,158                          | 1,214                          | 539                            | 259                            | 2,364             | 1,690                          | 109                           | 2,411                          | 1,799                          |
| əseələ                          | arket R             | w sn         | Aug-05            | Aug-05            | Jul-86                         | Feb-89                                                      | Nov-82            | Jul-83                                                          | Aug-91                         | Oct-91                         | Not US<br>released             | Aug-88                         | Jan-89            | Jan-89                         | Jan-97                        | Mar-96                         | Mar-96                         |
|                                 | ıpeı                | Сһап         | Atrial            | Vent              | Vent                           | Vent<br>page 157                                            | Vent              | Vent                                                            | Vent                           | Vent                           | Vent                           | Vent                           | Atrial            | Vent                           | Atrial                        | Atrial                         | Vent                           |
|                                 | λį                  | lims4        | SelectSecure      | SelectSecure      | CapSure                        | CapSure Vent Feb-89 1, Advisories: See page 157 – 1993 Lead | Target Tip        | Target Tip Vent Jul-83 2,, Advisories: See page 158 – 1991 Lead | CapSure SP                     | CapSure SP                     | CapSure Z                      | Screw-In                       | Screw-In          | Screw-In                       | CapSureFix                    | CapSureFix                     | CapSureFix                     |
|                                 |                     | ppoM<br>imuM | 3830              | 3830              | 4003,<br>4003M                 | 4004,<br>4004M                                              | 4011              | 4012                                                            | 4023                           | 4024                           | 4033                           | 4057,<br>4057M                 | 4058,<br>4058M    | 4058,<br>4058M                 | 4067                          | 4068                           | 4068                           |

91.9 +3.1/-4.7 at 183 mo

95.0 +2.1/-3.4 at 177 mo

Lead Survival Summary (95% Confidence Interval)

# Lead Survival Summary continued

|                                 |                     | 20 yr |                                                                 |                   |                               |                     |                               |                                |                               |                                                                 |                                                                     |                                |                               |                                |                               |                                |                                |
|---------------------------------|---------------------|-------|-----------------------------------------------------------------|-------------------|-------------------------------|---------------------|-------------------------------|--------------------------------|-------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------|-------------------------------|--------------------------------|-------------------------------|--------------------------------|--------------------------------|
|                                 | _                   | 18 yr |                                                                 |                   |                               |                     |                               |                                |                               |                                                                 |                                                                     |                                |                               |                                |                               |                                |                                |
|                                 |                     | 16 yr |                                                                 |                   |                               |                     |                               |                                |                               |                                                                 |                                                                     |                                |                               |                                |                               |                                |                                |
|                                 |                     | 14 yr |                                                                 |                   |                               |                     |                               |                                |                               |                                                                 |                                                                     | 83.6<br>+5.0/-6.8<br>at 159 mo |                               |                                |                               |                                |                                |
|                                 |                     | 12 yr |                                                                 |                   |                               |                     |                               |                                |                               |                                                                 |                                                                     | 84.8<br>+4.6/-6.3              |                               | 99.0<br>+0.6/-1.2<br>at 123 mo |                               | 96.9<br>+1.8/-4.4<br>at 126 mo |                                |
|                                 | _                   | 10 yr |                                                                 |                   |                               |                     |                               |                                |                               |                                                                 | 66.1<br>+7.7/-9.2<br>at 105 mo                                      | 87.5<br>+3.9/-5.5              |                               | 99.0<br>+0.6/-1.2              |                               | 96.9<br>+1.8/-4.4              | 91.6<br>+4.5/-8.9<br>at 108 mo |
|                                 | _                   | 8 yr  |                                                                 |                   |                               |                     |                               |                                | 98.0<br>+0.8/-1.2<br>at 90 mo |                                                                 | 69.9<br>+7.0/-8.7                                                   | 91.5<br>+2.9/-4.3              |                               | 99.0<br>+0.6/-1.2              |                               | 96.9<br>+1.8/-4.4              | 96.5                           |
|                                 | _                   | 7 yr  |                                                                 |                   |                               |                     |                               |                                | 98.0<br>+0.8/-1.2             |                                                                 | 73.0 +6.5/-8.2                                                      | 94.7<br>+2.0/-3.2              |                               | 99.0                           | 97.9<br>+1.4/-4.2<br>at 78 mo | 96.9<br>+1.8/-4.4              | 96.5                           |
|                                 |                     | 6 yr  | mple size                                                       |                   | 99.2<br>+0.4/-1.2<br>at 66 mo |                     |                               | 98.2<br>+1.5/-10.5<br>at 63 mo | 98.0<br>+0.8/-1.2             | mple size                                                       | 82.2<br>+5.1/-6.8                                                   | 95.6<br>+1.8/-2.8              |                               | 99.0                           | 97.9<br>+1.4/-4.2             | 97.8<br>+1.4/-3.6              | 97.6                           |
|                                 | _                   | 5 yr  | Survival estimate not available due to insufficient sample size | 100.0<br>at 51 mo | 99.2<br>+0.4/-1.2             |                     | 99.7<br>+0.2/-1.0<br>at 51 mo | 100.0                          | 98.0<br>+0.8/-1.2             | Survival estimate not available due to insufficient sample size | 90.3                                                                | 96.7                           | 98.1<br>+1.4/-5.3<br>at 57 mo | 99.0                           | 97.9<br>+1.4/-4.2             | 97.8<br>+1.4/-3.6              | 99.3                           |
| ility (%)                       | _                   | 4 yr  | due to ins                                                      | 100.0             | 99.2<br>+0.4/-1.2             | 99.5<br>+0.3/-1.0   | 99.7<br>+0.2/-1.0             | 100.0                          | 98.4<br>+0.6/-1.1             | due to ins                                                      | 98.2 +1.1/-3.0                                                      | 98.0 +1.0/-2.0                 | 98.1<br>+1.4/-5.3             | 99.0                           | 97.9<br>+1.4/-4.2             | 97.8<br>+1.4/-3.6              | 99.3                           |
| Probabil                        | ant                 | 3 yr  | x available                                                     | 100.0             | 99.2<br>+0.4/-1.2             | 99.5<br>+0.3/-1.0   | 99.7<br>+0.2/-1.0             | 100.0                          | 98.7<br>+0.5/-1.0             | x available                                                     | 99.1                                                                | 99.1<br>+0.6/-1.5              | 98.1<br>+1.4/-5.3             | 99.3<br>+0.4/-1.0              | 98.8<br>+0.9/-3.6             | 99.1<br>+0.7/-2.8              | 99.3                           |
| Device Survival Probability (%) | Years After Implant | 2 yr  | stimate no                                                      | 100.0             | 99.2<br>+0.4/-1.2             | 99.5<br>+0.3/-1.0   | 99.7<br>+0.2/-1.0             | 100.0                          | 98.8<br>+0.5/-0.9             | stimate no                                                      | 100.0                                                               | 99.6<br>+0.3/-1.2              | 98.1<br>+1.4/-5.3             | 99.3<br>+0.4/-1.0              | 99.4 +0.5/-3.5                | 99.1<br>+0.7/-2.8              | 99.3                           |
| Device                          | Years A             | 1 yr  | Survival e                                                      | 100.0             | 99.3<br>+0.5/-1.1             | 99.7<br>+0.2/-0.9   | 99.7<br>+0.2/-1.0             | 100.0                          | 98.9<br>+0.5/-0.9             | Survival e                                                      | 100.0                                                               | 99.6<br>+0.3/-1.2              | 98.1<br>+1.4/-5.3             | 99.6<br>+0.3/-0.7              | 100.0                         | 99.1<br>+0.7/-2.8              | 99.3                           |
| Months<br>o in Study            |                     |       | 52                                                              | 4,770             | 24,361                        | 17,688              | 17,812                        | 9,940                          | 55,839                        | 3,278                                                           | 19,879<br>ctations                                                  | 39,833                         | 7,194                         | 40,567                         | 11,286                        | 18,465                         | 22,441                         |
| su                              | ifying<br>olicatio  |       | 0                                                               | 0                 | 5                             | m                   | 2                             | m                              | 17                            | -                                                               | 48<br>ow Expe                                                       | 35                             | 4                             | 9                              | 4                             | 9                              | =                              |
| γbut2 ni s                      | evitoA s            | рвэд  | -                                                               | 83                | 516                           | 618                 | 555                           | 6                              | 512                           | 9                                                               | 1<br>ival Belo                                                      | 4                              | 15                            | 57                             | 16                            | 10                             | 25                             |
| pə                              | s Enroll            | реәղ  | -                                                               | 100               | 622                           | 745                 | 899                           | 260                            | 1,145                         | 29                                                              | 368<br>ad Survi                                                     | 009                            | 121                           | 911                            | 206                           | 294                            | 539                            |
| elease                          | arket R             | w sn  | Jun-02                                                          | Jun-02            | Jun-02                        | Feb-04              | Feb-04                        | Jul-89                         | Sep-98                        | Jul-86                                                          | Mar-90 368 1 48 19,875<br>6 - 1996 Lead Survival Below Expectations | Jul-83                         | Aug-91                        | Oct-91                         | Not US<br>released            | Aug-88                         | Nov-94                         |
|                                 | ıpeı                | Сһап  | Atrial                                                          | Vent              | Vent                          | Atrial              | Vent                          | Vent                           | Vent                          | Atrial                                                          | Atrial<br>See page 156                                              | Atrial                         | Atrial                        | Atrial                         | Atrial                        | Atrial                         | Atrial                         |
|                                 | ίλ                  | ims7  | CapSure<br>Sense                                                | CapSure<br>Sense  | CapSure<br>Sense              | CapSureFix<br>Novus | CapSureFix<br>Novus           | Target Tip                     | CapSure SP<br>Novus           | CapSure                                                         | CapSure<br>Advisories: Se                                           | Target Tip                     | CapSure SP                    | CapSure SP                     | CapSure Z                     | Screw-In                       | Screw-In                       |
|                                 |                     | mnN   | 4073                                                            | 4073              | 4074                          | 4076                | 4076                          | 4081                           | 4092                          | 4503,<br>4503M                                                  | 4504,<br>4504M                                                      | 4512                           | 4523                          | 4524                           | 4533                          | 4557,<br>4557M                 | 4558M                          |

|                                |                     |                   |                               | ı                                                      | ı                   | ı                              |                                |                               | ı                              |                                | I                              | I                 | I                              |                                | ı                             | I                             |                               |                                |  |
|--------------------------------|---------------------|-------------------|-------------------------------|--------------------------------------------------------|---------------------|--------------------------------|--------------------------------|-------------------------------|--------------------------------|--------------------------------|--------------------------------|-------------------|--------------------------------|--------------------------------|-------------------------------|-------------------------------|-------------------------------|--------------------------------|--|
|                                |                     | 20 yr             |                               |                                                        |                     |                                |                                |                               |                                |                                |                                |                   |                                |                                |                               |                               |                               |                                |  |
|                                |                     | 18 yr             |                               |                                                        |                     |                                | 97.6<br>+1.2/-2.3<br>at 195 mo |                               |                                |                                |                                |                   |                                |                                |                               |                               |                               |                                |  |
|                                |                     | 16 yr             |                               |                                                        |                     |                                | 97.6 +1.2/-2.3                 |                               |                                |                                |                                |                   |                                |                                |                               |                               |                               | 97.1<br>+1.0/-1.5<br>at 174 mo |  |
|                                |                     | 14 yr             |                               |                                                        |                     |                                | 98.3<br>+0.7/-1.0              |                               |                                |                                |                                |                   |                                |                                |                               |                               |                               | 97.1                           |  |
|                                |                     | 12 yr             |                               |                                                        |                     | 96.8<br>+1.4/-2.6<br>at 123 mo | 98.6<br>+0.5/-0.7              |                               | 95.7<br>+1.6/-2.6<br>at 141 mo | 98.4<br>+0.7/-1.5<br>at 138 mo |                                |                   |                                |                                |                               |                               |                               | 97.1                           |  |
|                                |                     | 10 yr             |                               |                                                        |                     | 96.8<br>+1.4/-2.6              | 98.8<br>+0.4/-0.6              |                               | 96.4<br>+1.3/-2.0              | 98.4<br>+0.7/-1.5              | 98.6<br>+0.7/-1.3<br>at 102 mo | 98.4 +1.1/-3.3    | 98.4<br>+1.0/-2.7<br>at 105 mo | 99.4<br>+0.4/-1.9<br>at 102 mo |                               |                               |                               | 97.6                           |  |
|                                |                     | 8 yr              | 92.0<br>+2.8/-4.1<br>at 87 mo |                                                        |                     | 97.3<br>+1.2/-2.0              | 99.1                           |                               | 97.2 +1.0/-1.5                 | 98.4<br>+0.7/-1.5              | 98.6<br>+0.7/-1.3              | 98.4 +1.1/-3.3    | 98.4 +1.0/-2.7                 | 99.4<br>+0.4/-1.9              | 99.0<br>+0.4/-0.8<br>at 90 mo | 99.1<br>+0.5/-0.8<br>at 87 mo | 99.0<br>+0.6/-1.1<br>at 90 mo | 98.4 +0.6/-0.7                 |  |
|                                |                     | 7 yr              | 92.0 +2.8/-4.1                |                                                        | 97.0                | 97.3<br>+1.2/-2.0              | 99.2 +0.2/-0.3                 | 95.7<br>+2.7/-7.2<br>at 75 mo | 97.7<br>+0.9/-1.4              | 98.9<br>+0.5/-0.9              | 98.6<br>+0.7/-1.3              | 99.2<br>+0.5/-1.5 | 98.4 +1.0/-2.7                 | 99.4<br>+0.4/-1.9              | 99.0                          | 99.1<br>+0.5/-0.8             | 99.0                          | 98.9                           |  |
|                                |                     | 6 yr              | 93.2<br>+2.1/-3.0             | mple size                                              | 97.0                | 99.0                           | 99.3<br>+0.2/-0.2              | 95.7<br>+2.7/-7.2             | 98.3<br>+0.6/-1.2              | 99.2<br>+0.4/-0.8              | 98.6<br>+0.7/-1.3              | 99.2<br>+0.5/-1.5 | 99.1<br>+0.5/-1.5              | 99.4<br>+0.4/-1.9              | 99.0                          | 99.1<br>+0.5/-0.8             | 99.0                          | 99.2 +0.3/-0.4                 |  |
|                                |                     | 5 yr              | 93.2 +2.1/-3.0                | ufficient sa                                           | 97.0                | 99.4                           | 99.4                           | 97.1                          | 98.7                           | 99.2<br>+0.4/-0.8              | 99.3                           | 99.2              | 99.1                           | 99.4<br>+0.4/-1.9              | 99.2 +0.3/-0.6                | 99.1                          | 99.0                          | 99.3                           |  |
| lity (%)                       |                     | 4 yr              | 93.9<br>+1.9/-2.7             | due to ins                                             | 97.8                | 99.4                           | 99.5                           | 97.1                          | 99.0                           | 99.2 +0.4/-0.8                 | 99.3 +0.3/-0.8                 | 99.2 +0.5/-1.5    | 99.1                           | 99.4<br>+0.4/-1.9              | 99.2 +0.3/-0.6                | 99.1                          | 99.0                          | 99.4                           |  |
| Probabi                        | lant                | 3 yr              | 94.6                          | ot available                                           | 97.8<br>+1.4/-3.5   | 99.5                           | 99.5                           | 98.2<br>+1.4/-5.2             | 99.1                           | 99.3<br>+0.3/-0.7              | 99.4 +0.3/-0.6                 | 99.6<br>+0.3/-0.9 | 99.4<br>+0.4/-1.1              | 99.4                           | 99.5                          | 99.3<br>+0.3/-0.8             | 99.3                          | 99.5                           |  |
| evice Survival Probability (%) | Years After Implant | 2 yr              | 95.9                          | estimate not available due to insufficient sample size | 97.8                | 99.6<br>+0.3/-0.6              | 99.6                           | 99.2 +0.7/-4.8                | 99.6                           | 99.5<br>+0.3/-0.6              | 99.4 +0.3/-0.6                 | 99.6<br>+0.3/-0.9 | 99.6<br>+0.3/-0.8              | 99.7<br>+0.3/-1.5              | 99.6                          | 99.4<br>+0.3/-0.6             | 99.5<br>+0.3/-0.8             | 99.8                           |  |
| Device                         | Years A             | 1 yr              | 96.4                          | Survival                                               | 97.8<br>+1.4/-3.5   | 99.7<br>+0.2/-0.5              | 99.7<br>+0.1/-0.2              | 100.0                         | 99.7<br>+0.2/-0.4              | 99.7<br>+0.2/-0.5              | 99.5                           | 99.6<br>+0.3/-0.9 | 99.8<br>+0.1/-0.6              | 99.7<br>+0.3/-1.5              | 99.7<br>+0.1/-0.4             | 99.6<br>+0.2/-0.5             | 99.6<br>+0.2/-0.7             | 99.8                           |  |
| Months<br>o in Study           |                     |                   | 24,835                        | 325                                                    | 11,373              | 70,587                         | 431,840                        | 9,611                         | 96,195                         | 82,761                         | 63,013                         | 32,929            | 37,307                         | 21,911                         | 104,689                       | 55,080                        | 41,628                        | 241,326                        |  |
| su                             | /ing<br>oitsoi      | Qualify<br>Compli | 33                            | 0                                                      | 5                   | 15                             | 47                             | 4                             | 56                             | 13                             | =                              | 9                 | 9                              | 2                              | 16                            | 0                             | ∞                             | 38                             |  |
| γbut2 ni ε                     | evitoA              | r speə7           | 213                           | 16                                                     | 84                  | 470                            | 594                            | 5                             | 263                            | 228                            | 463                            | 65                | 119                            | 114                            | 1,207                         | 556                           | 227                           | 482                            |  |
| pə                             | Iloau               | l sbas l          | 587                           | 18                                                     | 244                 | 1,353                          | 8,140                          | 168                           | 1,899                          | 1,594                          | 1,392                          | 896               | 1,359                          | 451                            | 2,678                         | 1,521                         | 1,171                         | 4,445                          |  |
| əseələ                         | ket R               | 16M 2U            | Jan-97                        | Jun-02                                                 | Oct-98              | Nov-88                         | Mar-90                         | Feb-88                        | Feb-96                         | Feb-96                         | Jun-98                         | Jan-97            | Jan-97                         | Jun-98                         | Aug-00                        | Aug-00                        | Jun-98                        | Mar-90                         |  |
|                                | ) <del>6</del> L    | Chamb             | Atrial                        | Atrial                                                 | Atrial              | Vent                           | Vent                           | Vent                          | Vent                           | Vent                           | Vent                           | Atrial            | Vent                           | Atrial                         | Atrial                        | Vent                          | Vent                          | Atrial                         |  |
|                                |                     | Family            | CapSureFix                    | CapSure<br>Sense                                       | CapSure SP<br>Novus | CapSure SP                     | CapSure SP                     | CapSure                       | CapSure Z                      | CapSure Z                      | CapSure Z<br>Novus             | CapSureFix        | CapSureFix                     | SureFix                        | CapSureFix<br>Novus           | CapSureFix<br>Novus           | CapSure SP<br>Novus           | CapSure SP                     |  |
|                                |                     | ləboM<br>edmuM    | 4568                          | 4574                                                   | 4592                | 5023,<br>5023M                 | 5024,<br>5024M                 | 5026                          | 5033                           | 5034                           | 5054                           | 5068              | 5068                           | 5072                           | 5076                          | 5076                          | 5092                          | 5524,<br>5524M                 |  |

| $\overline{}$         |
|-----------------------|
| (1)                   |
| =                     |
|                       |
|                       |
| -                     |
|                       |
| _                     |
| 9                     |
| 0                     |
|                       |
| $\rightarrow$         |
|                       |
| Œ                     |
| ā                     |
| _                     |
| _                     |
| _                     |
| $\subseteq$           |
| $\overline{}$         |
| .=                    |
| S                     |
| _                     |
| <u></u>               |
| 10                    |
| >                     |
| .=                    |
| >                     |
| _                     |
| $\overline{}$         |
| .=                    |
| S                     |
| _                     |
| $\boldsymbol{\sigma}$ |
| ea(                   |
|                       |
| 7.                    |

