

CARDIAC RHYTHM DISEASE MANAGEMENT

Product Performance Report

Important Patient Management Information for Physicians

25[™] YEAR

- Tracking Performance with multicenter active studies
- Publishing standard, unbiased, consistent, and externally reviewed performance information

A Message from the Vice President

Dear Customer,

Every six months for the last 25 years, Medtronic has compiled and produced product performance reports with one primary goal, to provide you with the product information you need to best care for your patients.

Enclosed in this report is an update on Sprint Fidelis[®] lead performance and our ongoing vigilance efforts (page 144). Important Sprint Fidelis lead information is summarized as follows:

- Sprint Fidelis lead performance continues to be in line with the information provided in October 2007.
- In consultation with the Independent Physician Quality Panel, our patient management recommendations remain unchanged.
 - The risk of prophylactic intervention appears to be greater than the risk of serious injury resulting from lead fracture even for pacemaker dependent patients, except in select individual patient circumstances as determined by the physician.
 - When a lead fracture is suspected or confirmed, we strongly recommend prompt patient attention. Patients should contact their physician without delay if they experience unexpected shocks.
 - Implementation of our patient management recommendations is expected to provide two days advance notice prior to inappropriate therapy to 49% of the patients with lead fractures. The remainder will receive less than two days advance notice or no notice. This percentage may vary by implanted device.
- Future plans include device enhancements and additional information to improve patient management.
 - We are developing new software that can be downloaded into approximately 93% of Medtronic implanted devices worldwide (98% in the US) to increase the likelihood of fracture detection prior to inappropriate therapy. Approximately 75% of patients should get three or more days notice with the new software. The software will be available later this year, subject to regulatory approval.
 - Quarterly performance updates will be posted on the Medtronic website beginning in August at www.medtronic.com/fidelis.

Consistent with other product advisories, we will continue to communicate updated and in-depth Sprint Fidelis lead data in future product performance reports.

As we mark our 25th Anniversary of product performance reporting, we sincerely thank all our physician customers who have contributed to this important work through:

- Documenting the performance of over 15 million devices and leads implanted across the globe (7.7 million in the US).
- Tracking over 400 different product models with over 70 million accumulated patient-years of experience worldwide (34 million in the US).
- Enrolling over 75,000 patients across 50 centers in chronic lead and system longevity studies. Currently monitoring more than 15,000 leads in over 30 centers in 14 countries and 4 continents.

Far beyond performance reporting, your efforts have clearly proven the efficacy and reliability of cardiac rhythm devices and established their place in medicine as powerful tools to save and improve the lives of those suffering from cardiac disorders.

With appreciation and warm regards,

Reggie Groves Vice President, Quality and Regulatory Medtronic Cardiac Rhythm Disease Management Medtronic, Inc.

Contact Information

We invite our customers to use these telephone numbers to call with suggestions, inquiries, or specific problems related to our products.

US Technical Services Dep	partment
----------------------------------	----------

Phone: 1 (800) 723-4636 (Tachy) 1 (800) 505-4636 (Brady) 1 (800) 824-2362 Fax: www.medtronic.com/corporate/contact.jsp

For questions related to this CRDM Product

Performance Report, please call US Technical Services at the number above, or write to:

> Timothy Smith Medtronic, Inc. 8200 Coral Sea Street NE MS MVN61 Mounds View, MN 55112 USA

email: tim.smith@medtronic.com

International Technical Centers

Europe (Heerlen NL) Japan (Tokyo)

+31-45-566-8844 +81-3-5753-4116

For questions related to returning explanted product or returning product that shows signs of malfunction, please contact:

Outside the United States:

Your Medtronic representative or international technical center at the number above.

Within the United States: Your Medtronic representative or

> CRDM Returned Product Analysis Laboratory Medtronic, Inc. 7000 Central Avenue NE MS RCE172 Minneapolis, MN 55432-3576 USA

Phone: 1 (800) 328-2518, ext. 44800 email: crdm.returnedproduct@medtronic.com

Editorial Staff

Editor

Reggie Groves, Vice President, CRDM Quality and Regulatory

Authors

Timothy Smith, Senior Principal Product Performance Engineer, CRDM, Trending and Data Analysis Sheri Halverson, MPH, Principal Clinical Research Specialist, CRDM Hongyan Qiao, Statistician, CRDM Scott McRae, Statistician, CRDM Tim Hamann, Graphic Designer, CRDM

Medtronic Review Board

David Steinhaus, MD, Vice President and Medical Director, CRDM Lonny Stormo, Vice President, CRDM, Therapy Delivery Tim Samsel, Vice President, CRDM, Regulatory Affairs Susan Alpert, PhD, MD, Senior Vice President, Medtronic Chief Quality and Regulatory Officer Subu Mangipudi, Director, Product Vigilance and Reliability

Trademarks of Medtronic, Inc.