|                                |                     |            |                               | ı                              |                                |                               |                                                                 |                                |                               |                                |                                |                                |                   |
|--------------------------------|---------------------|------------|-------------------------------|--------------------------------|--------------------------------|-------------------------------|-----------------------------------------------------------------|--------------------------------|-------------------------------|--------------------------------|--------------------------------|--------------------------------|-------------------|
|                                |                     | 20 yr      |                               |                                |                                |                               |                                                                 |                                |                               |                                | 86.4<br>+3.9/-5.4<br>at 231 mo |                                | 90.4              |
|                                |                     | 18 yr      |                               |                                |                                |                               |                                                                 |                                |                               | 91.2<br>+3.4/-5.4<br>at 207 mo | 87.7<br>+3.3/-4.5              |                                | 90.4              |
|                                | _                   | 16 yr      |                               |                                |                                |                               |                                                                 |                                |                               | 92.6<br>+2.7/-4.2              | 90.9<br>+2.1/-2.7              | 91.4<br>+3.5/-5.7<br>at 171 mo | 92.1              |
|                                | _                   | 14 yr      |                               |                                |                                |                               |                                                                 |                                |                               | 93.7<br>+2.2/-3.2              | 91.5<br>+1.9/-2.5              | 91.4<br>+3.5/-5.7              | 93.5<br>+1.8/-2.6 |
|                                | _                   | 12 yr      |                               |                                |                                |                               |                                                                 |                                |                               | 94.4<br>+1.9/-2.7              | 92.2<br>+1.7/-2.2              | 92.9<br>+2.7/-4.3              | 94.6              |
|                                | _                   | 10 yr      |                               | 98.1<br>+1.2/-3.0<br>at 111 mo | 98.5<br>+1.0/-3.2<br>at 102 mo |                               |                                                                 | 98.5<br>+0.8/-1.6<br>at 111 mo | 93.5<br>+3.1/-5.9<br>at 99 mo | 95.4<br>+1.5/-2.2              | 93.3<br>+1.5/-1.9              | 93.6<br>+2.5/-3.8              | 95.3<br>+1.3/-1.8 |
|                                | _                   | 8 yr       |                               | 98.1<br>+1.2/-3.0              | 98.5<br>+1.0/-3.2              |                               |                                                                 | 98.5<br>+0.8/-1.6              | 93.5<br>+3.1/-5.9             | 96.2 +1.2/-1.7                 | 95.7<br>+1.0/-1.3              | 95.4<br>+1.9/-3.1              | 96.2              |
|                                |                     | 7 yr       | 97.1<br>+1.6/-3.5<br>at 78 mo | 98.1<br>+1.2/-3.0              | 98.5<br>+1.0/-3.2              | 99.2<br>+0.5/-1.2<br>at 81 mo |                                                                 | 98.5<br>+0.8/-1.6              | 95.6<br>+2.3/-4.6             | 96.9                           | 96.2 +1.0/-1.2                 | 96.4 +1.5/-2.7                 | 96.4              |
|                                |                     | 6 yr       | 97.1<br>+1.6/-3.5             | 98.1<br>+1.2/-3.0              | 98.5<br>+1.0/-3.2              | 99.2<br>+0.5/-1.2             | mple size                                                       | 98.5<br>+0.8/-1.6              | 98.0<br>+1.2/-2.9             | 97.1<br>+1.0/-1.4              | 96.8<br>+0.8/-1.1              | 96.4 +1.5/-2.7                 | 96.5              |
|                                | _                   | 5 yr       | 97.1<br>+1.6/-3.5             | 98.1<br>+1.2/-3.0              | 99.1<br>+0.7/-2.6              | 99.2<br>+0.5/-1.2             | Survival estimate not available due to insufficient sample size | 98.5<br>+0.8/-1.6              | 98.0                          | 97.8<br>+0.8/-1.2              | 97.5<br>+0.7/-1.0              | 97.1<br>+1.3/-2.3              | 96.7<br>+0.9/-1.4 |
| ity (%)                        | _                   | 4 yr       | 97.1<br>+1.6/-3.5             | 98.1<br>+1.2/-3.0              | 99.7<br>+0.2/-1.1              | 99.2<br>+0.5/-1.2             | due to ins                                                      | 98.5<br>+0.8/-1.6              | 98.5<br>+0.9/-2.5             | 98.3<br>+0.7/-1.0              | 97.8<br>+0.6/-0.8              | 97.8<br>+1.1/-2.0              | 96.9<br>+0.9/-1.2 |
| Probabil                       | ant                 | 3 yr       | 97.8<br>+1.3/-3.1             | 98.7<br>+0.9/-2.7              | 99.7<br>+0.2/-1.1              | 99.2<br>+0.5/-1.2             | ıt available                                                    | 98.8<br>+0.6/-1.6              | 99.4<br>+0.4/-2.0             | 98.9<br>+0.4/-0.9              | 98.6<br>+0.4/-0.7              | 99.2<br>+0.5/-1.3              | 97.4<br>+0.8/-1.2 |
| evice Survival Probability (%) | Years After Implant | 2 yr       | 97.8<br>+1.3/-3.1             | 99.2<br>+0.6/-2.4              | 99.7<br>+0.2/-1.1              | 99.2<br>+0.5/-1.2             | stimate no                                                      | 99.9<br>+0.1/-0.8              | 99.7<br>+0.3/-1.6             | 99.3<br>+0.3/-0.6              | 99.0                           | 99.2<br>+0.5/-1.3              | 98.2<br>+0.7/-0.9 |
| Device                         | Years A             | 1 yr       | 98.3<br>+1.1/-2.8             | 100.0                          | 99.9<br>+0.1/-0.8              | 99.7<br>+0.2/-1.1             | Survivale                                                       | 99.9<br>+0.1/-0.8              | 100.0                         | 99.6<br>+0.2/-0.5              | 99.5<br>+0.2/-0.5              | 99.4<br>+0.4/-1.1              | 99.0              |
| Months<br>in Study             |                     |            | 12,779                        | 18,883                         | 30,230                         | 26,129                        | 1,068                                                           | 38,362                         | 24,255                        | 96,335                         | 160,477                        | 42,864                         | 109,942           |
| su                             | ifying<br>plicatio  |            | 9                             | 4                              | 4                              | 4                             | 0                                                               | 7                              | 10                            | 42                             | 88                             | 22                             | 52                |
| γbu32 ni e                     |                     |            | 23                            | 09                             | 184                            | 179                           | 12                                                              | 151                            | -                             | 17                             | 22                             | 0                              | 2                 |
| pə                             | llorn3 s            | реәղ       | 261                           | 338                            | 920                            | 999                           | 81                                                              | 818                            | 673                           | 1,853                          | 2,348                          | 627                            | 1,483             |
| elease                         | larket R            | w sn       | Feb-96                        | Jun-98                         | Jan-97                         | Jun-98                        | Jun-01                                                          | Oct-98                         | Jul-79                        | Jul-79                         | Sep-80                         | Jan-78                         | Jan-78            |
|                                | nber                | Сһап       | Atrial                        | Atrial .                       | Atrial .                       | Atrial .                      | Atrial .                                                        | Atrial                         | Atrial .                      | Vent                           | Atrial                         | Vent                           | Vent .            |
|                                | λļ                  | ims7       | CapSure Z                     | CapSure Z<br>Novus             | CapSureFix                     | CapSure SP<br>Novus           | CapSure SP<br>Novus                                             | CapSureFix                     | Spectraflex                   | Spectraflex                    | Spectraflex                    | Tenax                          | Tenax             |
|                                |                     | poM<br>muM | 534                           | 554                            | 268                            | 592                           | 594                                                             | 940                            | 1957                          | 1957                           | 6957                           | 1961                           | 3962              |

#### **US Returned Product Analysis Summary**

| Model<br>Number | Family           | US Market<br>Release | Estimated<br>US Implants | Estimated<br>US Active | Implant<br>Damage | Electrical<br>Malfunction | Other |
|-----------------|------------------|----------------------|--------------------------|------------------------|-------------------|---------------------------|-------|
| 3830            | SelectSecure     | Aug-05               | 12,200                   | 10,600                 | 21                | 5                         | 1     |
| 4003, 4003M     | CapSure          | Jul-86               | 38,000                   | 5,300                  | 24                | 60                        | 2     |
| 4004, 4004M     | CapSure          | Feb-89               | 72,600                   | 5,800                  | 56                | 688                       | 19    |
| 4011            | Target Tip       | Nov-82               | 58,400                   | 6,200                  | 29                | 152                       | 5     |
| 4012            | Target Tip       | Jul-83               | 93,700                   | 6,500                  | 50                | 827                       | 34    |
| 4023            | CapSure SP       | Aug-91               | 41,200                   | 9,600                  | 47                | 21                        | 6     |
| 4024            | CapSure SP       | Oct-91               | 222,100                  | 56,100                 | 264               | 135                       | 34    |
| 4033            | CapSure Z        | Not US released      | NA                       | NA                     | 2                 | 0                         | 0     |
| 4057, 4057M     | Screw-in         | Aug-88               | 10,100                   | 1,800                  | 39                | 6                         | 4     |
| 4058, 4058M     | Screw-in         | Jan-89               | 101,900                  | 20,800                 | 388               | 261                       | 23    |
| 4067            | CapSureFix       | Jan-97               | 1,000                    | 300                    | 3                 | 1                         | 1     |
| 4068            | CapSureFix       | Mar-96               | 124,800                  | 43,900                 | 406               | 111                       | 11    |
| 4073            | CapSure Sense    | Jun-02               | 600                      | 400                    | 1                 | 0                         | 0     |
| 4074            | CapSure Sense    | Jun-02               | 63,000                   | 45,200                 | 13                | 8                         | 1     |
| 4076            | CapSureFix Novus | Feb-04               | 199,200                  | 165,500                | 96                | 13                        | 8     |
| 4081            | Target Tip       | Jul-89               | 3,900                    | 800                    | 4                 | 5                         | 0     |
| 4092            | CapSure SP Novus | Sep-98               | 151,000                  | 83,100                 | 39                | 19                        | 5     |
| 4503, 4503M     | CapSure          | Jul-86               | 8,000                    | 1,500                  | 2                 | 12                        | 0     |
| 4504, 4504M     | CapSure          | Mar-90               | 15,400                   | 1,700                  | 5                 | 172                       | 4     |
| 4512            | Target Tip       | Jul-83               | 10,300                   | 1,200                  | 4                 | 85                        | 8     |
| 4523            | CapSure SP       | Aug-91               | 11,200                   | 3,200                  | 5                 | 2                         | 1     |
| 4524            | CapSure SP       | Oct-91               | 101,700                  | 32,300                 | 47                | 31                        | 8     |
| 4533            | CapSure Z        | Not US released      | NA                       | NA                     | 0                 | 0                         | 0     |
| 4557, 4557M     | Screw-in         | Aug-88               | 19,700                   | 4,400                  | 53                | 14                        | 4     |
| 4558M           | Screw-in         | Nov-94               | 20,000                   | 5,400                  | 111               | 12                        | 1     |
| 4568            | CapSureFix       | Jan-97               | 69,700                   | 31,700                 | 198               | 18                        | 4     |
| 4574            | CapSure Sense    | Jun-02               | 39,900                   | 30,300                 | 7                 | 2                         | 0     |
| 4592            | CapSure SP Novus | Oct-98               | 74,400                   | 43,500                 | 13                | 5                         | 0     |
| 5023, 5023M     | CapSure SP       | Nov-88               | 9,900                    | 2,300                  | 15                | 7                         | 0     |
| 5024, 5024M     | CapSure SP       | Mar-90               | 201,500                  | 56,200                 | 723               | 115                       | 29    |
| 5026            | CapSure          | Feb-88               | 7,400                    | 1,100                  | 60                | 7                         | 1     |
| 5033            | CapSure Z        | Feb-96               | 2,400                    | 700                    | 6                 | 1                         | 3     |
| 5034            | CapSure Z        | Feb-96               | 56,300                   | 17,000                 | 85                | 31                        | 11    |
| 5054            | CapSure Z Novus  | Jun-98               | 85,400                   | 44,900                 | 43                | 16                        | 6     |
| 5068            | CapSureFix       | Jan-97               | 103,100                  | 40,600                 | 455               | 75                        | 15    |
| 5072            | SureFix          | Jun-98               | 8,900                    | 4,500                  | 28                | 5                         | 1     |
| 5076            | CapSureFix Novus | Aug-00               | 1,025,600                | 723,800                | 949               | 276                       | 84    |
| 5092            | CapSure SP Novus | Jun-98               | 111,800                  | 61,600                 | 48                | 28                        | 11    |
| 5524, 5524M     | CapSure SP       | Mar-90               | 60,600                   | 21,000                 | 67                | 25                        | 7     |
| 5534            | CapSure Z        | Feb-96               | 26,300                   | 9,300                  | 29                | 8                         | 5     |
| 5554            | CapSure Z Novus  | Jun-98               | 54,800                   | 31,500                 | 8                 | 12                        | 4     |
|                 | •                |                      |                          |                        |                   |                           |       |
| 5568            | CapSureFix       | Jan-97               | 70,400                   | 45,000                 | 264               | 15                        | 12    |

continued

#### **US Returned Product Analysis Summary** continued

| Model<br>Number | Family           | US Market<br>Release | Estimated<br>US Implants | Estimated<br>US Active | Implant<br>Damage | Electrical<br>Malfunction | Other |
|-----------------|------------------|----------------------|--------------------------|------------------------|-------------------|---------------------------|-------|
| 5592            | CapSure SP Novus | Jun-98               | 27,800                   | 18,100                 | 6                 | 3                         | 0     |
| 5594            | CapSure SP Novus | Jun-01               | 10,908                   | 1,700                  | 0                 | 4                         | 0     |
| 6940            | CapSureFix       | Oct-98               | 25,500                   | 10,100                 | 114               | 21                        | 3     |
| 6957            | Spectraflex      | Jul-79               | 29,100                   | 2,000                  | 85                | 39                        | 25    |
| 6957J           | Spectraflex      | Sep-80               | 30,000                   | 2,100                  | 74                | 30                        | 30    |
| 6961            | Tenax            | Jan-78               | 44,700                   | 2,100                  | 103               | 27                        | 0     |
| 6962            | Tenax            | Jan-78               | 70,600                   | 3,200                  | 170               | 84                        | 0     |

#### **Reference Chart**

| Model<br>Number | Family           | Туре                             | Insulation                           | Conductor<br>Material    | Tip<br>Electrode                           | Connector<br>Type                            |
|-----------------|------------------|----------------------------------|--------------------------------------|--------------------------|--------------------------------------------|----------------------------------------------|
| 3830            | SelectSecure     | Transvenous V or A<br>Screw-In   | Polyurethane/Silicone<br>(55D,4719)  | MP35N 5 Filars/<br>Cable | 1.8 mm Helix/Steroid                       | IS-1 BI                                      |
| 4003, 4003M     | CapSure          | Transvenous<br>Ventricular Tines | Polyurethane<br>(80A)                | MP35N<br>4 Filars        | Porous/Steroid                             | 5 mm (4003)<br>IS-1 UNI (4003M)              |
| 4004, 4004M     | CapSure          | Transvenous<br>Ventricular Tines | Polyurethane<br>(80A)                | MP35N<br>6/4 Filars      | Porous/Steroid                             | 3.2 mm Low Profile (4004)<br>IS-1 BI (4004M) |
| 4011            | Target Tip       | Transvenous<br>Ventricular Tines | Polyurethane<br>(80A)                | MP35N<br>4 Filars        | Target Tip Concentric<br>Grooves           | 5 mm                                         |
| 4012            | Target Tip       | Transvenous<br>Ventricular Tines | Polyurethane<br>(80A)                | MP35N<br>6/4 Filars      | Target Tip Concentric<br>Grooves           | 3.2 mm<br>Low Profile                        |
| 4023            | CapSure SP       | Transvenous<br>Ventricular Tines | Polyurethane<br>(55D)                | MP35N<br>4 Filars        | Porous Platinized/<br>Steroid              | IS-1 UNI                                     |
| 4024            | CapSure SP       | Transvenous<br>Ventricular Tines | Polyurethane<br>(55D)                | MP35N<br>4/5 Filars      | Porous Platinized/<br>Steroid              | IS-1 BI                                      |
| 4033            | CapSure Z        | Transvenous<br>Ventricular Tines | Polyurethane<br>(55D)                | MP35N<br>2 Filars        | CapSure Z<br>Platinized/Steroid            | IS-1 UNI                                     |
| 4057, 4057M     | Screw-In         | Transvenous V or A<br>Screw-In   | Polyurethane<br>(80A)                | MP35N<br>1 Filar         | 2.0 mm Helix                               | 5 mm (4057)<br>IS-1 UNI (4057M)              |
| 4058, 4058M     | Screw-In         | Transvenous V or A<br>Screw-In   | Polyurethane<br>(80A/55D)            | MP35N<br>4/1 Filars      | 2.0 mm Helix                               | 3.2 mm Low Profile (4058)<br>IS-1 BI (4058M) |
| 4067            | CapSureFix       | Transvenous V or A<br>Screw-In   | Polyurethane<br>(80A)                | MP35N<br>3 Filars        | 1.8 mm Helix/Steroid                       | IS-1 UNI                                     |
| 4068            | CapSureFix       | Transvenous V or A<br>Screw-In   | Polyurethane<br>(80A/55D)            | MP35N<br>4/3 Filars      | 1.8 mm Helix/Steroid                       | IS-1 BI                                      |
| 4073            | CapSure Sense    | Transvenous<br>Ventricular Tines | Polyurethane (55D)                   | MP35N<br>5 Filars        | TiN Coated Platinum<br>Iridium/Steroid     | IS-1 UNI                                     |
| 4074            | CapSure Sense    | Transvenous<br>Ventricular Tines | Polyurethane/Silicone<br>(55D, 4719) | MP35N<br>5/5 Filars      | TiN Coated<br>Platinum Iridium/<br>Steroid | IS-1 BI                                      |
| 4076            | CapSureFix Novus | Transvenous V or A<br>Screw-In   | Polyurethane/Silicone<br>(55D, 4719) | MP35N<br>4/6 Filars      | TiN Coated<br>Platinum Alloy/Steroid       | IS-1 BI                                      |
| 4081            | Target Tip       | Transvenous<br>Ventricular Tines | Polyurethane<br>(80A)                | MP35N<br>4 Filars        | Target Tip Concentric<br>Grooves           | IS-1 UNI w/Removable<br>5 mm Sleeve          |
| 4092            | CapSure SP Novus | Transvenous<br>Ventricular Tines | Polyurethane/Silicone<br>(55D/4719)  | MP35N<br>6/4 Filars      | Porous Platinized/<br>Steroid              | IS-1 BI                                      |
| 4503, 4503M     | CapSure          | Transvenous<br>Atrial-J Tines    | Polyurethane<br>(80A)                | MP35N<br>4 Filars        | Porous/Steroid                             | 5 mm (4503)<br>IS-1 UNI (4503M)              |
| 4504, 4504M     | CapSure          | Transvenous<br>Atrial-J Tines    | Polyurethane<br>(80A)                | MP35N<br>3/4 Filars      | Porous/Steroid                             | 3.2 mm Low Profile (4504)<br>IS-1 BI (4504M) |
| 4512            | Target Tip       | Transvenous<br>Atrial-J Tines    | Polyurethane<br>(80A)                | MP35N<br>2/4 Filars      | Target Tip Concentric<br>Grooves           | 3.2 mm Low Profile                           |
| 4523            | CapSure SP       | Transvenous<br>Atrial-J Tines    | Polyurethane<br>(55D)                | MP35N<br>2 Filars        | Porous Platinized/<br>Steroid              | IS-1 UNI                                     |
| 4524            | CapSure SP       | Transvenous<br>Atrial-J Tines    | Polyurethane<br>(55D)                | MP35N<br>4/5 Filars      | Porous Platinized/<br>Steroid              | IS-1 BI                                      |
| 4533            | CapSure Z        | Transvenous<br>Atrial-J Tines    | Polyurethane<br>(55D)                | MP35N<br>2 Filars        | CapSure Z<br>Platinized/Steroid            | IS-1 UNI                                     |
| 4557, 4557M     | Screw-In         | Transvenous<br>Atrial-J Screw-In | Polyurethane<br>(80A)                | MP35N<br>1 Filar         | 1.5 mm Helix                               | 5 mm (4557)<br>IS-1 UNI (4557M)              |
| 4558M           | Screw-In         | Transvenous<br>Atrial-J Screw-In | Polyurethane<br>(80A/55D)            | MP35N<br>6/3 Filars      | 1.8 mm Helix/Steroid                       | IS-1 BI                                      |
| 4568            | CapSureFix       | Transvenous<br>Atrial-J Screw-In | Polyurethane<br>(80A/55D)            | MP35N<br>6/3 Filars      | 1.8 mm Helix/Steroid                       | IS-1 BI                                      |
| 4574            | CapSure Sense    | Transvenous<br>Atrial -J Tines   | Polyurethane/Silicone<br>(55D,4719)  | MP35N<br>5/5 Filars      | TiN Coated<br>Platinum Iridium             | IS-1 BI                                      |
| 4592            | CapSure SP Novus | Transvenous<br>Atrial-J Tines    | Polyurethane/Silicone<br>(55D/4719)  | MP35N<br>6/3 Filars      | Porous Platinized/<br>Steroid              | IS-1 BI                                      |
| 5023, 5023M     | CapSure SP       | Transvenous<br>Ventricular Tines | Silicone                             | MP35N<br>4 Filars        | Porous Platinized/<br>Steroid              | 5 mm (5023)<br>IS-1 UNI (5023M)              |
|                 |                  |                                  |                                      |                          |                                            |                                              |

continued

#### **Reference Chart** continued

| Model<br>Number | Family           | Туре                             | Insulation            | Conductor<br>Material | Tip<br>Electrode                           | Connector<br>Type                            |
|-----------------|------------------|----------------------------------|-----------------------|-----------------------|--------------------------------------------|----------------------------------------------|
| 5024, 5024M     | CapSure SP       | Transvenous<br>Ventricular Tines | Silicone              | MP35N<br>4/5 Filars   | Porous Platinized/<br>Steroid              | 3.2 mm Low Profile (5024)<br>IS-1 BI (5024M) |
| 5026            | CapSure          | Transvenous<br>Ventricular Tines | Silicone              | MP35N<br>6/4 Filars   | Porous Platinized/<br>Steroid              | 3.2 mm Low Profile                           |
| 5033            | CapSure Z        | Transvenous<br>Ventricular Tines | Silicone              | MP35N<br>4 Filars     | CapSure Z<br>Platinized/Steroid            | IS-1 UNI                                     |
| 5034            | CapSure Z        | Transvenous<br>Ventricular Tines | Silicone              | MP35N<br>4/5 Filars   | CapSure Z<br>Platinized/Steroid            | IS-1 BI                                      |
| 5054            | CapSure Z Novus  | Transvenous<br>Ventricular Tines | Silicone<br>(4719)    | MP35N<br>5/5 Filars   | CapSure Z<br>Porous/Platinized/<br>Steroid | IS-1 BI                                      |
| 5068            | CapSureFix       | Transvenous V or A<br>Screw-In   | Silicone              | MP35N<br>4/3 Filars   | 1.8 mm Helix/Steroid                       | IS-1 BI                                      |
| 5072            | SureFix          | Transvenous V or A<br>Screw-In   | Silicone              | MP35N<br>4/5 Filars   | 1.8 mm Helix/Steroid                       | IS-1 BI                                      |
| 5076            | CapSureFix Novus | Transvenous V or A<br>Screw-In   | Silicone<br>(4719)    | MP35N<br>4/6 Filars   | Porous Platinized/<br>Steroid              | IS-1 BI                                      |
| 5092            | CapSure SP Novus | Transvenous<br>Ventricular Tines | Silicone<br>(4719)    | MP35N<br>5/5 Filars   | Porous Platinized/<br>Steroid              | IS-1 BI                                      |
| 5524, 5524M     | CapSure SP       | Transvenous<br>Atrial-J Tines    | Silicone              | MP35N<br>6/5 Filars   | Porous Platinized/<br>Steroid              | 3.2 mm Low Profile (5524)<br>IS-1 BI (5524M) |
| 5534            | CapSure Z        | Transvenous<br>Atrial-J Tines    | Silicone              | MP35N<br>4/5 Filars   | CapSure Z<br>Platinized/Steroid            | IS-1 BI                                      |
| 5554            | CapSure Z Novus  | Transvenous<br>Atrial-J Tines    | Silicone<br>(4719)    | MP35N<br>6/5 Filars   | CapSure Z<br>Porous Platinized/<br>Steroid | IS-1 BI                                      |
| 5568            | CapSureFix       | Transvenous<br>Atrial-J Screw-In | Silicone              | MP35N<br>6/3 Filars   | 1.8 mm Helix/Steroid                       | IS-1 BI                                      |
| 5592            | CapSure SP Novus | Transvenous<br>Atrial-J Tines    | Silicone<br>(4719)    | MP35N<br>6/5 Filars   | Porous Platinized/<br>Steroid              | IS-1 BI                                      |
| 5594            | CapSure SP Novus | Transvenous<br>Atrial-J Tines    | Silicone<br>(4719)    | MP35N<br>6/5 Filars   | Platinized Platinum/<br>Steroid            | IS-1 BI                                      |
| 6940            | CapSureFix       | Transvenous<br>A or V Screw-In   | Silicone              | MP35N<br>3/6 Filars   | Platinum Alloy                             | IS-1 BI                                      |
| 6957            | Spectraflex      | Transvenous V or A<br>Screw-In   | Polyurethane<br>(80A) | MP35N<br>1 Filar      | 2.0 mm Helix                               | 5 mm                                         |
| 6957J           | Spectraflex      | Transvenous<br>Atrial-J Screw-In | Polyurethane<br>(80A) | MP35N<br>1 Filar      | 1.5 mm Helix                               | 5 mm                                         |
| 6961            | Tenax            | Transvenous<br>Ventricular Tines | Silicone              | MP35N<br>3 Filars     | Ring Tip                                   | 5 mm                                         |
| 6962            | Tenax            | Transvenous<br>Ventricular Tines | Silicone              | MP35N<br>4 Filars     | Ring Tip                                   | 5 mm Bifurcated                              |

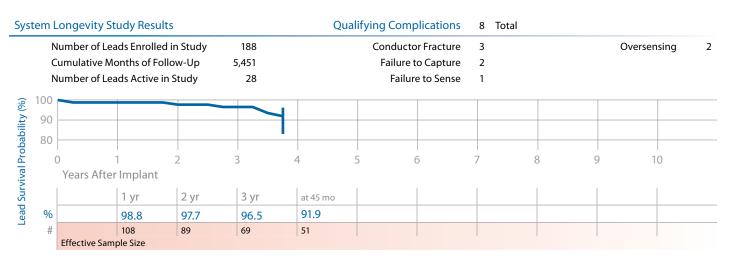
# **Epi/Myocardial Pacing Leads**

#### 4951, 4951M Spectraflex

#### **Product Characteristics**

| US Market Release            | Oct-81 | Serial Number Prefix | TF or LBJ                        | US Returned Product Ana | alysis |
|------------------------------|--------|----------------------|----------------------------------|-------------------------|--------|
| Registered US Implants       | 23,100 | Type and/or Fixation | Myocardial Stab-in, V or A, Peds | Implant Damage          | 15     |
| Estimated Active US Implants | 2,500  | Polarity             | Unipolar                         | Electrical Malfunction  | 97     |
| Advisories                   | None   | Steroid              | No                               | Other                   | 28     |

#### System Longevity Study Results


#### Qualifying Complications 10 Total

| Number of Leads Enrolled in Study | 179   | Failure to Capture     | 4 | Insulation (ESC)                 | 1 |
|-----------------------------------|-------|------------------------|---|----------------------------------|---|
| Cumulative Months of Follow-Up    | 6,512 | Failure to Sense       | 3 | Insulation (not further defined) | 1 |
| Number of Leads Active in Study   | 4     | Impedance Out of Range | 1 |                                  |   |



#### 4965 CapSure Epi

| US Market Release                   | Sep-96 | Serial Number Prefix | LBT                         | US Returned Product Ana | nalysis<br>8<br>115<br>2 |
|-------------------------------------|--------|----------------------|-----------------------------|-------------------------|--------------------------|
| Registered US Implants              | 17,700 | Type and/or Fixation | Epicardial Suture-On V or A | Implant Damage          | 8                        |
| <b>Estimated Active US Implants</b> | 8,900  | Polarity             | Unipolar                    | Electrical Malfunction  | 115                      |
| Advisories                          | None   | Steroid              | Yes                         | Other                   | 2                        |



# **Epi/Myocardial Pacing Leads** continued

#### 4968 CapSure Epi


#### **Product Characteristics**

| US Market Release                   | Sep-99 | Serial Number Prefix | LEN                         | US Returned Product Analysis |
|-------------------------------------|--------|----------------------|-----------------------------|------------------------------|
| Registered US Implants              | 16,000 | Type and/or Fixation | Epicardial Suture-On V or A | Implant Damage 2             |
| <b>Estimated Active US Implants</b> | 10,000 | Polarity             | Bipolar                     | Electrical Malfunction 11    |
| Advisories                          | None   | Steroid              | Yes                         | Other 0                      |
| Advisories                          | None   | Steroid              | Yes                         | Other 0                      |

#### System Longevity Study Results

#### Qualifying Complications 34 Total

| Number of Leads Enrolled in Study | 543    | Conductor Fracture | 7  | Impedance Out of Range           | 4 |
|-----------------------------------|--------|--------------------|----|----------------------------------|---|
| Cumulative Months of Follow-Up    | 22,604 | Failure to Capture | 14 | Insulation (not further defined) | 2 |
| Number of Leads Active in Study   | 326    | Failure to Sense   | 3  | Oversensing                      | 4 |



#### 5071

#### **Product Characteristics**

| US Market Release                   | Dec-92 | Serial Number Prefix LAQ |                           | US Returned Product Analysis |
|-------------------------------------|--------|--------------------------|---------------------------|------------------------------|
| Registered US Implants              | 33,900 | Type and/or Fixation     | Myocardial Screw-in Vent. | Implant Damage 29            |
| <b>Estimated Active US Implants</b> | 13,400 | Polarity                 | Unipolar                  | Electrical Malfunction 7     |
| Advisories                          | None   | Steroid                  | No                        | Other 2                      |

#### System Longevity Study Results

#### Qualifying Complications 11 Total

| Number of Leads Enrolled in Study | 229   | Failure to Capture | 9 |  |
|-----------------------------------|-------|--------------------|---|--|
| Cumulative Months of Follow-Up    | 7,092 | Oversensing        | 2 |  |
| Number of Leads Active in Study   | 30    |                    |   |  |



# **Epi/Myocardial Pacing Leads** continued

Effective Sample Size

|     | US Mar  | ket Rel   | ease       |          |       | Jun-7  | 3     | Serial Number Prefix |          |      | ١       | WV or WC |          |              |     |       | US Returned Product A |                        |        |         |         | alysis |
|-----|---------|-----------|------------|----------|-------|--------|-------|----------------------|----------|------|---------|----------|----------|--------------|-----|-------|-----------------------|------------------------|--------|---------|---------|--------|
|     | Registe | red US    | Implar     | nts      |       | 180,10 | 0     | Type and/or Fixation |          |      | ı       | Myocar   | dial Scı | ew-in '      | Ven | t.    |                       |                        |        | lant Da |         | 115    |
|     | Estimat | ted Act   | ive US     | Implan   | ts    | 5,00   | 0     | Polarity             | ,        |      | l       | Unipolar |          |              |     |       |                       | Electrical Malfunction |        |         |         | 42     |
|     | Adviso  | ries      |            |          |       | Non    | e     | Steroid              |          |      | 1       | No       |          |              |     |       |                       |                        |        |         | Other   | 1      |
| em  | Longe   | vity St   | udy R      | esults   |       |        |       |                      |          | Qua  | lifying | Comp     | olicatio | ons 6        | 59  | Total |                       |                        |        |         |         |        |
|     | Numbe   | er of Lea | ads Enr    | olled ir | Study | ,      | 985   |                      |          |      | Со      | nducto   | r Fract  | ure          | 6   |       |                       | lmp                    | edance | e Out o | f Range | 2      |
|     | Cumula  | ative M   | onths o    | of Follo | w-Up  | 47     | 7,481 |                      |          | Ex   | ktra Ca | rdiac St | imulat   | ion          | 1   |       |                       |                        | Ir     | sulatio | n (MIO) | 1      |
|     | Numbe   | er of Lea | ads Act    | ive in S | tudy  |        | 4     |                      |          |      | F       | ailure t | o Capt   | ure 3        | 30  |       |                       |                        |        | Over    | sensing | 18     |
|     |         |           |            |          |       |        |       |                      |          |      |         | Failur   | e to Se  | nse          | 11  |       |                       |                        |        |         |         |        |
| 100 | )       |           |            |          |       |        |       |                      |          |      |         |          |          |              |     |       |                       |                        |        |         |         |        |
| 90  | )       |           |            |          |       |        |       |                      | <u> </u> |      |         |          |          |              |     |       |                       |                        |        |         |         |        |
| 80  | )       |           |            |          |       |        |       |                      |          |      |         |          | Ч        |              |     |       |                       |                        |        |         |         |        |
| 70  | )       |           |            |          |       |        |       |                      |          |      |         |          | -        |              |     |       |                       |                        |        |         |         |        |
|     | 0       | 1         | 2          | 3        | 4     | 5 (    | 6     | 7                    | 8        | 9 1  | 10 1    | 1 1      | 2 1      | 3 1          | 4   | 15    | 16                    | 17                     | 18     | 19      | 20 2    | 21     |
|     | Year    | s Afte    | ·<br>Impla | ant      |       |        |       |                      |          |      |         |          |          |              |     |       |                       |                        |        |         |         |        |
|     |         | 1 yr      | 2 yr       | 3 yr     | 4 yr  | 5 yr   | 6 yr  | 7 yr                 | 8 yr     | 9 yr | 10 yr   | 11 yr    | 12 yr    | at<br>150 mo |     |       |                       |                        |        |         |         |        |
|     |         | 1         | İ          | 1        | 00.6  | _      | -     | 1                    |          | -    | i –     | i        |          |              |     |       |                       |                        |        |         |         |        |
| %   | 5       | 99.0      | 97.6       | 95.9     | 93.6  | 92.8   | 91.1  | 89.5                 | 87.2     | 85.0 | 84.2    | 84.2     | 05.2     | 80.4         |     |       |                       |                        |        |         |         |        |

# Lead Survival Summary (95% Confidence Interval)

|                                 | I                   |                |                   | I                 | ı                 | ı                             |                   |                   |                   |                               |                   |                   |                                |                   |                   |                   |
|---------------------------------|---------------------|----------------|-------------------|-------------------|-------------------|-------------------------------|-------------------|-------------------|-------------------|-------------------------------|-------------------|-------------------|--------------------------------|-------------------|-------------------|-------------------|
|                                 |                     | 16 yr          |                   |                   |                   |                               |                   |                   |                   |                               |                   |                   |                                |                   |                   |                   |
|                                 |                     |                |                   |                   |                   |                               |                   | 14 yr             |                   |                               |                   |                   | 80.4<br>+5.2/-6.8<br>at 150 mo |                   |                   |                   |
|                                 |                     |                |                   |                   |                   |                               |                   |                   |                   |                               |                   | 12 yr             |                                |                   |                   |                   |
|                                 |                     |                |                   |                   |                   |                               | 10 yr             |                   |                   |                               |                   | 84.2<br>+3.9/-4.8 |                                |                   |                   |                   |
|                                 |                     | 8 yr           |                   |                   | 91.7<br>+3.0/-4.7 |                               | 87.2<br>+3.1/-4.1 |                   |                   |                               |                   |                   |                                |                   |                   |                   |
|                                 | Years After Implant | 7 yr           |                   |                   | 91.7<br>+3.0/-4.7 |                               | 89.5<br>+2.7/-3.4 |                   |                   |                               |                   |                   |                                |                   |                   |                   |
|                                 |                     | 6 yr           |                   |                   | 91.7<br>+3.0/-4.7 | 91.7<br>+4.0/-7.3<br>at 66 mo | 91.1              |                   |                   |                               |                   |                   |                                |                   |                   |                   |
| Device Survival Probability (%) |                     | ter Implant    | ter Implant       | fter Implant      | fter Implant      | ofter Implant                 |                   |                   | 5 yr              | 93.4<br>+3.7/-8.1<br>at 57 mo |                   | 93.2<br>+2.5/-4.0 | 91.7<br>+4.0/-7.3              | 92.8<br>+2.0/-2.6 |                   |                   |
|                                 |                     |                |                   |                   |                   |                               |                   |                   |                   |                               | 4 yr              | 93.4<br>+3.7/-8.1 | 91.9<br>+4.3/-8.9<br>at 45 mo  | 94.5<br>+2.1/-3.4 | 91.7<br>+4.0/-7.3 | 93.6              |
|                                 |                     |                |                   |                   |                   |                               | 3 yr              | 96.5<br>+2.2/-5.8 | 96.5<br>+2.2/-6.1 | 95.9<br>+1.7/-2.7             | 91.7<br>+4.0/-7.3 | 95.9              |                                |                   |                   |                   |
|                                 |                     |                |                   |                   |                   |                               | Vfter Impl        | rfter Impl        | rfter Impl        | fter Impl                     | fter Impl         | Vfter Impl        | 2 yr                           | 96.5<br>+2.2/-5.8 | 97.7              | 97.4<br>+1.2/-2.3 |
|                                 |                     | 1 yr           | 97.7<br>+1.6/-4.8 | 98.8<br>+0.9/-3.6 | 99.6<br>+0.3/-1.4 | 96.3<br>+2.1/-4.4             | 99.0              |                   |                   |                               |                   |                   |                                |                   |                   |                   |
| Months<br>o in Study            |                     |                | 6,512             | 5,451             | ,604              | 7,092                         | ,481              |                   |                   |                               |                   |                   |                                |                   |                   |                   |
|                                 | oitasil             | Qualif<br>GmoD | 10                | 80                | 34 22,604         | 11 7                          | 69 47,481         |                   |                   |                               |                   |                   |                                |                   |                   |                   |
| γbut2 ni ε                      | evitoA              | греәд          | 4                 | 28                | 326               | 30                            | 4                 |                   |                   |                               |                   |                   |                                |                   |                   |                   |
| pə                              | Enroll              | rpeads         | 179               | 188               | 543               | 229                           | 985               |                   |                   |                               |                   |                   |                                |                   |                   |                   |
| Model<br>Family                 |                     |                | Oct-81            | Sep-96            | Sep-99            | Dec-92                        | Jun-73            |                   |                   |                               |                   |                   |                                |                   |                   |                   |
|                                 |                     |                | Spectraflex       | CapSure Epi       | CapSure Epi       | (No brand<br>name)            | Tenax             |                   |                   |                               |                   |                   |                                |                   |                   |                   |
|                                 |                     |                | 4951,<br>4951M    | 4965              | 4968              | 5071                          | 6917,<br>6917A    |                   |                   |                               |                   |                   |                                |                   |                   |                   |

# **Epi/Myocardial Pacing Leads** continued

#### **US Returned Product Analysis Summary**

| Model<br>Number | Family          | US Market<br>Release | Estimated<br>US Implants | Estimated<br>US Active | lmplant<br>Damage | Electrical<br>Malfunction | Other |
|-----------------|-----------------|----------------------|--------------------------|------------------------|-------------------|---------------------------|-------|
| 4951, 4951M     | Spectraflex     | Oct-81               | 23,100                   | 2,500                  | 15                | 97                        | 28    |
| 4965            | CapSure Epi     | Sep-96               | 17,700                   | 8,900                  | 8                 | 115                       | 2     |
| 4968            | CapSure Epi     | Sep-99               | 16,000                   | 10,000                 | 2                 | 11                        | 0     |
| 5071            | (No brand name) | Dec-92               | 33,900                   | 13,400                 | 29                | 7                         | 2     |
| 6917, 6917A     | Tenax           | Jun-73               | 180,100                  | 5,000                  | 115               | 42                        | 1     |

Source: Returned Product Analysis Data as of January 31, 2009

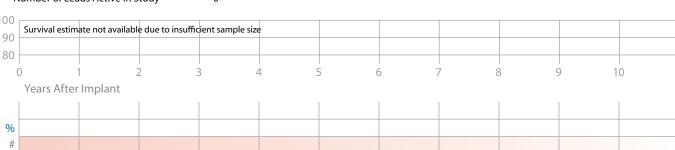
#### **Reference Chart**

| Model<br>Number | Family          | Туре                               | Insulation            | Conductor<br>Material | Tip<br>Electrode              | Connector<br>Type               |
|-----------------|-----------------|------------------------------------|-----------------------|-----------------------|-------------------------------|---------------------------------|
| 4951, 4951M     | Spectraflex     | Myocardial Stab-In<br>V or A/Peds  | Polyurethane<br>(80A) | MP35N<br>4 Filars     | Barb                          | 5 mm (4951)<br>IS-1 UNI (4951M) |
| 4965            | CapSure Epi     | Epicardial Suture-On<br>V or A     | Silicone              | MP35N<br>5 Filars     | Porous Platinized/<br>Steroid | IS-1 UNI                        |
| 4968            | CapSure Epi     | Epicardial Suture<br>V or A        | Silicone              | MP35N<br>5 Filars     | Porous Platinized/<br>Steroid | IS-1 B1                         |
| 5069            | (No brand name) | Myocardial Screw-In                | Silicone              | MP35N<br>Multifilars  | 3-Turn Helix                  | IS-1 UNI                        |
| 5071            | (No brand name) | Myocardial Screw-In<br>Ventricular | Silicone              | MP35N<br>Multifilars  | 2-Turn Helix                  | IS-1 UNI                        |
| 6917            | Tenax           | Myocardial Screw-In<br>Ventricular | Silicone              | Pt Ir<br>Tinsel Wire  | 3-Turn Helix                  | 5 mm                            |
| 6917A           | Tenax           | Myocardial Screw-In<br>Ventricular | Silicone              | Pt Ir<br>Tinsel Wire  | 2-Turn Helix                  | 5 mm                            |