Adapta®	InSync II	Patient Alert™
AT500®	Protect™	Preva®
Attain®	InSync III	Prevail®
CapSure®	Protect™	Prodigy®
CapSure Sense®	InSync Sentry®	Quick Look™
CapSureFix®	Intrinsic®	SelectSecure®
CareLink™	Jewel®	Sensia®
Concerto®	Kappa®	Sigma®
EnPulse®	Legend®	Spectraflex™
EnRhythm®	Marquis®	Sprint™
EnTrust®	Maximo®	Sprint Fidelis®
GEM [®]	Medtronic	Sprint Quattro
InSync®	CareAlert®	Sprint Quattro
InSync ICD®	Medtronic CareLink®	Secure®
InSync Marquis™	Micro Jewel®	SureFix®
InSync II	Micro Minix®	Target Tip®
Marquis™	Minix®	Tenax™
InSync III	Minuet®	Thera®-i
Marquis™	MULLEL MVP®	Transvene™
InSync Maximo®		Versa®
	Onyx®	Virtuoso®

il® gy® Look™ tSecure® a® æ raflex™ t Fidelis® Quattro® Quattro ure® ™® et Tip® a®−i svene™ ® Virtuoso®

CRDM Product Performance Report

Introduction 4 Method for Estimating CRT, ICD, and IPG Device Performance 9

CRT Cardiac Resynchronization Therapy 13 CRT Survival Summary 18

CRT Reference Chart 20

ICD Implantable Cardioverter Defibrillators 21 ICD Survival Summary 30 ICD Reference Chart 33 ICD Connector Styles 35

IPG Implantable Pulse Generators 36 IPG Survival Summary 63 IPG Reference Chart 71

Leads

Method for Estimating Lead Performance 74

Left-Heart Leads 77 Lead Survival Summary 79 US Returned Product Analysis Summary 79 Reference Chart 79

Defibrillation Leads 80 Lead Survival Summary 88 US Returned Product Analysis Summary 89 Reference Chart 90

Pacing Leads 91 Lead Survival Summary 123 US Returned Product Analysis Summary 127 Reference Chart 129

ICD and CRT-D Charge Time Performance 138

Advisories 144

(in order of communication date, from most recent to oldest)

Performance Notes 153

Ensuring the Accuracy of Battery Longevity Estimates 153 Interactions between Cardiac Pacing and Ventricular Arrhythmia Initiation 154 AT500 Pacing System Follow-Up Protocol 155 Insertion of the Lead into the Device 156 GEM II DR/VR and GEM III DR/VR/AT ICD Battery Discharge Behavior 157 General Follow-Up and Replacement of ICD Leads 158 Clinical Management of High Voltage Lead System Oversensing 159 Tests and Observations for Clinical Assessment of Chronic Pacing Leads 160

Index 161

3 Medtronic CRDM Product Performance Report

Epi/Myocardial Pacing Leads 131 Lead Survival Summary 134 US Returned Product Analysis Summary 135 Reference Chart 135

VDD Single Pass Pacing Leads 136 Lead Survival Summary 137 US Returned Product Analysis Summary 137 Reference Chart 137

2008 First Edition

Issue 58

Date cutoff for this edition is January 31, 2008

This report is available online at www.CRDMPPR.medtronic.com

0

ndey

Introduction

All product performance reports are not created equal. For 25 years, Medtronic has monitored performance via both returned product analysis and multicenter clinical studies.

This Product Performance Report (PPR) presents device survival estimates, advisory summaries, performance notes, and other information pertinent to assessing the performance of Medtronic implantable pulse generators (IPGs), implantable cardioverter defibrillators (ICDs), Cardiac Resynchronization Therapy (CRT) devices, and implantable pacing and defibrillation leads.

This Product Performance Report has been prepared in accordance with International Standard ISO 5841- 2:2000(E).

The survival estimates provided in this report are considered to be representative of worldwide performance.

Survival Estimates

Medtronic Cardiac Rhythm Disease Management (CRDM) uses both returned product analysis and multicenter clinical studies to monitor performance.

Medtronic, like other companies, monitors CRT, ICD, and IPG device performance using returned product analysis. We also monitor CRT, ICD, and IPG device performance using an active multicenter clinical study. Medtronic CRDM is unique in the industry in that we track CRT, ICD, and IPG device survival using both methods.

Returned product analysis is a passive approach to assessing product performance. This approach provides a suitable measure of product performance only when a significant number of explanted products are returned to the manufacturer. Returned product analysis provides a measure of hardware performance, but not necessarily the total clinical performance (e.g., the incidence of complications such as infection, erosion, muscle stimulation, etc. are not estimated).

The survival estimates provided in this report for CRT, ICD, and IPG devices are based on returned product analysis. This approach is suitable because a significant number of explanted generators are returned for analysis.

Lead performance is monitored differently. In contrast to CRT, ICD, and IPG devices, a very small percentage of leads are returned to the manufacturer due to the difficulty of explanting them. For leads, an active clinical study provides more accurate survival estimates compared to estimates based solely on returned product analysis.

Survival estimates for leads are based on clinical observations recorded via Medtronic CRDM's System Longevity Study. This multicenter clinical study is designed to record clinical observations representative of the total clinical experience. Therefore, the lead survival estimates include both lead hardware failure and lead related medical complications, and do not differentiate a lead hardware failure from other clinical events such as exit block, perforation, dislodgement, or concurrent pulse generator failure.

The actuarial life table method is applied to the data collected for CRT, ICD, and IPG devices and leads to provide the survival estimates included in this report. A general introduction to understanding this method of survival analysis is given later in this introduction.

ICD Charge Times

Since May 2000, Medtronic has provided important information on charge time performance of ICDs. The information provided in this report shows how ICD charge time can vary during the time a device is implanted. The information is presented in graphical format showing charge time as a function of implant time. The data for charge times are collected from devices enrolled in the System Longevity Study.

Advisory Summaries

This Product Performance Report includes summaries of all advisories applicable to the performance of the products included in the report. An advisory is added to the report when any product affected by the advisory remains in service and at risk of experiencing the behavior described in the advisory. The advisory will remain in the report until Medtronic estimates no product affected by the advisory remains active, or the risk of experiencing the behavior described in the advisory has passed.

For most advisories, the products subject to the advisory retain essentially the same survival probability as the products of the same model(s) not affected by the advisory. For those advisories where the survival probabilities of the affected and non-affected populations do differ significantly Medtronic will provide separate survival data for each population. The separate survival data will remain in the report until Medtronic estimates no affected product remains in active service.

Performance Notes

This report concludes with a number of Performance Notes developed by Medtronic to provide additional product performance information relevant to follow-up practice and patient management. Medtronic urges all physicians to return explanted product and to notify Medtronic when a product is no longer in use, regardless of reason for explant or removal from use.

How You Can Help

Medtronic urges all physicians to return explanted product and to notify Medtronic when a product is no longer in use, regardless of the reason for explant or removal from use. The procedures for returning product vary by geographic location.

Mailer kits with prepaid US postage are available for use within the United States to send CRTs, ICDs, IPGs, and leads to Medtronic's CRDM Returned Product Analysis Lab. These mailers are sized to accommodate the devices and leads from a single patient or clinical event and are designed to meet postal regulations for mailing biohazard materials.

If the product being returned is located outside the United States, please contact your local Medtronic representative for instructions.

Medtronic also requests the return of explanted product from non-clinical sources such as funeral homes, and will assume responsibility for storage and disposal of the product once received. For return of larger quantities of explanted products than the mailer can accommodate, Medtronic has handling and shipping guidelines available upon request.

Both mailers and guidelines can be requested by contacting the Returned Product Lab. For information on how to contact the Lab, refer to Contact Information on page 2 of this report.

We continually strive to improve this CRDM Product Performance Report. In keeping with this philosophy, we ask for your suggestions on the content and format of this report, as well as any information you have regarding the performance of Medtronic products. For information on how to comment on this report, see Contact Information on page 2 of this report.