# **VDD Single Pass Pacing Leads**

#### 5032 CapSure VDD

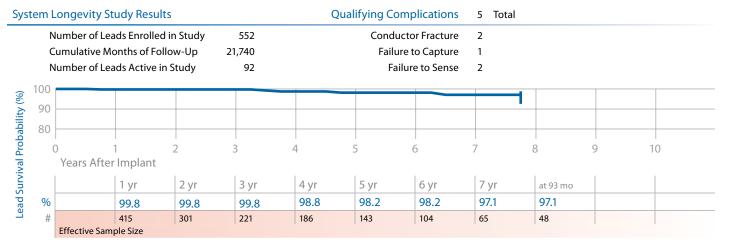
#### **Product Characteristics**


| US Market Release                   | Mar-96 | Serial Number Prefix LCL, LCN, LCM |                               | US Returned Product Analysi | US Returned Product Analysis |  |  |
|-------------------------------------|--------|------------------------------------|-------------------------------|-----------------------------|------------------------------|--|--|
| Registered US Implants              | 5,400  | Type and/or Fixation               | Transvenous, Atr-Vent., Tines | Implant Damage 2            | 24                           |  |  |
| <b>Estimated Active US Implants</b> | 1,600  | Polarity                           | Quadripolar                   | Electrical Malfunction 1    | 12                           |  |  |
| Advisories                          | None   | Steroid                            | Yes                           | Other                       | 0                            |  |  |

#### System Longevity Study Results

Lead Survival Probability (%)

# Qualifying Complications 1 Total Failure to Sense 1


Number of Leads Enrolled in Study 38
Cumulative Months of Follow-Up 2,011
Number of Leads Active in Study 0



#### 5038 CapSure VDD-2

**Effective Sample Size** 

| US Market Release Sep-98            |       | Serial Number Prefix LEE, LEG, or LEF |                               | US Returned Product Analysis |   |  |
|-------------------------------------|-------|---------------------------------------|-------------------------------|------------------------------|---|--|
| Registered US Implants              | 8,200 | Type and/or Fixation                  | Transvenous, Atr-Vent., Tines | Implant Damage               | 6 |  |
| <b>Estimated Active US Implants</b> | 3,800 | Polarity                              | Quadripolar                   | Electrical Malfunction       | 5 |  |
| Advisories                          | None  | Steroid                               | Yes                           | Other                        | 1 |  |
|                                     |       |                                       |                               |                              |   |  |



# **VDD Single Pass Pacing Leads** continued

## **Lead Survival Summary** (95% Confidence Interval)

| ā              |                  | US Market Release | Enrolled | Active in Study | Qualifying<br>Complications | Cumulative Months<br>of Follow-Up in Study |                   | Survival I        |                   | ty (%)            |                   |                   |                   |                               |      |       |
|----------------|------------------|-------------------|----------|-----------------|-----------------------------|--------------------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------------------|------|-------|
| Model<br>Numbe | Family           | US Mai            | Leads En | Leads           | Qualify                     | Cumul                                      | 1 yr              | 2 yr              | 3 yr              | 4 yr              | 5 yr              | 6 yr              | 7 yr              | 8 yr                          | 9 yr | 10 yr |
| 5032           | CapSure VDD      | Mar-96            | 38       | 0               | 1                           | 2,011                                      | Survival e        | stimate no        | t available       | due to insu       | fficient san      | nple size         |                   |                               |      |       |
| 5038           | CapSure<br>VDD-2 | Sep-98            | 552      | 92              | 5                           | 21,740                                     | 99.8<br>+0.2/-1.4 | 99.8<br>+0.2/-1.4 | 99.8<br>+0.2/-1.4 | 98.8<br>+0.8/-2.6 | 98.2<br>+1.2/-3.1 | 98.2<br>+1.2/-3.1 | 97.1<br>+1.8/-4.5 | 97.1<br>+1.8/-4.5<br>at 93 mo |      |       |

Source: System Longevity Study Data as of January 31, 2009

## **US Returned Product Analysis Summary**

| Model<br>Number | Family        | US Market<br>Release | Estimated<br>US Implants | Estimated<br>US Active | Implant<br>Damage | Electrical<br>Malfunction | Other |
|-----------------|---------------|----------------------|--------------------------|------------------------|-------------------|---------------------------|-------|
| 5032            | CapSure VDD   | Mar-96               | 5,400                    | 1,600                  | 24                | 12                        | 0     |
| 5038            | CapSure VDD-2 | Sep-98               | 8,200                    | 3,800                  | 6                 | 5                         | 1     |

Source: Returned Product Analysis Data as of January 31, 2009

## **Reference Chart**

| Model<br>Number | Family        | Туре                             | Insulation | Conductor<br>Material | Tip<br>Electrode              | Connector<br>Type           |
|-----------------|---------------|----------------------------------|------------|-----------------------|-------------------------------|-----------------------------|
| 5032            | CapSure VDD   | Transvenous<br>V and A Tines     | Silicone   | MP35N<br>5/6/1 Filars | Porous Platinized/<br>Steroid | Atr. IS-1 BI, Vent. IS-1 BI |
| 5038            | CapSure VDD-2 | Transvenous<br>Ventricular Tines | Silicone   | MP35N                 | Porous Platinized/<br>Steroid | Atr. IS-1 BI, Vent. IS-1 BI |

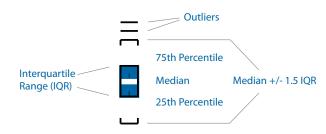
## **ICD and CRT-D Charge Time Performance**

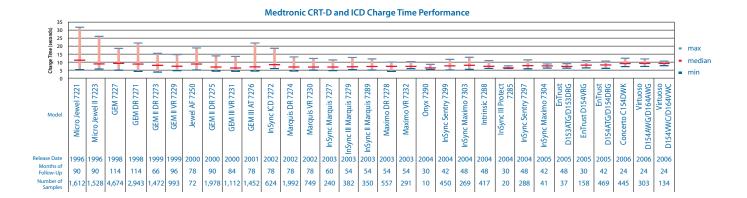
Medtronic continues its commitment to providing updated information on charge time performance.

#### Introduction

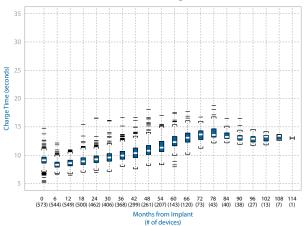
Information on charge time performance of Medtronic is presented in this section of the CRDM Product Performance Report. Medtronic implemented the collection of charge time data on July 1, 1999. The data are collected via our ongoing active clinical study of long-term system performance called the System Longevity Study. The study protocol requests device data be routinely taken and sent to Medtronic at no more than 6-month intervals.

In our analysis performed for this report, only charge times resulting from full energy charges are considered. To ensure consistent reporting across devices, the charge time reported at implant represents the last charge time available from date of implant. When more than one charge time is available in a 6-month interval, a conservative approach has been adopted whereby only the maximum charge in each 6-month interval is reported. As charge time is directly proportional to the time elapsed since the last capacitor reformation, charges occurring within 15 days of a previous charge are excluded. This precludes the reporting of overly optimistic results.

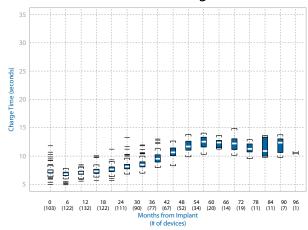

Data from over 20,000 devices contribute to the charge time data in this report. By tracking and reporting this charge time data, Medtronic is able to ascertain the actual performance of its charging circuitry. The insight gained through this information is applied to Medtronic's ongoing efforts to provide charge times that are short and consistent over the life of the product.


#### **Data Presentation**

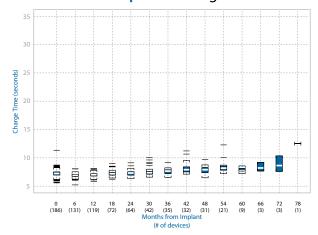
Charge time data for ICD and CRT-D models are presented using boxplots at 6-month intervals. The shaded box on the plots represents the middle half of the data - the Interquartile Range (IQR). The white line in the middle of each box is the median charge time. The top of the box representing the IQR is the 75th percentile (i.e., 75% of all charge times fall below this line), whereas the bottom of the box represents the 25th percentile. The brackets around the box represent the variance in charge times (analogous to a confidence interval), and are calculated as a function of the median and IQR. Individual values falling outside the brackets are labeled as outliers.


#### Results

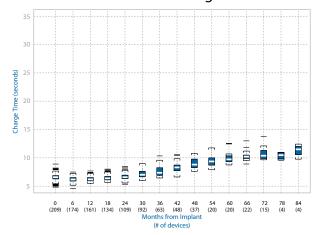
As shown in the graph below, the performance of Medtronic ICD and CRT-D devices has improved. This graph shows the overall maximums, minimums, and medians for Medtronic ICD and CRT-D products, beginning with the 7221 Micro Jewel. A progression toward shorter mean charge times and less variation has occurred between 1996 and 2002. Models released after 2002 have limited experience but appear to be continuing this performance.







**7227 GEM** Charge Time

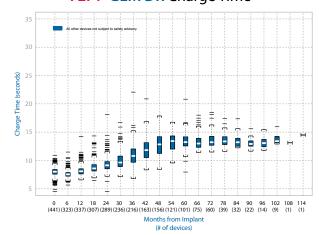


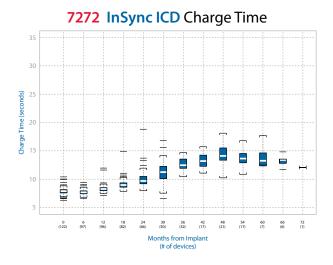

7229 GEM II VR Charge Time

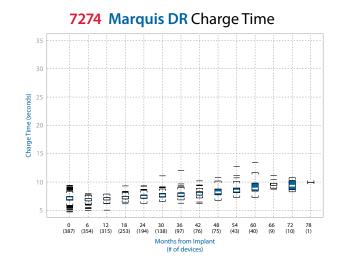


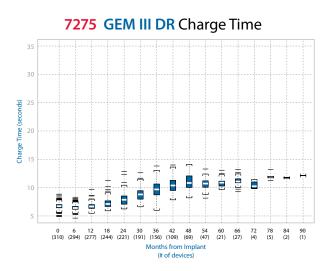

7230 Marquis VR Charge Time

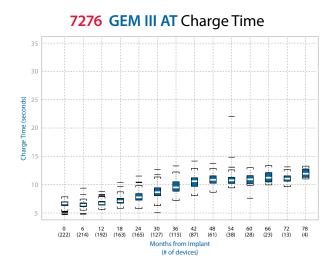


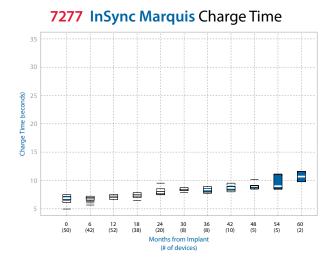

7231 GEM III VR Charge Time

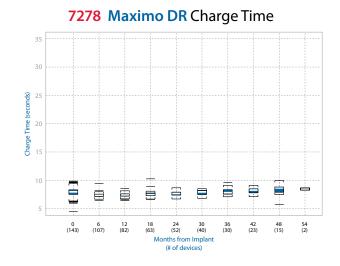




7232 Maximo VR Charge Time

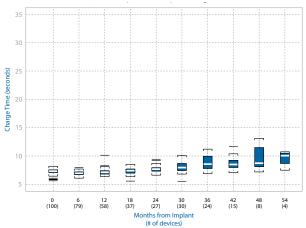




## 7271 GEM DR Charge Time

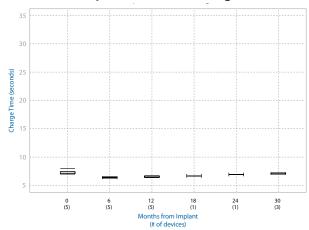


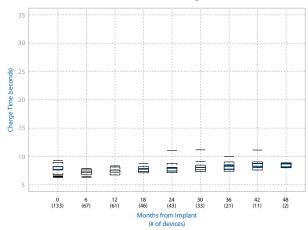


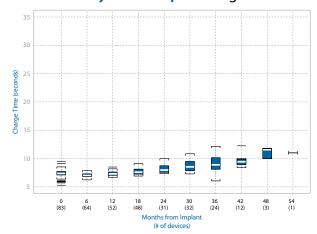


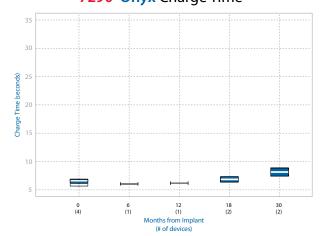




**7279** InSync III Marquis Charge Time

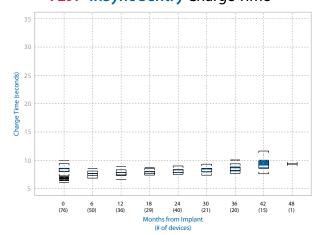


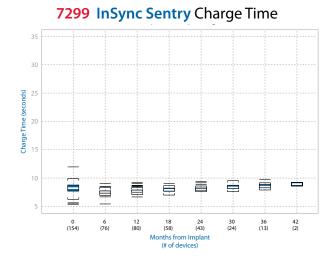

7285 InSync III Protect Charge Time

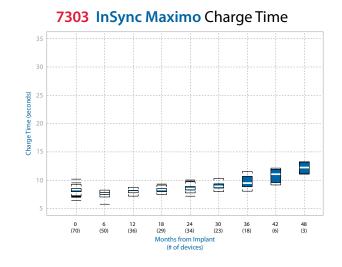


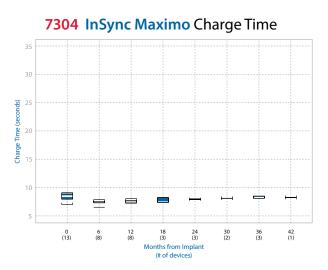

**7288** Intrinsic Charge Time

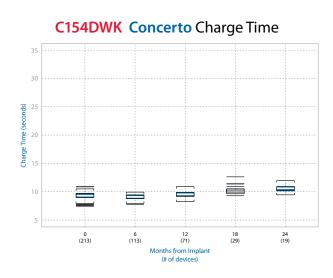


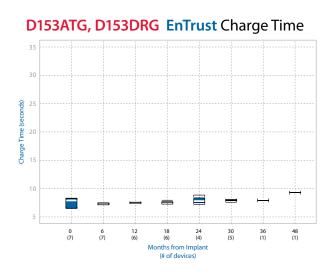

## 7289 InSync II Marquis Charge Time

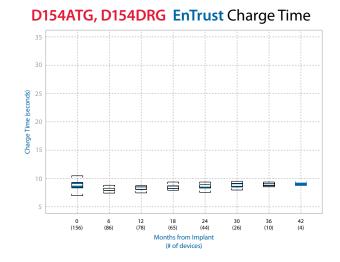


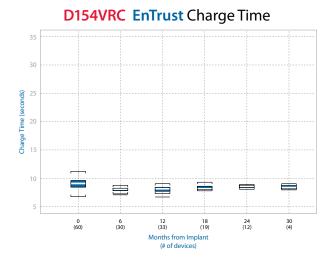


7290 Onyx Charge Time

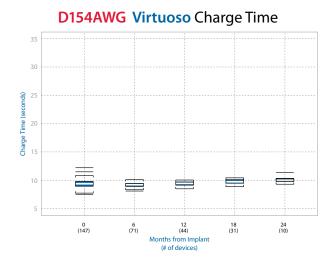


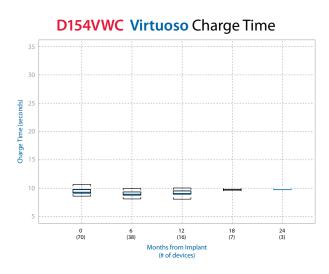


7297 InSync Sentry Charge Time














## **Advisories**

### 6930, 6931, 6948, 6949 Sprint Fidelis Defibrillation Leads

Original Date of Advisory: October 2007

#### Potential Conductor Wire Fracture

#### Product

All Model 6930, 6931, 6948, and 6949 implantable defibrillation leads

#### Advisory

There are two primary locations where chronic conductor fractures have occurred on Sprint Fidelis leads: 1) the distal portion of the lead, affecting the anode (ring electrode) and 2) near the anchoring sleeve tie-down, predominantly affecting the cathode (helix tip electrode), and occasionally the high voltage conductor. These two locations account for approximately 90% of the chronic fractures identified in Returned Product Analysis (RPA). The remaining 10% of chronic fractures occurred in the DF-1 connector leg and the proximal portion of the RV coil. High voltage conductor fractures could result in the inability to deliver defibrillation therapy. Anode or cathode conductor fractures (at either location) may present clinically as increased impedance, oversensing, increased interval counts, multiple inappropriate shocks, and/or loss of pacing output.

#### Patient Management Recommendations

Medtronic recommends you consider the following as part of routine follow-up for each patient:

- To reduce the risk of inappropriate detection and therapy due to oversensing, program VF detection for initial Number of Intervals to Detect (NID) to nominal settings 8/24) or longer at physician discretion and Redetect NID to nominal settings (12/16)
- Turn ON Patient Alert for RV Pacing, RV Defibrillation, and SVC
  Defibrillation impedance. For Concerto, Virtuoso, Consulta, Secura
  and Maximo II devices enrolled on the Medtronic CareLink Network,
  turn ON the Medtronic CareAlert Notifications for these same
  parameters.
- To optimize effectiveness of the lead impedance alert:
  - Review V. Pacing Lead Performance Trend to determine typical chronic impedance value for the patient (typical values for Fidelis leads should be 350-1,000 ohms)
  - Program lead impedance alert threshold for RV Pacing to 1,000 ohms, if the typical chronic impedance for the patient is ≤ 700 ohms, or
  - $-\,$  Program lead impedance alert threshold for RV Pacing to 1,500 ohms, if the typical chronic impedance for the patient is > 700 ohms
  - Program lead impedance alert threshold for RV Defibrillation and SVC Defibrillation to 100 ohms

#### Status Update

Sprint Fidelis lead performance continues to be in line with the information provided in the October 2007, May 2008 and March 2009 advisory communications. In consultation with the Independent Physician Quality Panel, our patient management recommendations are as follows:

- When a lead fracture is suspected or confirmed, we strongly recommend prompt patient attention. Patients should contact their physician without delay if they experience unexpected shocks.
- The Lead Integrity Alert (LIA¹) is expected to provide 3 days advance notice prior to inappropriate therapy to 76% of the patients with lead fractures. As a result, we strongly recommend that all Sprint Fidelis patients who have the ability to upgrade to Lead Integrity Alert do so promptly.

- The risk of prophylactic intervention appears to be greater than the risk of serious injury resulting from lead fracture even for pacemaker dependent patients, except in select individual patient circumstances as determined by the physician
- Special circumstances may apply to device change-out or upgrade procedures when a lead fracture has not occurred. At least four options are available, each of which carries risks and benefits that should be taken into consideration:
  - Leave a properly performing lead intact; this is likely to be the best choice for the majority of patients
  - Place a new ICD lead without extraction of the existing lead
  - Place a pace sense lead without the extraction of the existing lead.
     This option reflects the observation that approximately 90% of Fidelis failures are related to fractures in the pace sense circuit. It is unknown what the failure rate of the high voltage conductor would be should a pace sense conductor failure occur in the existing Sprint Fidelis lead.
  - Unusual patient circumstances may warrant extracting and implanting a new ICD lead. Factors to consider when making this decision include patient life expectancy, age, and comorbidities, number of implanted leads and duration of implant, and patient preference. Medtronic's Independent Physician Quality Panel recommends that if a lead requires removal, the procedure be performed by a physician with extensive lead extraction experience. (A new HRS consensus document on lead extraction is expected to be available in May 2009.)

Out of the initial implant population of 204,000 in the United States, approximately 150,100 remain implanted. According to System Longevity Study results, lead survival is estimated to be 93.6% (+2.1/-3.1) at 48 months. As the implanted population ages and the sample size increases for each time interval, the accuracy of the estimated survival probability will increase as shown by tighter confidence intervals.

As part of our commitment to keep you informed about Sprint Fidelis lead performance, Medtronic publishes the quarterly System Longevity Study's all-cause lead survival curve and the CareLink dataset lead survival curve for the Model 6949 lead at <a href="https://www.medtronic.com/fidelis">www.medtronic.com/fidelis</a>. Semi-annual updates will also continue to be provided in the Product Performance Report. Additional information about the Sprint Fidelis lead is available at <a href="https://www.medtronic.com/fidelis">www.medtronic.com/fidelis</a>.

#### Lead Integrity Alert<sup>†</sup>

Medtronic has released Lead Integrity Alert (LIA) software. LIA was designed to provide patients more advance notice via an audible sound of a potential lead fracture that could result in an unnecessary shock.

Data show that with LIA, approximately 76% of the patients with Sprint Fidelis leads are expected to receive 3 or more days advance warning of a potential lead fracture that could result in an unnecessary shock.

Upon hearing the alert, patients should contact their physician without delay.

LIA can be downloaded into nearly all Medtronic implantable cardioverter defibrillators (ICDs) and cardiac resynchronization therapy defibrillators (CRT-Ds) implanted worldwide.



## Sigma Implantable Pulse Generators

Original Date of Advisory: November 2005

## **Potential Separation of Interconnect Wires**

#### **Product**

A specific subset of Sigma series pacemakers may fail due to separation of interconnect wires from the hybrid circuit. Specific model and serial numbers of affected devices are available online at <a href="http://SigmaSNList.medtronic.com">http://SigmaSNList.medtronic.com</a>.

### Advisory

This subset of Sigma series pacemakers that may fail due to separation of interconnect wires from the hybrid circuit may present clinically as loss of rate response, premature battery depletion, intermittent or total loss of telemetry, or no output.

Separation of redundant interconnect wires has been observed on hybrid terminal blocks. Device failure occurs only where both interconnect wires separate from a hybrid terminal block. In October 2005, testing and analysis identified the root cause of these failures and the affected population. Hybrid circuits used in this subset of devices were cleaned during manufacturing with a particular cleaning solvent that could potentially reduce the strength of the interconnect wire bond over time.

Our modeling predicts a failure rate from 0.17% to 0.30% over the remaining lifetime of these pacemakers. No provocative testing can predict which devices may fail.

#### **Patient Management Recommendations**

To assist physicians in their patient care and after discussion with physician consultants, Medtronic offers the following recommendations:

- Medtronic does not recommend replacement of these devices prior to normal elective replacement (ERI), based on the low probability of occurrence of a serious event in this population
- Continue routine follow-up in accordance with standard practice
- Advise patients to seek attention immediately if they experience return of symptoms (e.g., syncope or light-headedness)
- Determine whether device replacement is warranted on a case-by-case basis based upon consultation with patients, review of the individual

patient's medical history, and consideration of the relative risks of an invasive procedure

#### Status Update

The Sigma Family device performance related to the interconnect wires separation mechanism continues to be within Medtronic's engineering projections. As of January 31, 2009, 213 devices out of approximately 40,000 devices worldwide have been confirmed as having experienced interconnect wire separation. Fifty-three (53) of these devices were returned from the United States.

One hundred fifty-eight (158) of the 213 devices (0.40%) were returned with information indicating a problem with the patient's pacing system prior to explant. The remaining 55 devices (0.14%) were returned with no information indicating a potential malfunction while implanted or with insufficient information to determine the state of the device at explant. Lacking definite information indicating proper operation until explant, these devices are conservatively categorized as having experienced interconnect wire separation while implanted.

Implant duration for the 213 devices confirmed as having experienced interconnect wire separation has ranged between 17 and 83 months, with an average of 61.3 months.

Out of the initial advisory population of 40,000 worldwide, approximately 16,200 remain implanted. Approximately 3,900 of these are in the United States.

The Patient Management Recommendations set forth in the advisory remain unchanged.

## Advisories continued

7274 Marquis DR 7230 Marquis VR 7278 Maximo DR 7232 Maximo VR

7277 InSync Marquis 7289 InSync II Marquis

7279 InSync III Marquis 7285 InSync III Protect

Original Date of Advisory: February 2005

## Potential Premature Battery Depletion Due to Battery Short

#### **Product**

The specific subset of Marquis family ICD and CRT-D devices having batteries manufactured prior to December 2003 is affected. Devices manufactured with batteries produced after December 2003 are not affected. Specific model and serial numbers of affected devices are available online at http://MarquisSNList.medtronic.com.

## Advisory

Medtronic Marquis family of ICD and CRT-D devices having batteries manufactured prior to December 2003 may experience rapid battery depletion due to a specific internal battery short mechanism. Battery design changes were implemented in December 2003 that eliminate the possibility of this internal shorting mechanism.

Highly accelerated bench testing indicated the rate of this shorting mechanism may increase as the battery is depleted. As of February 2005, the rate of shorting was approximately 1 in 10,000 (0.01%); bench test data indicated the rate may increase to between 0.2% and 1.5% over the second half of device life.

No provocative testing can predict which of these devices will experience this issue. Once a short occurs, battery depletion can take place within a few hours to a few days. After depletion the device ceases to function. It is also possible that as the battery depletes quickly, patients may experience temporary warmth in the area surrounding the ICD.

### **Patient Management Recommendations**

We recommend you consider the following patient management options:

- Conduct quarterly (i.e., every 3 months) follow-up procedures
- Inform patients that should they experience warmth in the area surrounding the ICD to seek follow-up care promptly
- Program Low Battery Voltage ERI Patient Alert to "On-High." This will result in an audible, alternating tone in the limited circumstances where a battery depletes slowly over a number of days. Data indicates most shorts will occur rapidly and will not be detected by this feature.

 Provide a hand-held magnet to patients to check device status and program the Low Battery Voltage ERI Patient Alert to "On-High." Device operation may be monitored periodically (e.g., daily) by patients placing the magnet over the device for 1-2 seconds. If the device is functional, a steady tone will sound for approximately 20 seconds. If no tone is heard, follow-up care should be sought promptly.

#### Status Update

The Marquis Family device performance related to the battery shorting mechanism continues to be within Medtronic's engineering projections. As of January 31, 2009, 129 Marquis Family devices have been confirmed as having this internal battery shorting mechanism. Sixty-six (66) of these devices were returned from the United States.

Of the 129 returns, 40 have been identified by patients reporting warmth in the ICD pocket, 44 by a regularly scheduled follow-up or during a non-device-related hospital visit, 17 by hand-held magnet test or CareLink attempt, nine by return of bradycardia symptoms, five by the Patient Alert sounding, and 14 unknown.

Implant duration for the 129 devices ranged between 11 to 70 months, with an average of 41 months.

Consistent with Medtronic projections, the observed rate of shorting is higher in the second half of device life than in the first half of device life. Of the devices that have exhibited shorting in the last half of device life, 48% occurred in the last quarter of device life and 31% in the last 10% of device life.

Out of the initial advisory population of 87,000 worldwide, approximately 23,900 remain implanted. Approximately 20,700 of these are in the United States.

The Patient Management Recommendations set forth in the advisory remain unchanged.

#### Warranty

All Marquis devices are subject to a Limited Warranty. Devices returned to Medtronic and determined to be malfunctioning will be replaced or credited in accordance with the warranty terms. In addition, for devices subject to the Marquis advisory, should a physician decide to replace a device for a patient who is pacemaker dependent or who receives frequent VT/VF therapy, Medtronic will, upon receipt of a written statement from the physician setting forth the basis for early replacement of the device, provide a replacement device at no cost.



## Kappa 600, 700 Dual Chamber (D, DR, and VDD) IPGs

Original Date of Advisory: March 15, 2002

## **Potential Fractured Power Supply Wires**

#### Product

A specific subset of Kappa 700/600 dual chamber (D, DR, and VDD) implantable pulse generators has been identified by serial numbers. Hospitals and Physicians were notified. Specific model and serial numbers of affected devices are available by calling US Technical Services at 1 (800) 505-4636.

#### Advisory

As of March 15, 2002, Medtronic observed 53 related failures (0.02%) in over 255,000 Kappa 700/600 dual chamber (D, DR, and VDD) series devices sold worldwide. Medtronic voluntarily communicated this information to physicians because these failures had been observed in patients having submuscular implants.

These devices have presented with an electrical reset, intermittent output, or no output. Our investigation identified the root cause as fractured wires supplying power to the pacemaker. This has been directly correlated to submuscular placement of these devices. Submuscular implant locations (e.g., subpectoral, abdominal, etc.) can result in additional stress and repetitive flexing on the implanted device causing excessive fatigue on these wires. Of the estimated 4,000 devices implanted submuscular, approximately 200 (5%) may experience this failure. These stresses on the implanted device are unique to submuscular implant sites and do not exist with subcutaneous implants.

#### Patient Management Recommendations

While there is no provocative testing or time dependency that will predict which submuscular placed device will fail, certain electrical resets may be an indicator that a wire fracture has occurred. Normal electrical resets can occur as a result of electrosurgical procedures such as cautery and ablation or from defibrillation therapy. If none of the normal causes of electrical reset can be confirmed, or if a device serial number presents as "000000" following an electrical reset, this may be an indicator of a wire fracture.

For patients who have submuscular implants of devices within the designated serial number range and who are pacemaker dependent with no underlying rhythm, replacement of the device should be considered. Medtronic will provide the replacement device free of charge under the terms of its warranty program if a device is replaced in these patients.

For patients having subcutaneous implants, no change to your current patient care and follow-up is advised.

#### Status

Device performance related to this advisory continues to be within Medtronic's engineering projections. Patient management recommendations remain unchanged. As of January 31, 2009, 308 out of approximately 180,000 distributed (0.17% incidence) Kappa family devices worldwide have been confirmed as having fractured power supply wires. One hundred sixty-three (163) of these devices were returned from the United States. Out of the initial implant population of 121,000 in the United States, approximately 24,700 remain implanted.

## Advisories continued

## **7227Cx GEM** 7229Cx GEM II VR

Original Date of Advisory: October 15, 1999

#### **Potential Circuit Overload**

#### Product

Model 7227Cx and Model 7229Cx implantable cardioverter defibrillators supplied before October 15, 1999, with serial numbers ending in an "H." For example, PIPxxxxxxH or PJJxxxxxxH, where x is a variable numeric, may be affected. Specific model and serial numbers of affected devices are available by calling US Technical Services at 1 (800) 723-4636.

#### IMPORTANT REMINDER:

Medtronic strongly advises physicians who have patients under their care affected by this issue to reprogram the Patient Alert feature "ON" without delay.

#### Advisory

Manufacturing error in a small percentage of devices may cause circuit overload when AX ≥ B High Voltage energy is delivered via an integrated bipolar lead. GEM Model 7227Cx and GEM II VR Model 7229Cx devices with dedicated bipolar sensing leads are not affected by this issue. Devices affected may not be able to subsequently charge to full energy and experience "charge circuit timeout."

#### Patient Management Recommendations

- Assessment of all patients with the potentially affected devices implanted AND an integrated bipolar ICD lead such as the Models 6942 and 6945 should take place without delay
- Reprogram polarity pathway to B ≥ AX for all cardioversion and defibrillation therapies
- Confirm correct device function:
  - Perform a full energy charging sequence
  - If "charge circuit timeout" is observed, contact your Medtronic representative
  - If device charges normally, it has not been damaged and will function appropriately with polarity programmed B ≥ AX

Recent studies have demonstrated that DFTs are similar or lower in a B ≥ AX polarity pathway when compared to  $AX \ge B$ .

Devices implanted with functional dedicated bipolar leads such as the Models 6932, 6934S, 6936, 6943, and 6966 are not affected.

#### Status

Device performance related to this advisory continues to be within Medtronic's engineering projections. Patient management recommendations remain unchanged. Out of the initial implant population of 10,000 in the United States, approximately 1,200 remain implanted. The devices affected by this advisory are nearing the end of their expected battery longevity.



4504, 4504M CapSure Atrial Lead 4582 Target Tip Atrial Lead

Original Date of Advisory: October 4, 1996

## **Lead Survival Below Expectations**

#### **Product**

All Model 4504, 4504M, and 4582 implantable pacing leads

#### Advisory

Lead survival probability is below expectations and is primarily associated with insulation degradation due to Metal Ion Oxidation (MIO).

#### Patient Management Recommendations

- Follow patients in accordance with Medicare Guidelines
- Avoid the use of the AAI or AOO mode
- During patient evaluation, give careful attention to lead performance such as:
  - Review patient ECG for indications of transient sensing and/or capture abnormalities
  - Monitor in clinic for impedance less than 250 ohms or a decrease of more than 30% from implant values (or an established baseline using telemetry), which would suggest lead failure
- Consider the use of unipolar if the pulse generator has this capability
- At the time of pacemaker system revision (e.g., normal pulse generator or ventricular lead revision), carefully evaluate lead integrity and patient status before choosing to reuse

#### Status

Patient management recommendations remain unchanged. Laboratory analysis trends and engineering conclusions remain unchanged. Out of the initial implant population of 16,600 in the United States, approximately 1,700 remain implanted. According to System Longevity Study results, lead survival is estimated to be 66.1% at 8 years, 9 months.



## 4004, 4004M CapSure Ventricular Lead **4082** Target Tip Ventricular Lead

Original Date of Advisory: October 8, 1993

## **Lead Survival Below Expectations**

#### **Product**

All Model 4004/4004M and 4082 implantable pacing leads

## Advisory

Lead survival probability is below expectations due primarily to polyurethane insulation failure (MIO) and conductor fracture (associated with "subclavian crush").

### **Patient Management Recommendations**

- Increase, as appropriate, the frequency of patient evaluation through in-clinic visits supplemented with transtelephonic and/or ambulatory monitoring; for example, consistent with Guideline I under Medicare Pacemaker Monitoring Guidelines (50-1 Cardiac Pacemaker Evaluation Services)
- During patient evaluations, give careful attention to lead performance such as:
  - Reviewing patient ECGs carefully for indications of transient sensing and/or capture abnormalities
  - Monitoring in-clinic for impedances less than 300 ohms or a decrease of more than 30% from implant values (or an established baseline using telemetry), which would suggest lead failure
  - Eliciting and thoroughly investigating any patient complaints suggestive of lead failure

- Consider whether prophylactic replacement would be appropriate, especially in patients at high risk, such as pacemaker dependent patients
- Carefully evaluate lead integrity when performing routine pulse generator replacements. Replace lead if:
  - Insulation breaches are observed
  - Lead impedance is less than 300 ohms or has decreased by more than 30% from implant values
  - Impedance or voltage threshold measurements vary significantly when multiple readings are taken
  - If the risk of continued use outweighs the risk associated with implanting a new lead
- As always, individual circumstances and medical judgment dictate patient care and frequency of follow-up
- Consider lead replacement during normal pulse generator change-out. Carefully evaluate lead integrity and patient status before choosing to reuse.

#### Status

Patient management recommendations remain unchanged. Laboratory analysis trends and engineering conclusions remain unchanged. Out of the initial implant population of 77,000 in the United States, approximately 6,000 remain implanted. According to System Longevity Study results, lead survival is 50.6% at 10 years, 9 months.



### **4012** Target Tip Ventricular Lead

Original Date of Advisory: September 26, 1991

## **Lead Survival Below Expectations**

#### Product

All Model 4012 implantable pacing leads

#### Advisory

Lead survival probability beyond 5 years is below expectations due primarily to polyurethane insulation failure (due to ESC and/or MIO) and conductor fracture (associated with "subclavian crush").

### **Patient Management Recommendations**

Consider increasing frequency of monitoring (e.g., from quarterly to bimonthly or monthly). Consider the following activities as part of normal follow-up procedures:

- Monitor for significant changes in impedance, which could be an indication of impending failure (pulse generator must have impedance telemetry capabilities)
- Review patient ECGs carefully for indications of transient sensing and/or capture abnormalities. This can be done using transtelephonic or in-clinic monitoring and/or using ambulatory monitoring.
- Elicit any patient complaints suggestive of lead failure and investigate thoroughly lead integrity/ performance characteristics following reports of patient complaints or symptoms using the above techniques

- Consider whether prophylactic replacement would be appropriate in patients at high risk, such as pacemaker dependent patients
- Evaluate carefully the integrity of the lead during routine pulse generator replacement before choosing to reuse. Specifically, Medtronic recommends placement of a new lead if:
  - Insulation breaches are observed
  - Lead impedance is less than 300 ohms or has decreased by more than 30% from implant values
  - Electrical properties such as impedance and threshold vary significantly when multiple readings are taken

As always, medical judgment must be used to establish the appropriate schedule and course of care for every individual, particularly pacemaker dependent or other patients at higher risk.

#### Status

Patient management recommendations remain unchanged. Laboratory analysis trends and engineering conclusions remain unchanged. Out of the initial implant population of 96,800 in the United States, approximately 6,500 remain implanted. The System Longevity Study results show 62.2% lead survival at 15 years, 9 months.



## Minix, Minix ST, Micro Minix IPGs

Original Date of Advisory: May 6, 1991

## Potential Delayed Restoration of Permanent Settings

#### **Product**

All Models of the Minix, Minix ST, and Micro Minix families of implantable pulse generators

### Advisory

Possibility of delayed restoration of permanent pacing mode and parameters, after the magnet or programming head is removed under certain conditions.

#### Patient Management Recommendations

To eliminate any potential risk associated with temporary programming, depress the INTERROGATE key and verify successful interrogation before moving the programming head away from the pulse generator. The delay condition can also be terminated by repositioning the programming head and depressing the EMERGENCY VVI key.

#### Status

Device performance related to this advisory continues to be within Medtronic's engineering projections. Patient management recommendations remain unchanged. Out of the initial implant population of 65,000 in the United States, approximately 4,100 remain implanted. The devices affected by this advisory are nearing the end of their expected longevity.

## **Performance Notes**

## **Clinical Management of VCM near Elective Replacement**

#### Background

Medtronic Technical Services has received reports of devices going to ERI or end of life (EOL) sooner than expected after a normal follow-up in which the device longevity was projected to be approximately 18 months. It has been noted that these cases typically involve Kappa 700 devices where Ventricular Capture Management set the ventricular lead to high output (5 V, 1 ms), which occurs by device design when a high threshold is measured. It is important for physicians and allied professionals to understand VCM behavior as it relates to longevity so that they can, in turn, understand how this affects management of the device and follow-up visits as VCM equipped IPGs near the end of their expected longevity.

## Device Longevity and VCM Behavior

Ventricular Capture Management is a feature that uses evoked response sensing to determine the stimulation threshold needed to capture the ventricular chamber. Proper detection of the evoked response is crucial to the VCM algorithm determining an accurate capture threshold. There are rare conditions, however, during which the VCM algorithm will not be able to measure the evoked response accurately. When this occurs, for safety reasons the VCM algorithm will reprogram the output to 5 V, 1 ms until the subsequent VCM measurement.

If the device has considerable remaining longevity, these occasional excursions to high output do not substantially affect remaining longevity. However, if the device has less than approximately 18 months remaining longevity, there is the possibility that the high output condition caused by the 5 V, 1 ms output will drain the battery and trigger ERI.

When ERI is declared by the device, VCM is disabled and the outputs are left at 5 V, 1 ms until the device is reprogrammed at an in-office follow-up. This increased current drain of a high output condition will speed depletion of the device, possibly resulting in the device getting to the EOL (battery voltage  $\leq 2.15$  V).

Please note that the following parameter changes occur when the device goes to ERI:

Table: IPG Therapy Parameter Changes at ERI

| Parameter                      | Value  |
|--------------------------------|--------|
| Pacing Mode                    | VVI    |
| Lower Rate                     | 65 bpm |
| Single Chamber Hysteresis      | OFF    |
| Sleep Function                 | OFF    |
| Ventricular Capture Management | OFF    |
| Atrial Sensing Assurance       | OFF    |
| Ventricular Sensing Assurance  | OFF    |

Kappa 700 is Medtronic's first-generation VCM algorithm, which has a relatively higher incidence of evoked response undersensing compared to subsequent algorithms, resulting in more frequent high output conditions. Therefore, Kappa 700 products are the primary focus of this note. It should be noted that IPGs equipped with the second-generation VCM algorithm (Kappa 900, EnPulse, Adapta/Versa/Sensia, and Relia) have not been observed with evoked response undersensing in the general population, though the items listed in "Follow-Up Considerations" may also be used on these devices.

## Follow-Up Considerations

- Estimated longevity in the event the device goes to high output can be determined by the following steps. This allows the clinician to determine follow-up frequency if he or she is concerned the device may go to ERI due to high output.
  - Program the ventricular channel to 5 V, 1 ms
  - Navigate to Data/Battery and Lead Measurements
  - When the message stating "Warning Old Data" is displayed, select "Yes" to measure battery voltage and lead impedance at the new ventricular outputs
  - An updated remaining longevity estimate will be calculated on the elevated outputs. Note the "Minimum Remaining Longevity." Clinical decisions can be based on this value.
  - Program the Amplitude and Pulse Widths back to their original values before leaving the session
- If the capture trends and lead impedance trends are stable, VCM can be programmed to "Monitor Only" for the remaining device life. This should be considered only if remaining longevity is 18 months or less.
- Follow-up frequency can be increased for those patients who do not have stable capture or lead impedance trends. This can be done via a CareLink Home Monitor, or in-office.

 $<sup>^1</sup>$  Medtronic, Inc. (2001). Medtronic Kappa 700/600 Series Pacemaker Reference Guide (Chapter 4, p. 27). Can be retrieved from http://manuals.medtronic.com.

## **Ensuring the Accuracy of Battery Longevity Estimates**

### **Purpose of This Information**

This article is intended to help the clinician understand how Medtronic estimates CRT-D, ICD, and IPG device longevity and Medtronic's performance against these estimates.