Overview of Survival Analysis

Medtronic uses the Cutler-Ederer actuarial life table method to estimate the length of time over which devices and leads will perform within performance limits established by Medtronic. This probability to perform within performance limits over time is called the *survival probability*. Devices and leads are followed until an *event* occurs where the device or lead ceases to operate within performance limits. The length of time from implant to the event is recorded for each individual device and lead in the *population sample*. The population sample for CRT, ICD, and IPG devices is made up of patients whose devices are registered as implanted in the United States. For leads, the population sample is the patients enrolled in our multicenter, international prospective System Longevity Study.

For IPGs and ICDs, the events can be normal battery depletion or a device malfunction. For leads, the events are complications as defined for the study.

The actuarial life table method allows Medtronic to account for devices and leads removed from service for reasons unrelated to performance. Devices and leads removed for these reasons are said to be *suspended*. Examples include devices and leads:

- still in service at the time the analysis is performed
- removed to upgrade the device or lead
- no longer in service due to the death of the patient for reasons unrelated to the device or leads, or
- implanted in patients who are lost to follow-up.

For each suspension, the device or lead has performed within performance limits for a period of time, after which its performance is unknown.

An Example

The following example describes the survival analysis method used to establish the survival probability estimates for Medtronic CRDM devices and leads. The example is intended to provide an overview of the analysis process. The definitions of malfunctions and complications, and other details specific to calculating device and lead survival estimates, are provided in the articles *Method for Estimating CRT, ICD, and IPG Device Performance (page 9)* and *Method for Estimating Lead Performance (page 74)*.

This simple example describes the survival analysis method used to establish the survival probability estimates for Medtronic CRDM devices and leads.

Figure 1

Implant times for devices of 16 patients. Gray bars with an orange X indicate devices removed from service due to an event. Blue bars indicate suspended devices.

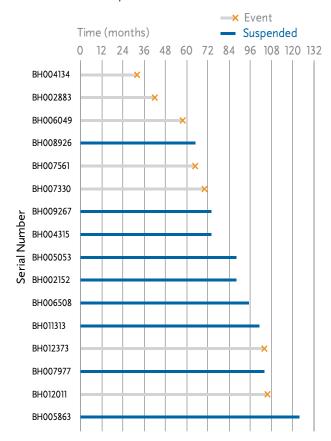


Figure 1 illustrates 16 patients who have implanted devices. The first patient's device (serial number BH004134) operated within performance limits for 32 months. At that time an event occurred. The fourth patient's device (serial number BH008926) did not have an event but is suspended, perhaps because it was still in service at the time of the analysis. This patient had 66 months of implant experience. In this example, Figure 1 shows that 7 of the 16 devices suffered events, and 9 are suspended.

The first step in the life table method is to divide the implant time into intervals of a specific length. This example will use 12-month intervals. The number of devices entered, suspended, and removed due to an event are counted and summarized as shown in Table 1. For the first two intervals, all 16 devices survived and none were removed. In the interval (24-36 months), device BH004134 was removed due to an event. Therefore the table entries show that 16 entered the interval, none were suspended, and one was removed due to an event.

For interval from 36-48 months, only 15 devices entered the interval and one was removed for an event. The remaining intervals are examined and the data entered in columns A, B, and C in like manner. The rest of the columns are filled in using calculations on the data in columns A, B, and C.

The *Effective Sample Size* (**D**) is the number of devices with full opportunity to experience a qualifying event in the interval. This is computed by subtracting one half the number suspended in the interval from the number that entered the interval. This calculation more accurately reflects the number of devices that could have experienced a qualifying event than simply using the number that entered the interval. Using the number of devices that enter an interval over-estimates the sample size because the suspended devices do not complete the interval. Ignoring the suspended devices are not credited with their full service time. Using one half the number of suspended devices effectively splits the difference.

The next column in the table is the *Proportion with Event* (E). This is the proportion of devices that had an event in the interval. It is calculated by dividing the *Number of Events* (C) by the *Effective Sample Size* (D). The number can be interpreted as the estimated rate at which events occur in the time interval.

The *Interval Survival Probability* (\mathbf{F}) is the estimate of probability of surviving to the end of the interval assuming the device was working at the beginning of the interval. It is calculated as 1 minus the *Proportion With Event* (\mathbf{E}). This number can be interpreted as the estimated rate at which events **do not** occur in the time interval.

The Cumulative Survival Probabilities from (G) the last column of the life table can be plotted versus time intervals in the first column to give a survival curve. Figure 2 shows the survival curve for the data shown in Table 1.