### **Device Longevity and Battery Depletion**

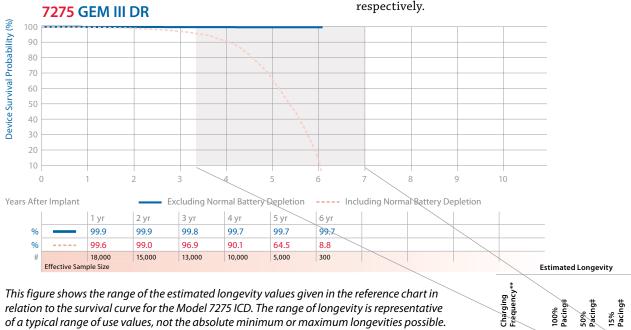
The device service life ends when the usable battery capacity is depleted. The time to battery depletion depends on three factors:

- The amount of electrical energy expended in providing therapy to the patient
- The amount of energy consumed by the electronic circuitry to perform the functions of the device (e.g., operating the microprocessor, telemetry, memory, and charging component)
- The energy capacity of the battery

Medtronic has developed a statistical model for device longevity that accounts for each of these factors, and has validated the model with real time clinical performance. During the development of its products, Medtronic engineers characterize device longevity using this model. Testing begins during development and continues after market release to ensure the accuracy of device longevity estimates.

#### Using Survival Curves to Assess Longevity

The survival curves in the Product Performance Report represent the composite experience of thousands of devices over a wide range of programming options and patient use conditions. While the curves are useful for understanding the overall performance of a population of devices, they cannot be used to accurately predict the longevity of a specific device in a specific patient. To get a longevity prediction for a specific device, the longevity model must be used. The model is available by contacting Medtronic's Technical Services Department.


Because the survival curves are an aggregate result, the Reference pages in the Product Performance Report include several longevity estimates for a range of use conditions. These longevity estimates, originally published in the device Technical Manual, are mean values calculated for the parameters given. This range of longevity estimates can be compared to the survival curve including normal battery depletion to assess the overall clinical performance of a device model against the original longevity estimates.

If most of a device model's population is being used at nominal parameters and conditions, the time at which the survival curve including normal battery depletion equals 50% should approximate the midpoint in the range of longevity estimates.

If devices tend to be used at conditions that consume more or less energy than nominal, then the time at which the survival curve equals 50% should tend toward the lower or higher end of the range of longevity estimates, respectively.

Monthly

Semiannual



approximately the mid-point of the range of longevity values.

of a typical range of use values, not the absolute minimum or maximum longevities possible. In this example, the survival curve including normal battery depletion is approaching 50% at

5.0 5.5

## Interactions between Cardiac Pacing and Ventricular Arrhythmia Initiation

#### **Purpose of This Information**

This article is intended to provide information for consideration when programming pacemaker operation in ICDs and pacemakers.

#### Background

Right ventricular pacing has been associated with increased risk of appropriate therapy for ventricular tachycardia (VT) and ventricular fibrillation (VF) in ICD patients.1 Abrupt changes in ventricular cycle lengths (short-long-short, S-L-S) may precede initiation of VT/VF in some instances. S-L-S sequences may be permitted in all forms of cardiac pacing. The pause lengths depend upon pacing mode and lower rate programming.<sup>2-4</sup> Because pauses may be associated with VT/VF initiation, pause suppression algorithms have been developed in ICDs. Although pause suppression may have utility in specific patients with repolarization abnormalities and pause dependent VT, it has not been shown to reduce arrhythmia incidence in the general ICD population.5 Conversely, S-L-S sequences may occur with ventricular pacing in a variety of ways, including atrial tracking of premature atrial contractions (PACs) or by terminating pauses with ventricular paced beats. 6 In some patients, the ectopic depolarization pattern of a ventricular paced beat may be pro-arrhythmic, independent of pause timing. These observations have further enforced the desire to reduce unnecessary ventricular pacing.

#### **Clinical Trial Observations**

Medtronic-sponsored clinical trials were retrospectively analyzed to further understand pause-mediated (i.e., S-L-S) scenarios prior to VT/VF. S-L-S onset scenarios were observed in a minority of patients in all pacing modes. Pacemaker interactions prior to VT/VF are dependent on patient conditions, as well as the technical aspects of pacing operation (i.e., pacing mode, lower rate, and AV interval). Because a very low frequency of ventricular pacing is observed during Managed Ventricular Pacing (MVP)<sup>7-9</sup> or VVI 40 pacing modes, <sup>10</sup> the long interval tended to terminate with a ventricular sense. In DDD mode, the long interval tended to be terminated by a ventricular pace. Long intervals of > 1,000 ms prior to VT/VF were rare in MVP mode. In these analyses, only an association between cardiac pacing and VT/VF initiation can be observed, causality cannot be established. The ongoing MVP (Managed Ventricular Pacing vs. VVI 40 Pacing) Trial, a 2-year, 1,000-patient prospective, randomized trial in ICD patients may offer more insight into the frequency of VT/ VF across pacing modes.11

#### **Pacemaker Patients**

In pacemaker patients, ventricular pacing has been associated with higher incidence of AT/AF and heart failure hospitalization. 12,13 MVP provides atrial rate support while dramatically reducing ventricular pacing in patients with sinus node dysfunction and transient AV block.9 However, as stated in Medtronic reference manuals, depending upon the patient's intrinsic rhythm and conduction, MVP may allow ventricular cycle variation and occasional pauses of up to twice the lower rate.

DDD pacing with long AV intervals may reduce ventricular pacing and may decrease the potential length of pauses compared to MVP. However, DDD with long AV interval programming does not appear to be as effective as AAI-based pacing modes at reducing ventricular pacing,  $^{13,14}\,\mathrm{may}$  lead to endless loop tachycardia,  $^{14,15}\,$ and does not completely eliminate pauses. Also, in DDD mode, a higher programmed lower rate or activation of rate response can lead to an increase in AV conduction times and a higher percentage of ventricular pacing. The potential benefits of reducing ventricular pacing must be weighed against the potential for longer ventricular pauses. Therefore, careful consideration should be given to pacemaker mode and lower rate programming, particularly in the setting of frequent AV block and repolarization abnormalities due to congenital Long QT, electrolyte imbalances, and some medications that prolong QT.

#### Conclusion

Pacemaker operation may interact with VT/VF initiation in a variety of ways. The patient's heart failure status, arrhythmia substrate, medications, and the relative importance of maintaining ventricular synchrony versus ensuring ventricular rate support must be weighed when choosing optimal hardware (ICD vs. pacemaker) and pacemaker programming (pacing mode, lower rate, etc.).

#### References

- <sup>1</sup> Steinberg JS, Fischer A, Wang P, et al. The clinical implications of cumulative right  $ventricular\ pacing\ in\ the\ multicenter\ automatic\ defibrillator\ trial\ II.\ \textit{JCardiovas} and all in the multicenter\ automatic\ defibrillator\ trial\ II.\ \textit{JCardiovas} and all in the multicenter\ automatic\ defibrillator\ trial\ II.\ \textit{JCardiovas} and all interpretations are all interpretations and all interpretations are all interpretations and all interpretations are all interpretations and all interpretations are all interpretations and all interpretations are all interpretations and all interpretations are all interpretations and all interpretations are all interpretations and all interpretations are all interpretations and all interpretations are all interpretations and all interpretations are all interpretations and all interpretations are all interpretations and all interpretations are all interpretations and all interpretations are all interpretations and all interpretations are all interpretations and all interpretations are all interpretations and all interpretations are all interpretations and all interpretations are all interpretations and all interpretations are all interpretations and all interpretations are all interpretations are all interpretations and all interpretations are all interpretations and all interpretations are all interpretations and all interpretations are all interpretations are all interpretations are all interpretations are all interpretations are all interpretations are all interpretations are all interpretations are all interpretations are all interpretations are all interpretations are all interpretations are all interpretations are all interpretations are all interpretations are all interpretations are all interpretations are all interpretations are all interpretations are all interpretations are all interpretations are all interpretations are all interpretations are all interpretations are all interpretations are all interpretations are all interpretations are all interpretations are all interpretations are all interpretations are all interpretations are all inter$ Electrophysiol. April 2005;16(4):359-365.
- <sup>2</sup> Pinski SL, Eguía LE, Trohman RG. What is the minimal pacing rate that prevents torsades de pointes? Insights from patients with permanent pacemakers. PACE. November 2002; 25(11):1612-1615.
- <sup>3</sup> Goldman DS, Levine PA. Pacemaker-mediated polymorphic ventricular tachycardia. PACE. October 1998; 21(10):1993-1995.
- <sup>4</sup> Gray CJ, Basta M, Sapp JL, Parkash R, Gardner MJ. Inappropriate application of managed ventricular pacing in a patient with Brugada syndrome leading to polymorphic ventricular tachycardia, ventricular fibrillation and implantable cardioverter debrillator shocks. *Heart Rhythm*. 2006, Abstract P1-89.
- <sup>5</sup> Friedman PA, Jalal S, Kaufman S, et al. Effects of a rate smoothing algorithm for prevention of ventricular arrhythmias: results of the Ventricular Arrhythmia Suppression Trial (VAST). *Heart Rhythm*. May 2006;3(5):573-580.
- <sup>6</sup> Himmrich E, Przibille O, Zellerhoff C, et al. Proarrhythmic effect of pacemaker stimulation in patients with implanted cardioverter-defibrillators. Circulation. July 15, 2003;108(2):192-197.
- $^{7}$  Sweeney MO, Ellenbogen KA, Casavant D, et al. Multicenter, prospective, randomized trial of a new atrial-based Managed Ventricular Pacing Mode (MVP) in dual chamber ICDs. J Cardiovasc Electrophysiol. 2005:16:1-7.
- 8 Sweeney MO, Shea JB, Fox V, et al. Randomized pilot study of a new atrial-based minimal ventricular pacing mode in dual-chamber implantable cardioverter-defibrillators. Heart Rhythm, July 2004;1(2):160-167.
- Gillis AM, Pürerfellner H, Israel CW, et al. Reducing unnecessary right ventricular pacing with the managed ventricular pacing mode in patients with sinus node disease and AV block. PACE. July 2006; 29(7):697-705.
- $^{\rm 10}$  Dual-chamber pacing or ventricular backup pacing in patients with an implantable defibrillator: the Dual Chamber and VVI Implantable Defibrillator (DAVID) Trial. *JAMA*. December 25, 2002;288(24):3115-3123.
- 11 Sweeney MO, Ellenbogen KA, Miller EH, Serfesee L, Sheldon T, Whellan D. The Managed ventricular pacing versus VVI 40 Pacing (MVP) Trial: clinical background, rationale, design,  $and\ implementation.\ \textit{J Cardiovasc Electrophysiol}.\ December\ 2006; 17(12): 1295-1298.$
- 12 Sweeney MO, Ellenbogen KA, et al. Adverse effect of ventricular pacing on heart failure and atrial fibrillation among patients with normal baseline QRS duration in a clinical trial of pacemaker therapy for sinus node dysfunction. Circulation. June 17, 2003;107(23):2932-2937.
- 13 Nielsen JC, Kristensen L, Andersen HR, Mortensen PT, Pedersen OL, Pedersen AK. A randomized comparison of atrial and dual-chamber pacing in 177 consecutive patients with sick sinus syndrome: echocardiographic and clinical outcome. J Am Coll Cardiol. August 20, 2003;42(4):614-623.
- 14 Nielsen JC, Pedersen AK, Mortensen PT, Andersen HR. Programming a fixed long atrioventricular delay is not effective in preventing ventricular pacing in patients with sick sinus syndrome. Europace. April 1999; 1(2):113-120.
- $^{\rm 15}$  Dennis MJ, Sparks PB. Pacemaker mediated tachycardia as a complication of the autointrinsic conduction search function. PACE. June 2004;27(6 Pt 1):824-826.

## AT500 Pacing System Follow-Up Protocol

#### **Purpose of This Information**

This article is intended to provide clinical guidance regarding follow-up practice and patient management when the AT500 battery voltage approaches the Elective Replacement Indicator (ERI) level of 2.6 volts.

### Background

Many AT500 pacing systems are now reaching their ERI voltage level (2.6 volts). This is expected since the battery used has an approximate longevity of 5-6 years under normal conditions (100% DDD pacing, 3 volts, 0.4 ms).

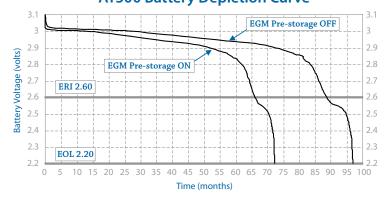
Technical Services has received reports of battery voltage levels below end of life (EOL of 2.2 volts) where EGM prestorage is programmed ON, or higher outputs and/or pacing rates are necessary. It is important for physicians and allied professionals to understand battery depletion characteristics between ERI and EOL so that they, in turn, can understand how this affects management of follow-up visits for the AT500 as this device nears the end of its expected longevity.

#### AT500 Battery and Longevity Information

In contrast to other IPGs, the AT500 does not change its mode, stimulation rate, or any other parameter when the battery voltage drops below the ERI level of 2.6 volts (with or without magnet applied). The Threshold Margin Test (TMT) is also not available.

Therefore, it is not possible to perform transtelephonic assessment of AT500 battery status. This must be done during an in-clinic follow-up session. A warning will be displayed on the Quick Look screen at the beginning of a programmer (follow-up) session when the ERI battery level occurs. The measured battery voltage will also appear on the programmer display and on printouts.

Battery depletion curves are shown in Figure 1, with special focus on device longevity when programming EGM prestorage ON or OFF.


Medtronic's review of ongoing AT500 battery life test data matches our original longevity modeling and so meets our expectations. However, when using longer durations between follow-up periods (> 3 months), clinicians should consider the following in setting their remaining longevity expectations.

- Enabling the "EGM Pre-storage On" capability will increase current and reduce device longevity by approximately 9 days for each month pre-storage is ON
- Longevity decreases with an increase in pacing rate, an increase in pacing amplitude or pulse width, a decrease in pacing impedance, a higher ratio of paced to sensed events, or extended use of the Atrial Preference Pacing, EGM prestorage, or Holter Telemetry features

#### Recommendations

Follow-up frequency should always be accelerated as devices reach ERI voltage levels to ensure device explant/replacement occurs prior to end of life voltage levels. With the wide variety of follow-up schedules being used, Medtronic recommends a 3-month follow-up frequency for the AT500 pacing systems. This is particularly important for patients in whom EGM prestorage is programmed ON, or higher outputs and/or pacing rates are necessary.





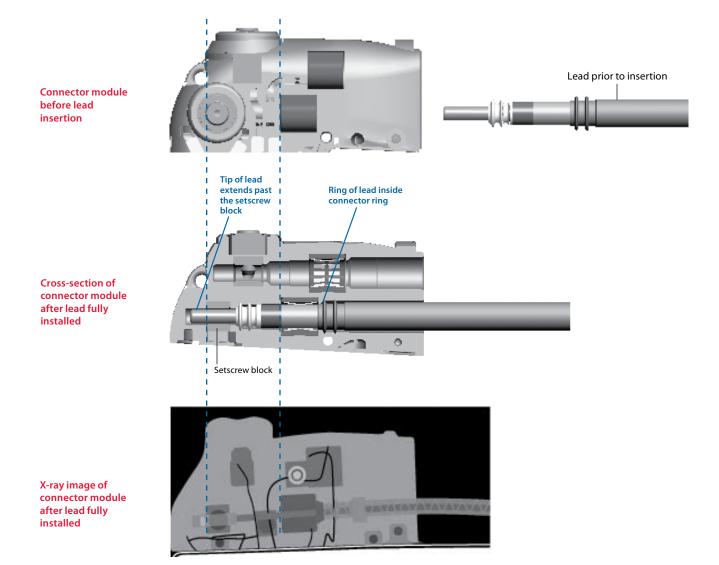
#### Figure 1

AT500 battery depletion curve for common parameter settings of DDDR, LR 70 ppm, UR 120 ppm, 100% pacing, Atrial - 2 V, 0.4 ms, 600 ohms, Ventricle - 2 V, 0.6 ms, 900 ohms, and EGM Pre-storage ON versus OFF.

## Insertion of the Lead into the Device

The implantable system consists of a pulse generator and at least one lead. The system operation depends on proper electrical and mechanical operation. With the advent of internationally recognized connector standards, the challenge of ensuring proper mechanical fit between the lead and device connectors has been simplified, although the international connector standard does not address all aspects of the procedure for connecting a lead to the device.

If the lead connector is not fully installed, oversensing may result as described in the connector problems section of the technical article, "Clinical Management of High Voltage Lead System Oversensing."


Performing the following steps can be used for each lead connection during the implant procedure:

1 Insert the torque wrench into the appropriate setscrew. For easier lead insertion, insert the lead closest to the device first.

- 2 Look down the connector port to verify that the port is not obstructed. If the port is obstructed, retract the setscrew to clear the bore. Take care not to disengage the setscrew from the connector block.
- 3 Push the lead into the connector port until the lead pin is clearly visible beyond the setscrew block.
- 4 Hold the lead in position while tightening the setscrew until the torque wrench clicks.
- 5 Tug gently on the lead to confirm a secure fit.

Current publications may provide additional information on implant procedures used by others, e.g., radiographic evaluation of the terminal pin beyond the terminal post.1

<sup>1</sup> Pickett RA III, Saavedra P, Ali MF, Darbar D, Rottman JN. Implantable cardioverter-defibrillator malfunction due to mechanical failure of the header connection. J Cardiovasc Electrophysiol. September 2004;15(9):1095-1099.

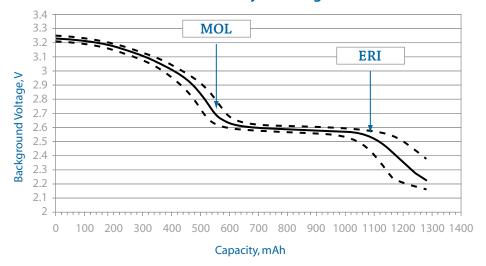


## GEM II DR/VR and GEM III DR/VR/AT ICD Battery Discharge Behavior

Medtronic manufactures and utilizes a unique lithium/ silver vanadium oxide battery in the GEM II/III family of ICDs. This battery has a distinctive voltage discharge with two regions of constant voltage at 3.2 volts and 2.6 volts.

The battery discharge curve (see curve below) is characterized by a significant decrease in the battery voltage approaching middle of life (MOL), followed by a plateau (MOL to ERI) where the battery voltage remains around 2.6 volts. The transition to the plateau could be easily misinterpreted as the battery rapidly approaches ERI, which occurs at 2.55 volts, when the battery may in fact have several years remaining until ERI.

It is important to understand that this battery voltage decrease in the GEM II/III family of ICDs is a normal


characteristic of the battery function in these devices and should not create a need for additional follow-up or monitoring.

As a general rule of thumb, the longevity from implant to MOL = MOL to ERI.

The design of the battery in subsequently released models has been modified to present a more linear battery discharge curve.

If you are concerned about early ERI in your patient's device, you can utilize the battery trend measurements stored in the save-to-disk file, which can be accessed and interpreted through the Medtronic Technical Services at 1 (800) 723-4636.

### **GEM II/III Battery Discharge Curve**



## **General Follow-Up and Replacement of ICD Leads**

Implanted leads operate in the challenging biochemical environment of the human body and the body's response to foreign objects. Implanted leads are also subject to mechanical stresses associated with heart motion, body motion, and patient anatomy.

In this environment, pacemaker and defibrillation leads cannot be expected to last forever. Unlike implantable cardioverter defibrillators (ICDs), a lead's longevity cannot be predicted nor are there simple indicators that a lead is approaching the end of its service life. The determination that a lead may be approaching end of service life requires follow-up of the chronically implanted lead and thorough evaluation of lead integrity at ICD replacement.

#### Follow-Up of Chronically Implanted Leads

The frequency of follow-up for ICD patients will depend on a number of factors including the patient's medical condition, ICD system implant time, hospital/clinic follow-up practice, and Medicare guidelines. In all cases, it is important to assess the functionality of the ICD system and the integrity. For newly implanted leads, it is beneficial to establish a baseline of chronic performance parameters once the lead has stabilized, generally within 6 to 12 months after implant. These performance parameters should include pacing and sensing thresholds and impedance. During routine patient follow-up, these procedures can be used to evaluate lead

- Measure pacing and sensing threshold and compare to the chronic baseline. Significant increases or decreases may be indicative of lead failure, dislodgement, perforation, exit
- Measure pacing impedance where possible and compare to the chronic baseline. Decreases of 30% or more or pacing impedances below 200-250 ohms may be indicative of insulation failure. Sudden and significant increases in pacing impedance may be indicative of conductor fracture.
- High voltage lead circuit impedance should be between 10-75 ohms at system implant. Chronic measurements below 10 and above 200 ohms may be indicative of high voltage lead circuit failure.
- Carefully review ECGs or the nonsustained detection log on Medtronic ICDs for indications of pacing and/or sensing abnormalities such as oversensing, undersensing, and loss of capture
- Elicit and investigate any patient complaints/symptoms that may be suggestive of potential lead failure

Where routine follow-up indicates, additional tools should be used to further evaluate performance. Tools include radiographic data, ICD electrograms, ICD Patient Alert and performance information from the System Longevity Study (SLS).

The final decision on the functional integrity and continued use of an implanted lead must be a matter of medical judgment based on these factors as well as specific patient conditions.

#### General Criteria for Lead Replacement

The evaluation of a chronically implanted lead is an important part of the decision to continue to use the lead with a new ICD. However, these results alone do not necessarily predict the future integrity of that lead. With the expected longevity of today's ICDs varying between approximately 5 and 10 years, a physician replacing a device should consider a number of factors, including those listed helow.

Factors that should be considered in a decision to replace or continue to use include:

- Pacing and sensing thresholds should be evaluated for the potential to maintain acceptable levels
- Pacing impedance should be measured. Bear in mind that pacing impedance below 250 ohms results in excessive battery current drain, which may seriously compromise ICD longevity, regardless of lead integrity.
- The physical appearance of the lead should be examined for insulation cracks, breaches, or other indications of lead wear or degradation
- Medtronic System Longevity Study data should be referenced. Actuarial survival of the lead and the observed lead failure mechanisms are specific factors to consider. Use of a new lead should be considered if failure mechanisms suggest an increased time dependency as suggested in the shape of performance curve for the specific lead model.
- Current publications may provide additional information on the clinical management of leads. 1-3 Ultimately, the decision to replace an implanted lead involves medical judgment.
- <sup>1</sup> Hauser RG, Cannom D, Hayes DL, et al. Long-term structural failure of coaxial polyurethane implantable cardioverter defibrillator leads. PACE. June 2002;25(6):879-882.
- <sup>2</sup> Ellenbogen KA, Wood MA, Shepard RK, et al. Detection and management of an implantable cardioverter defibrillator lead failure: incidence and clinical implications. J Am Coll Cardiol. January 1, 2003;41(1):73-80.
- <sup>3</sup> Hauser RG, Kallinen LM, Almquist AK, Gornick CC, Katsiyiannis WT. Early failure of a small-diameter high-voltage implantable cardioverter-defibrillator lead. Heart Rhythm. July 2007;4(7):892-896.

## Clinical Management of High-Voltage Lead System Oversensing

Appropriate sensing by an ICD system refers to the sensing of cardiac events that may or may not require therapy delivery. ICD systems must sense relatively large QRS complexes while avoiding sensing of smaller T waves, yet continue to sense often small variable amplitude ventricular fibrillation. Thus, ICD systems attempt to dynamically adjust sensing of electrical events and discriminate between them based on detection algorithms and programmed settings.

Inappropriate sensing can occur when an ICD system classifies events of non-cardiac origin as QRS/VF events, or senses and counts T and far-field P waves as ventricular depolarizations. This is often referred to as "oversensing," and may result in delivery of inappropriate high-voltage therapies. This is due, in part, to the desire to err on the side of delivering lifesaving high voltage therapy rather than withholding it. Thus, an ICD system that is experiencing oversensing issues will continue to deliver therapeutic shocks as required, but may also subject the patient to unnecessary shocks.

Oversensing can be difficult to manage, in that the precipitating cause of the oversensing can be problematic to isolate. Oversensing can be caused by many factors, including myopotentials/farfield sensing, electromagnetic interference, T wave sensing, connector issues, incomplete or complete conductor fractures, and insulation breaches. While the individual physician must exercise medical judgment in determination of appropriate clinical management of ICD systems, the chart below may assist in the process of causal factor differentiation and possible intervention.

| Phenomenon                                                                                                  | Causal Factors                                                                                                                                                             | Characteristics                                                                                                                          | Management/Comments                                                                                                                                                                                                                                                                                                             |
|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Myopotentials/<br>Far-field sensing                                                                         | Diaphragmatic muscle potentials in<br>breathing, wide tip-to-ring (coil on<br>integrated bipolar leads) spacing                                                            | Nonphysiological sensed event on EGM, which may confuse detection potentially resulting in false positive shocks                         | Check R waves for deterioration. Reprogram sensitivity. Try repositioning lead. Consider change-out to true bipolar lead, or if true bipolar lead in use, one with closer tip-to-ring spacing than current lead.                                                                                                                |
| EMI<br>(Electro-Magnetic<br>Interference)                                                                   | Arc welders, electrical generators,<br>store walk-through security<br>scanners, poorly insulated<br>electrical equipment                                                   | Multiple and consecutive short intervals (< 140 ms) independent of underlying sinus beats. Associated with proximity to the EMI source.  | Avoid EMI areas. True bipolar leads less susceptible.                                                                                                                                                                                                                                                                           |
| T-wave sensing                                                                                              | Drugs, ischemic tissue, exercise,<br>Long QT syndrome, electrolyte<br>imbalance                                                                                            | Sense markers seen on EGM related to T wave. False positive detection.                                                                   | Check for R wave deterioration and characteristics. If R wave > 3.0 mV, reprogram sensitivity. If R wave < 3.0 mV, reposition/replace lead. Address causal factor (e.g., drugs [if appropriate/medically viable]).                                                                                                              |
| Connector problems                                                                                          | Loose setscrew, cross-threaded setscrew, incomplete lead insertion into header                                                                                             | This is an acute phenomenon seen within 6 months of implant (usually sooner)                                                             | Requires invasive check of connections.  May be reproducible with pocket manipulation.                                                                                                                                                                                                                                          |
| Incomplete conductor fracture                                                                               | One or more filars of a multifilar conductor fracturing while leaving enough filars intact to provide a conduction circuit                                                 | Characterized by chaotic oversensing related to motion of the fracture site                                                              | Check EGMs and x-rays. Manipulate lead at suspected fracture site if possible as a provocative test. If confirmed, replace lead.                                                                                                                                                                                                |
| Lead insulation breach                                                                                      | Cuts, tears, metal ion oxidization,<br>abrasion, cold flow, environmental<br>stress cracking                                                                               | Characterized by cyclical and/or erratic, intermittent, spontaneous oversensing; often post-pace or post-shock can cause false positives | Replace lead. If acute, usually secondary to implant damage/replacement damage. If late, material characteristic.                                                                                                                                                                                                               |
| Oversensing during interrogation with programming head (not wireless telemetry) with complete lead fracture | Interrogation with a programming head in combination with complete lead fracture that creates an open circuit can induce noise on the sensing circuitry inside the ICD can | Nonphysiologic sensed event on EGM. If detection is enabled during interrogation, oversensing may result in inappropriate therapy.       | Quickly remove the programming head. CANCEL the interrupted interrogation and manually load the software for the specific device model. Reposition the programmer head over the device and immediately select SUSPEND. Device will resume detection when programming head is removed, or when RESUME is selected. Replace lead. |

Technical Services is available at all times to advise clinicians in the troubleshooting and management of Medtronic products. For assistance in the United States, please call 1 (800) 723-4636. In other countries, please contact your local Medtronic representative.

## **Tests and Observations for Clinical Assessment of Chronic Pacing Leads**

| Test/Observation                                                                                              | Possible<br>Insulation Failure                                                                                     | Possible<br>Conductor Failure                                                                                        | Possible<br>Other System Failure                                                                                                                                 | Effect on Test/<br>Observation                                          |
|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Pacing Impedance<br>(Telemetered or<br>Measured Invasively)                                                   | Sudden and Significant<br>Decrease                                                                                 | Sudden and Significant<br>Increase                                                                                   | Dislodgement                                                                                                                                                     | . Increase or Decrease<br>.Increase or Decrease                         |
| Pacing Thresholds<br>(Telemetered/Programmed<br>or Measured Invasively)                                       | Sudden and Significant<br>Increase, Especially in<br>Bipolar System                                                | Sudden and Significant<br>Increase                                                                                   | Dislodgement                                                                                                                                                     | . Increase<br>. Increase<br>. Increase                                  |
| Electrograms<br>(Telemetered or<br>Measured Invasively)                                                       | Sudden and Significant<br>Decrease in Amplitudes<br>and/or Slew Rates for<br>P and/or R Waves                      | Sudden and<br>Significant Decrease<br>or Disappearance of<br>Amplitudes and/or Slew<br>Rates for P and/or<br>R Waves | Dislodgement                                                                                                                                                     | Decrease<br>Decrease<br>.Decrease                                       |
| Waveform Analysis<br>(Oscillographs of Pacer<br>Artifact from ECG Electrodes)                                 | Sudden Increase in<br>Ratios of Leading-Edge<br>Voltages to Trailing-Edge<br>Voltages (i.e., over 25%<br>increase) | Intermittent or No<br>Pacer Artifacts (Even in<br>Asynchronous Mode)                                                 | Improper IPG/Lead Connection                                                                                                                                     | Intermittent<br>or No Pacer Artifacts<br>(Even in<br>Asynchronous Mode) |
| Radiographs<br>(Post-Implant,<br>Recent, Current)                                                             | Not Discernible                                                                                                    | Visual Observation of<br>Conductor/Connector/<br>Electrode Fracture<br>(Sometimes Discernible)                       | Dislodgement or Perforation.<br>Improper IPG/Lead Connection.                                                                                                    | Sometimes<br>Discernible                                                |
| Visual Inspection<br>(Invasive)                                                                               | Insulation Breach and/or<br>Degradation, or Ligature<br>Cut-Through                                                | Not Easily Discernible                                                                                               | Connector Defect or Connector<br>Pulled Apart. Improper IPG/<br>Lead Connection.                                                                                 | Sometimes<br>Discernible                                                |
| Pectoral Muscle<br>Stimulation                                                                                | Sudden Onset, Especially<br>in Bipolar System                                                                      |                                                                                                                      | Connector Defect in Bipolar or<br>Unipolar. Hypersensitivity to<br>Unipolar Pulse Generator Can.<br>Anti-Stim Coating or Protection<br>Deficient.                |                                                                         |
| Phrenic Nerve/<br>Diaphragmatic<br>Stimulation                                                                | Sudden Onset in Bipolar<br>or Unipolar Systems                                                                     |                                                                                                                      | Perforation or Displacement of<br>Atrial Lead (Phrenic Nerve)                                                                                                    |                                                                         |
| Pacemaker ECG<br>Stimulus<br>Artifact Size and Morphology<br>Change (May Not Be Possible<br>with Digital ECG) | Sudden Onset and<br>Significant Change,<br>Especially in Bipolar<br>System (Increase in Size)                      | Sudden Changes, Usually<br>a Decrease in Size                                                                        | Perforation or Dislodgement.<br>Connector Defect. Improper IPG/<br>Lead Connection.                                                                              | Sometimes<br>Discernible                                                |
| Oversensing<br>(Intermittent or<br>Continuous)                                                                | Sudden Onset, Especially<br>in Bipolar Systems                                                                     |                                                                                                                      | Physical Contact between the Electrode(s) on the Lead and that of Another Lead. Inappropriate IPG Parameter Setting. Improper IPG/Lead Connection.               | Sometimes<br>Discernible                                                |
| Undersensing<br>(Intermittent or<br>Continuous)                                                               | Sudden Onset in Either<br>Unipolar or Bipolar<br>Systems                                                           | Sudden Onset in Either<br>Unipolar or Bipolar<br>Systems                                                             | Dislodgement or Perforation.<br>Infarct at Electrode Site.<br>Electrolyte Imbalance.<br>Inappropriate IPG Parameter<br>Setting. Improper IPG/Lead<br>Connection. | Sometimes<br>Discernible                                                |
| Loss of Capture                                                                                               | See "Pacing Thresholds"<br>Above                                                                                   | See "Pacing Thresholds"<br>Above                                                                                     | See "Pacing Thresholds"<br>Above                                                                                                                                 |                                                                         |

## Index

## **By Model Number**

| 2187 83,86                                                                                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2107 03,00                                                                                                                                                      |
| 2188 83,86                                                                                                                                                      |
| 3830 98, 130, 134, 136                                                                                                                                          |
|                                                                                                                                                                 |
| 4003 99, 130, 134, 136                                                                                                                                          |
| 4003M 99, 130, 134, 136                                                                                                                                         |
| 4004 100, 130, 134, 136, 157                                                                                                                                    |
| 4004 100, 130, 134, 130, 137                                                                                                                                    |
| 4004M 100, 130, 134, 136, 157                                                                                                                                   |
| 4011 100, 130, 134, 136                                                                                                                                         |
| 4010 101 100 104 106 150                                                                                                                                        |
| 4012 101, 130, 134, 136, 158                                                                                                                                    |
| 4023 101, 130, 134, 136                                                                                                                                         |
| 4024 102 130 134 136                                                                                                                                            |
| 4024 102, 130, 134, 136                                                                                                                                         |
| 4033 102, 130, 134, 136<br>4057 103, 130, 134, 136                                                                                                              |
| 4057 103 130 134 136                                                                                                                                            |
| 40E7M 102 120 124 126                                                                                                                                           |
| 4057M 103, 130, 134, 136                                                                                                                                        |
| 4058 104, 130, 134, 136                                                                                                                                         |
| 4058M 104, 130, 134, 136                                                                                                                                        |
|                                                                                                                                                                 |
| 4067 105, 130, 134, 136                                                                                                                                         |
| 4068 106, 130, 134, 136                                                                                                                                         |
| 4073 107, 131, 134, 136                                                                                                                                         |
| 4073 107, 131, 134, 130                                                                                                                                         |
| 4074 108, 131, 134, 136                                                                                                                                         |
| 4076 109, 131, 134, 136                                                                                                                                         |
| 1001 110 101 104 106                                                                                                                                            |
| 4081 110, 131, 134, 136<br>4082 157                                                                                                                             |
| 4082 157                                                                                                                                                        |
| 4092 110, 131, 134, 136                                                                                                                                         |
|                                                                                                                                                                 |
| 4193 84, 86                                                                                                                                                     |
| 4194 84,86                                                                                                                                                      |
| 4195 85, 86                                                                                                                                                     |
| •                                                                                                                                                               |
| 4196 85, 86                                                                                                                                                     |
| 4503 111, 131, 134, 136                                                                                                                                         |
| 4500M 111 101 104 106                                                                                                                                           |
| 4503M 111, 131, 134, 136                                                                                                                                        |
| 4504 111, 131, 134, 136, 156                                                                                                                                    |
| 4504M 111, 131, 134, 136, 156                                                                                                                                   |
| 4510 110 101 104 106                                                                                                                                            |
| 4512 112, 131, 134, 136                                                                                                                                         |
| 4523 112, 131, 134, 136                                                                                                                                         |
| 4524 113, 131, 134, 136                                                                                                                                         |
| 4500 110 101 104 106                                                                                                                                            |
| 4533 113, 131, 134, 136                                                                                                                                         |
| 4557 114, 131, 134, 136                                                                                                                                         |
| 4557M 114 131 134 136                                                                                                                                           |
| 4557M 114, 131, 134, 136<br>4558M 114, 131, 134, 136                                                                                                            |
| 4558M 114, 131, 134, 136                                                                                                                                        |
| 4568 115, 132, 134, 136                                                                                                                                         |
| 1571 115 122 121 126                                                                                                                                            |
| 4574 115, 132, 134, 136                                                                                                                                         |
| 4582 156                                                                                                                                                        |
| 4592 116, 132, 134, 136                                                                                                                                         |
| 40E1 120 141 142                                                                                                                                                |
| 4951 138, 141, 142                                                                                                                                              |
| 4951M 138, 141, 142                                                                                                                                             |
| 4965 138, 141, 142                                                                                                                                              |
| 4060 120, 111, 112                                                                                                                                              |
| 4968 139, 141, 142                                                                                                                                              |
| 5023 116, 132, 134, 136                                                                                                                                         |
| 5023M 116, 132, 134, 136                                                                                                                                        |
| 5025W 110, 152, 154, 150                                                                                                                                        |
| 5024 117, 132, 134, 137                                                                                                                                         |
| 5024M 117, 132, 134, 137                                                                                                                                        |
| 5026 117, 132, 134, 137                                                                                                                                         |
| 5020 117, 102, 101, 107                                                                                                                                         |
| 5032 143, 144                                                                                                                                                   |
| 5033 118, 132, 134, 137                                                                                                                                         |
| 5034 118, 132, 134, 137                                                                                                                                         |
|                                                                                                                                                                 |
| 5038 143, 144                                                                                                                                                   |
| 5054 119, 132, 134, 137                                                                                                                                         |
| 5068 120, 132, 134, 137                                                                                                                                         |
|                                                                                                                                                                 |
| 5069 142                                                                                                                                                        |
| 5071 139, 141, 142                                                                                                                                              |
| 5072 121, 132, 134, 137                                                                                                                                         |
| 5072 100 100 101 107                                                                                                                                            |
| 5076 122, 132, 134, 137                                                                                                                                         |
| 5092 123, 132, 134, 137                                                                                                                                         |
| . , - ,,                                                                                                                                                        |
| 550/ 100 100 10/ 107                                                                                                                                            |
| 5524 123, 132, 134, 137                                                                                                                                         |
| 5524M 123, 132, 134, 137                                                                                                                                        |
| 5524M 123, 132, 134, 137                                                                                                                                        |
| 5524M 123, 132, 134, 137<br>5534 124, 133, 134, 137                                                                                                             |
| 5524M 123, 132, 134, 137<br>5534 124, 133, 134, 137<br>5554 124, 133, 134, 137                                                                                  |
| 5524M 123, 132, 134, 137<br>5534 124, 133, 134, 137<br>5554 124, 133, 134, 137<br>5568 125, 133, 134, 137                                                       |
| 5524M 123, 132, 134, 137<br>5534 124, 133, 134, 137<br>5554 124, 133, 134, 137<br>5568 125, 133, 134, 137                                                       |
| 5524M 123, 132, 134, 137<br>5534 124, 133, 134, 137<br>5554 124, 133, 134, 137<br>5568 125, 133, 134, 137<br>5592 125, 133, 135, 137                            |
| 5524M 123, 132, 134, 137<br>5534 124, 133, 134, 137<br>5554 124, 133, 134, 137<br>5568 125, 133, 134, 137<br>5592 125, 133, 135, 137<br>5594 126, 133, 135, 137 |
| 5524M 123, 132, 134, 137<br>5534 124, 133, 134, 137<br>5554 124, 133, 134, 137<br>5568 125, 133, 134, 137<br>5592 125, 133, 135, 137                            |

```
6917A 140, 141, 142
6921 87, 95, 96, 97
6930 87, 95, 96, 97, 151
6931 88, 95, 96, 97, 151
6932 88, 95, 96, 97, 155
6933 89, 95, 96, 97
6934S 97, 155
6935 89, 95, 96, 97
6936 90, 95, 96, 97, 155
6937 89, 95, 96, 97
6937A 89, 95, 96, 97
6939 90, 95, 96, 97
6940 126, 133, 135, 137
6942 91, 95, 96, 97, 155
6943 91, 95, 96, 97, 155
6944 92, 95, 96, 97
6945 92, 95, 96, 97, 155
6947 93, 95, 96, 97
6948 93, 95, 96, 97, 151
6949 94, 95, 96, 97, 151
6957 127, 133, 135, 137
6957J 128, 133, 135, 137
6961 128, 133, 135, 137
6962 129, 133, 135, 137
6963 89, 95, 96, 97
6966 90, 95, 96, 97, 155
6996 94, 95, 96, 97
6999 90, 95, 96, 97
7088 57, 73, 78
7089 57, 73, 78
7107 57, 73, 78
7108 57, 73, 78
7223 37
7227 23, 34, 37, 146, 155
7229 23, 34, 37, 146, 155, 165
7230 24, 34, 37, 146, 153
7231 24, 34, 37, 146, 165
7232 25, 34, 37, 146, 153
7253 42, 69, 77, 163
7271 25, 34, 37, 146
7272 13, 20, 22, 37, 147
7274 26, 34, 37, 147, 153
7275 26, 35, 37, 147, 161, 165
7276 27, 35, 37, 147, 165
7277 14, 20, 22, 37, 147, 153
7278 27, 35, 37, 147, 153
7279 148, 153
7285 148, 153
7287 37
7288 28, 35, 37, 148
7289 15, 20, 22, 148, 153
7290 28, 35, 37, 148
7295 22
7297 15, 20, 22, 148
7299 16, 20, 22, 149
7303 16, 20, 22, 149
7304 17, 20, 22, 149
7860 59, 73, 79
7861 59, 73, 79
7862 59, 73, 79
7864 59, 73, 79
7865 59, 73, 79
7866 59, 73, 79
7960i 65, 75, 79
7961i 65, 75, 79
7962i 65, 75, 79
7964i 65, 75, 79
7965i 65, 75, 79
7966i 65, 75, 79
```

```
8085 58, 73, 78
8086 58, 73, 78
8088 58, 73, 78
8089 58, 73, 78
8158 60, 74, 79
8160 60, 74, 79
8161 60, 74, 79
8162 60, 74, 79
8164 60, 74, 79
8165 60, 74, 79
8166 60, 74, 79
8330 56, 73, 78, 159
8331 56, 73, 78, 159
8331M 56, 73, 78, 159
8340 56, 73, 78, 159
8341 56, 73, 78, 159
8341M 56, 73, 78, 159
8342 56, 73, 78, 159
8416 55, 72, 78
8417 55, 72, 78
8417M 55, 72, 78
8418 55, 72, 78
8419 55, 72, 78
8424 56, 72, 78
8426 56, 72, 78
8427 56, 72, 78
8960i 67, 76, 79
8961i 67, 76, 79
8962i 67, 76, 79
8964i 66, 75, 79
8965i 66, 75, 79
8966i 66, 75, 79
8968i 67, 76, 79
ADD01 40, 69, 77
ADDR01 40, 69, 77
ADDR03 40, 69, 77
ADDR06 40, 69, 77
ADDRL1 40, 69, 77
ADDRS1 41, 69, 77
ADSR01 41, 69, 77
ADSR03 41, 69, 77
ADSR06 41, 69, 77
ADVDD01 42, 69, 77
AT501 42, 69, 77, 163
C154DWK 18, 21, 22, 149
C164AWK 18, 21, 22
C174AWK 18, 21, 22
D153ATG 29, 35, 38, 149
D153DRG 29, 35, 38, 149
D153VRC 38
D154ATG 29, 35, 38, 149
D154AWG 30, 36, 38, 150
D154DRG 29, 35, 38, 149
D154VRC 30, 36, 38, 150
D154VWC 31, 36, 38, 150
D164AWG 30, 36, 38
D164VWC 31, 36, 38
D224DRG 31, 36, 38
D224TRK 19, 21, 22
D224VRC 32, 36, 38
D284DRG 32, 36, 38
D284TRK 19, 21, 22
D284VRC 33, 36, 38
E1DR01 43, 69, 77
E1DR03 43, 69, 77
E1DR06 43, 69, 77
E1DR21 43, 69, 77
E2DR01 44, 70, 77
E2DR03 44, 70, 77
E2DR06 44, 70, 77
E2DR21 44, 70, 77
```