	Α	В	с	D	E	F	G
Interval in Months	Number Entered	Number Suspended	Number of Events	Effective Sample Size	Proportion with Event	Interval Survival Probability	Cumulative Survival Probability
0	16	0	0	16	0.000	1.000	1.000
0-12	16	0	0	16	0.000	1.000	1.000
12-24	16	0	0	16	0.000	1.000	1.000
24-36	16	0	1	16	0.063	0.938	0.938
36-48	15	0	1	15	0.067	0.933	0.875
48-60	14	0	1	14	0.071	0.929	0.813
60-72	13	1	2	12.5	0.160	0.840	0.683
72-84	10	2	0	9	0.000	1.000	0.683
84-96	8	3	0	6.5	0.000	1.000	0.683
96-108	5	2	2	4	0.500	0.500	0.341
108-120	1	0	0	1	0.000	1.000	0.341
120-132	1	1	0	0.5	0.000	1.000	0.341

Table 1 Life Table for Figure 1

Definitions:

A Number Entered	B Number Suspended	C Number of Events	D Effective Sample Size	E Proportion with Event	F Interval Survival Probability	G Cumulative Survival Probability
Number of devices active at the start of the interval	Number of devices removed from service for reasons other than an event	Number of units removed from service due to an event	Number of units with full opportunity to experience a qualifying event in the interval. Computed by subtracting one half the Number Suspended from the Number Entered	Proportion of devices that had an event in the interval. Computed by dividing the Number of Events by the Effective Sample Size	The probability of surviving to the end of the interval, assuming the device was working at the beginning of the interval. Computed as 1 minus the Proportion With Event	The overall probability of surviving to the end of the interval. Computed by multiplying the Interval Survival Probability by the previous interval's Cumulative Survival Probability

Cumulative Survival Probability (G) is the estimate of the unconditional probability of surviving to the end of the interval. It is computed by multiplying the *Interval Survival Probability* (F) by the previous interval's Cumulative Survival Probability. The probability of surviving to 132 months in the example is estimated for the table to be 0.341, or 34.1%. The *Cumulative Survival Probabilities* (G) of the life table can be plotted versus time intervals in the first column to give a survival curve. Figure 2 shows the survival curve for the data in Table 1.

Figure 2 Survival Curve for Data Given in Table 1

Confidence Intervals

Since survival curves are based on a sample of the device and lead population, they are only estimates of survival. The larger the effective sample size, the more confident the estimate. A confidence interval can be calculated to assess the confidence in an estimate. In the Product Performance Report, Medtronic provides a 95% confidence interval. This can be interpreted as meaning that 95% of the time, the true survival of the device will fall somewhere in the interval.

Survival Curves in the Product Performance Report

Since the survival estimate can become very imprecise with small effective sample sizes, Medtronic truncates the survival curve when the effective sample size is less than 100 for CRTs, ICDs, and IPGs, and when the number entered is less than 50 for leads. The survival charts in the Product Performance Report show the effective sample size for each year interval where Medtronic has experience. When the effective sample size reaches 100 for CRTs, ICDs, and IPGs or when the number entered reaches 50 for leads, the next data point is added to the survival curve.

Although the report provides tabular data in one-year intervals, the curves are actually computed and plotted using one-month intervals (for CRT, ICD, and IPG devices) or three-month intervals (for leads).

A number of references are available for additional information on survival analysis using the Cutler-Ederer life table method.¹

¹Lee, Elisa T.(2003) Statistical Methods for Survival Data Analysis
 - 3rd Edition (Wiley Series in Probability and Statistics)

Method for Estimating CRT, ICD, and IPG Device Performance

Medtronic urges all physicians to return explanted product and to notify Medtronic when a product is no longer in use, regardless of reason for explant or removal from use.

The performance of CRT, ICD, and IPG devices is expressed in terms of device survival estimates, where "survival" refers to the function of the device, not the survival of the patient. These survival estimates are intended to illustrate the probability that a device will survive for a given number of years with neither malfunction nor battery depletion.

The survival estimates are determined from the analysis of Medtronic CRDM's United States device registration data and United States returned product analysis data. These data are presented graphically and numerically.

Because this analysis is based on returned product analysis, the performance data does not reflect any device-related medical complications, such as erosion, infection, muscle stimulation, or muscle inhibition.