E2DR31 44, 70, 77

E2DR33 44, 70, 77 E2SR01 45, 70, 77 E2SR03 45, 70, 77 E2SR06 45, 70, 77 E2VDD01 45, 70, 77 KD701 49, 71, 78, 154 KD703 49, 71, 78, 154 KD706 49, 71, 78, 154 KDR401 47, 70, 77 KDR403 47, 70, 77 KDR601 48, 71, 77, 154 KDR603 48, 71, 77, 154 KDR606 48, 71, 77, 154 KDR651 49, 71, 77, 154 KDR653 49, 71, 77, 154 KDR701 50, 71, 78, 154 KDR703 50, 71, 78, 154 KDR706 50, 71, 78, 154 KDR721 51, 71, 78, 154 KDR801 53, 72, 78 KDR803 53, 72, 78 KDR901 53, 72, 78 KDR903 53, 72, 78 KDR906 53, 72, 78 KDR921 54, 72, 78 KSR401 48, 70, 77 KSR403 48, 70, 77 KSR701 52, 71, 78 KSR703 52, 71, 78 KSR706 52, 71, 78 KSR901 54, 72, 78 KSR903 54, 72, 78 KSR906 54, 72, 78 KVDD701 52, 71, 78, 154 KVDD901 55, 72, 78 P1501DR 46, 70, 77 SDR203 62, 74, 79, 152 SDR303 63, 75, 79, 152 SDR306 63, 75, 79, 152 SED01 61,74,79 SEDR01 61, 74, 79 SEDRL1 79 SES01 61, 74, 79 SESR01 61, 74, 79 SS103 62, 74, 79, 152 SS106 62, 74, 79, 152 SSR203 63, 74, 79, 152 SSR303 64, 75, 79, 152 SSR306 64, 75, 79, 152 SVDD303 64, 75, 79, 152 VEDR01 68, 76, 79

6917 140, 141, 142

7968i 66, 75, 79

8040 17, 21, 22

8042 18, 21, 22



## **By Family**

| A                                      | CapSure SP Novus                       | G                          | Kappa 700 D               |
|----------------------------------------|----------------------------------------|----------------------------|---------------------------|
| Adapta DR                              | 4092 110, 131, 134, 136                | GEM                        | KD701 49, 71, 78, 154     |
| ADD01 40, 69, 77                       | 4592 116, 132, 134, 136                | 7227 23, 34, 37, 146, 155  | KD703 49, 71, 78, 154     |
|                                        | 5092 123, 132, 134, 137                | GEM DR                     | KD706 49, 71, 78, 154     |
| ADDR01 40, 69, 77<br>ADDR03 40, 69, 77 | 5592 125, 133, 135, 137                |                            | Kappa 700 DR              |
|                                        | 5594 126, 133, 135, 137                | 7271 25, 34, 37, 146       | KDR701 50, 71, 78, 154    |
| ADDRIA 40, 69, 77                      | CapSure VDD                            | GEM II VR                  | KDR703 50, 71, 78, 154    |
| ADDRL1 40, 69, 77                      | 5032 143, 144                          | 7229 23, 34, 37, 146, 155, | KDR706 50, 71, 78, 154    |
| ADDRS1 41, 69, 77                      | CapSure VDD-2                          | 165                        | KDR721 51, 71, 78, 154    |
| Adapta SR                              | 5038 143, 144                          | GEM III AT                 | Kappa 700 SR              |
| ADSR01 41, 69, 77                      | CapSure Z                              | 7276 27, 35, 37, 147, 165  | KSR701 52, 71, 78         |
| ADSR03 41, 69, 77                      | 4033 102, 130, 134, 136                | GEM III DR                 | KSR703 52, 71, 78         |
| ADSR06 41, 69, 77                      | 4533 113, 131, 134, 136                | 7275 26, 35, 37, 147, 161, | KSR706 52, 71, 78         |
| Adapta VDD                             | 5033 118, 132, 134, 137                | 165                        | Kappa 700 VDD             |
| ADVDD01 42, 69, 77                     | 5034 118, 132, 134, 137                | GEM III VR                 | KVDD701 52, 71, 78, 154   |
| AT500                                  | 5534 124, 133, 134, 137                | 7231 24, 34, 37, 146, 165  | Kappa 800 DR              |
| 7253 42, 69, 77, 163                   | CapSure Z Novus                        |                            | KDR801 53, 72, 78         |
| AT501 42, 69, 77, 163                  | 5054 119, 132, 134, 137                | 1                          | KDR803 53, 72, 78         |
| Attain                                 | 5554 124, 133, 134, 137                | 1                          | Kappa 900 DR              |
| 2187 83,86                             | Concerto                               | InSync                     | KDR901 53, 72, 78         |
| 2188 83, 86                            | C154DWK 18, 21, 22, 149                | 8040 17, 21, 22            | KDR903 53, 72, 78         |
| 4193 84, 86                            | C164AWK 18, 21, 22                     | InSync ICD                 | KDR906 53, 72, 78         |
| 4194 84, 86                            | C174AWK 18, 21, 22                     | 7272 13, 20, 22, 37, 147   | Kappa 900 SR              |
| 4196 85, 86                            | C174AWR 10, 21, 22 Consulta            | InSync Marquis             | KSR901 54, 72, 78         |
|                                        |                                        | 7277 14, 20, 22, 147, 153  |                           |
| С                                      | D224TRK 19, 21, 22                     | InSync Maximo              | KSR903 54, 72, 78         |
|                                        |                                        | 7303 16, 20, 22, 149       | KSR906 54, 72, 78         |
| CapSure                                | E                                      | 7304 17, 20, 22, 149       | Kappa 900 VDD             |
| 4003 99, 130, 134, 136                 | EnPulse DR                             | InSync Sentry              | KVDD901 55, 72, 78        |
| 4003M 99, 130, 134, 136                | E1DR01 43, 69, 77                      | 7297 15, 20, 22, 148       | Kappa 920 DR              |
| 4004 100, 130, 134, 136,               | E1DR03 43, 69, 77                      | 7299 16, 20, 22, 149       | KDR921 54, 72, 78         |
| 157                                    | E1DR06 43, 69, 77                      | InSync II Marquis          |                           |
| 4004M 100, 130, 134, 136,              | E1DR00 43, 63, 77<br>E1DR21 43, 69, 77 | 7289 15, 20, 22, 148, 153  | L                         |
| 157                                    | EnPulse 2 DR                           | InSync II Protect          | Legend                    |
| 4503 111, 131, 134, 136                | E2DR01 44, 70, 77                      | 7295 22                    | 8416 55, 72, 78           |
| 4503M 111, 131, 134, 136               | E2DR01 44, 70, 77<br>E2DR03 44, 70, 77 | InSync III Protect         | 8417 55, 72, 78           |
| 4504 111, 131, 134, 136,               | E2DR05 44, 70, 77                      | 7285 148, 153              |                           |
| 156                                    |                                        | InSync III                 | 8417M 55, 72, 78          |
| 4504M 111, 131, 134, 136,              | E2DR21 44, 70, 77                      | 8042 18, 21, 22            | 8418 55, 72, 78           |
| 156                                    | E2DR31 44, 70, 77                      | InSync III Marquis         | 8419 55, 72, 78           |
| 5026 117, 132, 134, 137                | E2DR33 44, 70, 77                      | 7279 148, 153              | Legend II                 |
| CapSureFix                             | EnPulse 2 SR                           | Intrinsic                  | 8424 56, 72, 78           |
| 4067 105, 130, 134, 136                | E2SR01 45, 70, 77                      | 7288 28, 35, 37, 148       | 8426 56, 72, 78           |
| 4068 106, 130, 134, 136                | E2SR03 45, 70, 77                      | Intrinsic 30               | 8427 56, 72, 78           |
| 4568 115, 132, 134, 136                | E2SR06 45, 70, 77                      | 7287 37                    |                           |
| 5068 120, 132, 134, 137                | EnPulse 2 VDD                          |                            | M                         |
| 5568 125, 133, 134, 137                | E2VDD01 45, 70, 77                     | V                          | Marquis DR                |
| 6940 126, 133, 135, 137                | EnRhythm DR                            | K                          | 7274 26, 34, 37, 147, 153 |
| CapSureFix Novus                       | P1501DR 46, 70, 77                     | Kappa 400 DR               | Marquis VR                |
| 4076 109, 131, 134, 136                | EnTrust                                | KDR401 47, 70, 77          | 7230 24, 34, 37, 146, 153 |
| 5076 122, 132, 134, 137                | D153ATG 29, 35, 38, 149                | KDR403 47, 70, 77          | Maximo DR                 |
| CapSure Epi                            | D153DRG 29, 35, 38, 149                | Kappa 400 SR               | 7278 27, 35, 37, 147, 153 |
| 4965 138, 141, 142                     | D153VRC 38                             | KSR401 48, 70, 77          |                           |
| 4968 139, 141, 142                     | D154ATG 29, 35, 38, 149                | KSR403 48, 70, 77          | Maximo II                 |
| CapSure Sense                          | D154DRG 29, 35, 38, 149                | Kappa 600 DR               | D284TRK 19, 21, 22        |
| 4073 107, 131, 134, 136                | D154VRC 30, 36, 38, 150                | KDR601 48, 71, 77, 154     | Maximo II DR              |
| 4074 108, 131, 134, 136                | Epicardial Patch                       | KDR603 48, 71, 77, 154     | D284DRG 32, 36, 38        |
| 4574 115, 132, 134, 136                | 6721 87, 95, 96, 97                    | KDR606 48, 71, 77, 154     | Maximo II VR              |
| CapSure SP                             | 6921 87, 95, 96, 97                    | KDR651 49, 71, 77, 154     | D284VRC 33, 36, 38        |
| 4023 101, 130, 134, 136                |                                        | KDR653 49, 71, 77, 154     | Maximo VR                 |
| 4024 102, 130, 134, 136                |                                        |                            | 7232 25, 34, 37, 146, 153 |
| 4523 112, 131, 134, 136                |                                        |                            | Minix/Minix ST            |
| 4524 113, 131, 134, 136                |                                        |                            | 8330 56, 73, 78, 159      |
| 5023 116, 132, 134, 136                |                                        |                            | 8331 56, 73, 78, 159      |
| 5023M 116, 132, 134, 136               |                                        |                            | 8331M 56, 73, 78, 159     |
| 5024 117, 132, 134, 137                |                                        |                            | 8340 56, 73, 78, 159      |
| 5024M 117, 132, 134, 137               |                                        |                            | 8341 56, 73, 78, 159      |
| 5524 123, 132, 134, 137                |                                        |                            | 8341M 56, 73, 78, 159     |
| 550416 400 400 404 435                 |                                        |                            | 8342 56, 73, 78, 159      |

5524M 123, 132, 134, 137



## By Family continued

| Minuet                                  | Sigma 200 SR                   | Thera-i DR              |
|-----------------------------------------|--------------------------------|-------------------------|
| 7107 57, 73, 78                         | SSR203 63, 74, 79, 152         | 7960i 65, 75, 79        |
| 7107 57, 73, 78                         | Sigma 300 DR                   | 7961i 65, 75, 79        |
| 7100 57, 75, 70                         | SDR303 63, 75, 79, 152         | 7962i 65, 75, 79        |
|                                         | SDR306 63, 75, 79, 152         | 7968i 66, 75, 79        |
|                                         | Sigma 300 SR                   | Thera-i S               |
| 0                                       | SSR303 64, 75, 79, 152         | 8964i 66, 75, 79        |
| Onyx                                    | SSR306 64, 75, 79, 152         | 8965i 66, 75, 79        |
| 7290 28, 35, 37, 148                    | Sigma 300 VDD                  | 8966i 66, 75, 79        |
| , , , , , , , , , , , , , , , , , , , , | SVDD303 64, 75, 79, 152        | Thera-i SR              |
| 6                                       | Spectraflex                    | 8960i 67, 76, 79        |
| P                                       | 4951 138, 141, 142             | 8961i 67, 76, 79        |
| Preva DR                                | 4951M 138, 141, 142            | 8962i 67, 76, 79        |
| 7088 57, 73, 78                         | 6957 127, 133, 135, 137        | Thera-i VDD             |
| 7089 57, 73, 78                         | 6957J 128, 133, 135, 137       | 8968i 67, 76, 79        |
| Preva SR                                | Sprint                         | Transvene               |
| 8088 58, 73, 78                         | 6932 88, 95, 96, 97            | 6934S 97                |
| 8089 58, 73, 78                         | 6942 91, 95, 96, 97            | 6936 90, 95, 96, 97     |
| Prevail S                               | 6943 91, 95, 96, 97            | 6966 90, 95, 96, 97     |
| 8085 58, 73, 78                         | 6945 92, 95, 96, 97            | 22 22, 22, 23, 2.       |
| 8086 58, 73, 78                         | Sprint Fidelis                 |                         |
| Prodigy D                               | 6930 87, 95, 96, 97, 151       | V                       |
| 7864 59, 73, 79                         | 6931 88, 95, 96, 97, 151       | Versa DR                |
| 7865 59, 73, 79                         | 6948 93, 95, 96, 97, 151       | VEDR01 68, 76, 79       |
| 7866 59, 73, 79                         | 6949 94, 95, 96, 97, 151       | Virtuoso                |
| Prodigy DR                              | Sprint Quattro                 | D154AWG 30, 36, 38, 150 |
| 7860 59, 73, 79                         | 6944 92, 95, 96, 97            | D164AWG 30, 36, 38      |
| 7861 59, 73, 79                         | Sprint Quattro Secure          | D154VWC 31, 36, 38, 150 |
| 7862 59, 73, 79                         | 6935 89, 95, 96, 97            | D164VWC 31, 36, 38      |
| Prodigy S                               | 6947 93, 95, 96, 97            |                         |
| 8164 60, 74, 79                         | StarFix                        |                         |
| 8165 60, 74, 79                         | 4195 85, 86                    |                         |
| 8166 60, 74, 79                         | Sub-Q Lead                     |                         |
| Prodigy SR                              | 6996 94, 95, 96, 97            |                         |
| 8158 60, 74, 79                         | Sub-Q Patch                    |                         |
| 8160 60, 74, 79                         | 6939 90, 95, 96, 97            |                         |
| 8161 60, 74, 79                         | 6999 90, 95, 96, 97            |                         |
| 8162 60, 74, 79                         | SureFix                        |                         |
|                                         | 5072 121, 132, 134, 137        |                         |
| S                                       | SVC/CS                         |                         |
| Screw-In                                | 6933 89, 95, 96, 97            |                         |
| 4057 103, 130, 134, 136                 | 6937 89, 95, 96, 97            |                         |
| 4057M 103, 130, 134, 136                | 6937A 89, 95, 96, 97           |                         |
| 4058 104, 130, 134, 136                 | 6963 89, 95, 96, 97            |                         |
| 4058M 104, 130, 134, 136                |                                |                         |
| 4557 114, 131, 134, 136                 | Т                              |                         |
| 4557M 114, 131, 134, 136                |                                |                         |
| 4558M 114, 131, 134, 136                | Target Tip                     |                         |
| Secura DR                               | 4011 100, 130, 134, 136        |                         |
| D224DRG 31, 36, 38                      | 4012 101, 130, 134, 136,       |                         |
| SelectSecure                            | 158<br>4081 110, 131, 134, 136 |                         |
| 3830 98, 130, 134, 136                  | 4081 110, 131, 134, 130        |                         |
| Sensia DR                               | 4512 112, 131, 134, 136        |                         |
| SED01 61,74,79                          | 4512 112, 151, 154, 150        |                         |
| SEDR01 61,74,79                         | Tenax                          |                         |
| SEDRL1 79                               | 6917 140, 141, 142             |                         |
| Sensia SR                               | 6917A 140, 141, 142            |                         |
| SES01 61, 74, 79                        | 6961 128, 133, 135, 137        |                         |
| SESR01 61, 74, 79                       | 6962 128, 133, 135, 137        |                         |
| Sigma 100 S                             | Thera-i D                      |                         |

7964i 65, 75, 79

7965i 65, 75, 79

7966i 65, 75, 79

If you are looking for a model number or family that is not included in this report, you may call US Technical Services (see page 2).

SS103 62, 74, 79, 152

SS106 62, 74, 79, 152

SDR203 62, 74, 79, 152

Sigma 200 DR

# **Mailer Kits Available for Returning Product**

Medtronic urges all physicians to return explanted products and to notify Medtronic when a product is no longer in use, regardless of reason for explant or removal from use. The procedures for returning products vary by geographic location.

Mailer kits (pictured right) with prepaid US postage are available for use within the United States to send CRT, ICD, IPG, and leads to Medtronic's CRDM Returned Product Analysis Lab. These mailers are sized to accommodate the devices and leads from a single patient or clinical event and are designed to meet postal regulations for mailing biohazard materials.

If the product being returned is located outside the United States, please contact your local Medtronic representative for instructions.

Medtronic also requests the return of devices from non-clinical sources, such as funeral homes, and will assume responsibility for storage and disposal of the product once received. For return of larger quantities of explanted products than the mailer can accommodate, Medtronic has handling and shipping guidelines available upon request.

Both mailers and guidelines can be requested by contacting the Returned Product Lab.

CRDM Returned Product Analysis Laboratory Medtronic, Inc. 7000 Central Avenue NE MS RCE172 Minneapolis, MN 55432-3576 USA

Phone: 1 (800) 328-2518, ext. 44800 Email: crdm.returnedproduct@medtronic.com



#### www.medtronic.com

#### **World Headquarters**

Medtronic, Inc. 710 Medtronic Parkway Minneapolis, MN 55432-5604 USA

Tel: (763) 514-4000 Fax: (763) 514-4879

Medtronic USA, Inc.
Toll-free: 1 (800) 328-2518
(24-hour technical support for physicians and medical professionals)

#### Europe

Medtronic International Trading Sàrl Route du Molliau 31 CH-1131 Tolochenaz Switzerland

Tel: (41 21) 802 7000 Fax: (41 21) 802 7900

#### Canada

Medtronic of Canada Ltd. 6733 Kitimat Road Mississauga, Ontario L5N 1W3 Canada

Tel: (905) 826-6020 Fax: (905) 826-6620 Toll-free: 1 (800) 268-5346

#### Asia Pacific

Medtronic International, Ltd. 16/F Manulife Plaza The Lee Gardens, 33 Hysan Avenue Causeway Bay Hong Kong

Tel: (852) 2891 4456 Fax: (852) 2891 6830 enquiryap@medtronic.com

#### **Latin America**

Medtronic USA, Inc. Doral Corporate Center II 3750 NW 87th Avenue Suite 700 Miami, FL 33178

Tel: (305) 500-9328 Fax: (786) 709-4244