Categorization of Depleted and Malfunctioning Devices for Survival Analysis

For survival estimation, every device returned to Medtronic CRDM and analyzed in the CRDM Returned Product Analysis laboratory is assigned to one of three categories. The device 1) has functioned normally, 2) has reached normal battery depletion, or 3) has malfunctioned. This categorization is combined with data from our device registry for the total number of implants and the implant durations to create the survival curves presented on the following pages.

Definition of Malfunction

Medtronic CRDM considers a device as having malfunctioned whenever the analysis shows that any parameter was outside the performance limits established by Medtronic while implanted and in service. To be considered a malfunction or battery depletion, the device must have been returned to Medtronic and analyzed.

Devices damaged after explant, damaged due to failure to heed warnings or contraindications in the labeling, or damaged due to interaction with other implanted devices (including leads) are not considered device malfunctions.

A device subject to a safety advisory is not considered to have malfunctioned unless it has been returned to Medtronic CRDM and found, through analysis, to actually have performed outside the performance limits established by Medtronic. Not all malfunctions expose the patient to a loss of pacing or defibrillation therapy. Some malfunctions included in the following survival estimates may not have been detected at all by the physician or the patient. These malfunctions, however, are included in the survival estimates and provide important feedback to our product development organization.

To provide insight into the nature of malfunctions, each malfunction is categorized as Malfunction with Compromised Therapy Function or Malfunction without Compromised Therapy Function. A summary of these malfunctions is presented for the most recently market-released models.

For this report, Normal Battery Depletion, Malfunction with Compromised Therapy Function and Malfunction without Compromised Therapy Function are defined as follows:

Normal Battery Depletion – The condition when

- (a) A device is returned with no associated complaint and the device has reached its elective replacement indicator(s) with implant time that meets or exceeds the nominal (50 percentile) predicted longevity at default (labeled) settings, or
- (b) A device is returned and the device has reached its elective replacement indicator(s) with implant time exceeding 80% of the expected longevity calculated using the available device setting information.

Medtronic CRDM establishes expected longevity by statistically characterizing the power consumed by the device and the power available from the device battery. This characterization is applied to a number of parameter configurations to derive a statistical mean longevity value and standard deviation for each parameter configuration. The statistical mean value minus three standard deviations is used as the expected longevity for determining if a battery depleted normally.

Method for Estimating CRT, ICD, and IPG Device Performance, continued

The Standard Actuarial Method is used to estimate IPG and ICD survival. This product performance report has been prepared in accordance with International Standard ISO 5841-2:2000(E).

For reference purposes, the following pages include estimated longevities for each model. The actual longevity achieved for any device while implanted will depend on the actual programmed parameters and patient factors, and may differ significantly from these estimates.

Malfunction with Compromised Therapy Function

The condition when a device is found to have malfunctioned in a manner that compromised pacing or defibrillation therapy (including complete loss or partial degradation), while implanted and in service, as confirmed by returned product analysis.

Examples: Sudden loss of battery voltage; accelerated current drain such that low battery was not detected before loss of therapy; sudden malfunction during defibrillation therapy resulting in aborted delivery of therapy, intermittent malfunction where therapy is compromised while in the malfunction state.

Malfunction without Compromised Therapy Function

The condition when a device is found to have malfunctioned in a manner that *did not* compromise pacing or defibrillation therapy, while implanted and in service, as confirmed by returned product analysis.

Examples: Error affecting diagnostic functions, telemetry function, data storage; malfunction of a component that causes battery to lose power quickly enough to cause premature battery depletion, but slowly enough that the condition is detected through normal follow-up before therapy is lost; mechanical problems with connector header that do not affect therapy.

Expanded Malfunction Detail

The malfunctions are further divided into categories that identify the subject area of the malfunction. The malfunctions are divided into the following subject areas:

Electrical Component – findings linked to electrical components such as integrated circuits, resistors, capacitors, diodes, etc.

Electrical Interconnect – findings linked to the connections between electrical components such as wires, solder joints, wire bonds, etc.

Battery – findings linked to the battery and its components

Software/Firmware – findings linked to software or firmware function

Possible Early Battery Depletion – findings where the actual reported implant time is less than 80% of the expected longevity calculated using the available device setting information with no device malfunction observed. There may not be sufficient device setting information to determine conclusively if battery depletion was normal or premature in the absence of a specific root cause finding. However, returned devices meeting the above criteria are conservatively classified as Possible Early Battery Depletion malfunctions.

Other – findings related to other components such as insulators, grommets, setscrews, and packaging, and findings where analysis is inconclusive.

Returned Product Analysis Process

Analysis of returned product is performed according to written procedures. These procedures determine the minimum analysis required. The analysis required varies depending on the type of device, age of the device, the associated information received with the device, actual experience with models of similar design, and other factors. Additional analysis is performed as necessary to investigate a performance concern from a customer, or to collect specific reliability data.

When a device is returned with a performance concern from a customer, the general analysis process includes a preliminary analysis of the device in its as-received condition, followed by an automated functional test using test equipment equivalent to the equipment used in manufacturing.

When a malfunction is identified, failure analysis is performed to provide the detailed information necessary to investigate possible causes and actions. Medtronic CRDM maintains in-house expertise and performs its failure analysis using facilities it owns and supports. This capability permits detailed failure analysis.

Method for Estimating CRT, ICD, and IPG Device Performance, continued

Medtronic CRDM adjusts all-cause survival estimates to account for underreporting. While this lowers our all-cause survival estimates, we feel it gives a more accurate perspective on real performance.

Statistical Methods for Survival Analysis

Of the several different statistical methods available for survival analysis, the Standard Actuarial Method, with suspensions assumed distributed across the intervals (Cutler-Ederer Method), is used to determine estimates of IPG and ICD survival. This method is commonly used by medical researchers and clinicians.

Implant times are calculated from the implant date to the earlier of the explant date or the cutoff date of the report. From this data an estimate of the probability of device survival is calculated at each monthly interval.

On the following pages, each graph includes a survival curve where events include malfunctions and normal battery depletions. This survival curve is a good representation of the probability a device will survive a period of time without malfunction and without battery depletion. For example, if a device survival probability is 95% after 5 years of service, then the device has a 5% chance of being removed due to battery depletion or malfunction in the first five years following implant.

In addition, a second curve is included to show survival excluding normal battery depletion. This curve is a good representation of the probability for a device to survive without malfunction. This curve includes only malfunctions as events and excludes normal battery depletion.

Since the survival estimate can become very imprecise with small effective sample sizes, Medtronic truncates the survival curve when the effective sample size is less than 100 for CRT, ICD, and IPG devices. The survival charts in the Product Performance Report show the effective sample size for each year interval where we have experience. When the effective sample size reaches 100, the next data point is added to the survival curve.

Although the report provides tabular data in one-year intervals, the curves are actually computed and plotted using one-month intervals.

The data in the tables is rounded to the nearest tenth of one percent. Occasionally, a graph may show 100% survival, but have 1 or more malfunctions or battery depletions. This occurs because even with the malfunctions or battery depletions, the data rounds to 100%. The survival curves are statistical estimates. As performance experience accumulates, the estimation improves. Confidence intervals are provided as a way to indicate the degree of certainty of the estimates. Greenwood's formula is used to calculate corresponding 95% confidence intervals for the standard errors and the complementary log-log method is used to produce the confidence bounds.

Sample Size and How the Population and Population Samples Are Defined

The population sample from which the survival estimates are derived is comprised of the devices registered as implanted in the United States as of the report cutoff date. The number of registered implants, as well as an estimate of the number that remain in active service, is listed for each model. To be included in the population, the device must have been registered with Medtronic's registration system and implanted for at least one day.

This sample based on US implants is considered to be representative of the worldwide population, and therefore the survival estimates shown in this report should be representative of the performance worldwide of these models.

A CRT, ICD, or IPG model or model family will be included in this report when it has accumulated at least 10,000 implant months, and will remain in the report as long as at least 500 devices remain active.

Methods Used to Adjust for Underreporting of Malfunction and Battery Depletion

The tables on the following pages show the actual number of malfunctions and battery depletions recorded by the analysis lab for US registered devices. Since not all devices are returned to Medtronic CRDM for analysis, these numbers underestimate the true number of malfunctions and battery depletions. To more accurately estimate the all-cause device survival probabilities, the number of malfunctions and battery depletions used to plot each interval of the all-cause survival curves is adjusted (multiplied) by a factor that is based on an estimate of the magnitude of underreporting. The magnitude of underreporting is estimated by analyzing experience in clinical studies (including the System Longevity Study) and the device registration system.

Method for Estimating CRT, ICD, and IPG Device Performance, continued

However, at this time, no adjustment for underreporting is applied to the malfunction-free survival curve because a method for estimating malfunction-only underreporting has not been developed.

Adjustments to Registered Implants to Compensate for Unreported Devices Removed from Service

Devices are at times removed from service for reasons other than device malfunction or battery depletion. Examples are devices removed from service due to non-device related patient mortality and devices removed due to changes in the patient's medical condition. Because an accurate estimate of device survival depends on an accurate estimate of the number of devices in service, it is important not to overstate the number of devices in service.

To ensure the number of devices in service is not overstated, the patient mortality rate derived from our device registration system is monitored and compared to published mortality rates for comparable patient populations. If, during calculation of the survival curves, the patient mortality indicated by the data in our device registration is significantly different from published rates, an adjustment is applied to correct the difference.

7272 InSync ICD

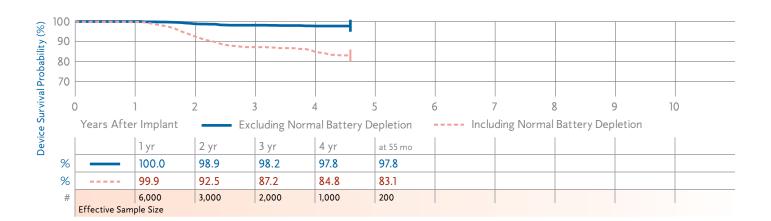
Jul-02
13,000
3,000
420
None


Malfunctions (US)	188
Therapy Function Not Compromised	174
Battery	2
Electrical Component	23
Software/Firmware	3
Possible Early Battery Depletion	146
Therapy Function Compromised	14
Battery	1
Electrical Component	13

Product Characteristics

Product Characteristics

1


NBD Code	VVED
Serial Number Prefix	PJP
Max Delivered Energy	34 J
Estimated Longevity	See page 20

7277 InSync Marquis

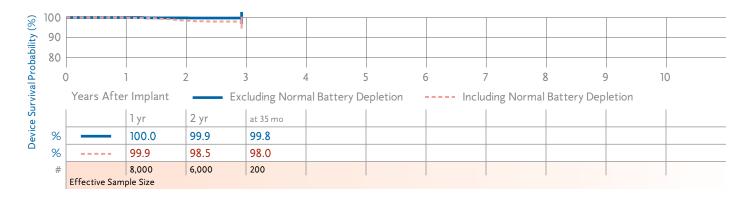
US Market Release Mar-03 Malfunctions (US) 72 NBD Code VVED 7,000 Therapy Function Not Compromised **Registered US Implants** 62 Serial Number Prefix PLT **Estimated Active US Implants** 1,000 Max Delivered Energy Battery 1 30 J Normal Battery Depletions (US) 196 **Electrical Component** 8 **Estimated Longevity** See page 20 Advisories: See page 146 – 2005 Potential Software/Firmware 1 Premature Battery Depletion Due to Possible Early Battery Depletion 52 **Battery Short Therapy Function Compromised** 10 9 Battery (9 malfunctions related to advisory)

Electrical Component

7289 InSync II Marquis

US Market Release	Jul-03
Registered US Implants	28,000
Estimated Active US Implants	9,000
Normal Battery Depletions (US)	744
Advisories: <u>See page 146</u> – 2005 Pote Premature Battery Depletion Due to Battery Short	ntial

Malfunctions (US)	169
Therapy Function Not Compromised	141
Electrical Component	13
Software/Firmware	1
Possible Early Battery Depletion	127
Therapy Function Compromised	28
Battery (8 malfunctions related to advisory)	9
Electrical Component	19

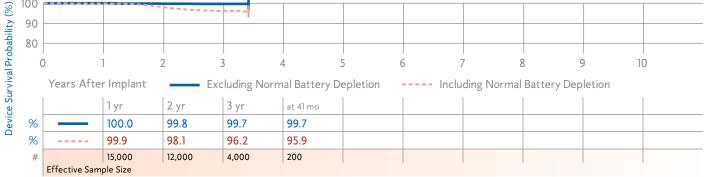

Product Characteristics

NBD Code	VVED
Serial Number Prefix	PRJ
Max Delivered Energy	30 J
Estimated Longevity	See page 20

00											
0											
30					·						
70											
										-	
0)	1	2	3	4	5	6	7	8	9	10
0) Years Afte	_	1			5 y Depletion	6 Inc	7 Iuding No	-	-	
0) Years Afte	1 r Implant 1 yr	2 Ex 2 yr	3 cluding Nor 3 yr	4 mal Batter <u>y</u> 4 yr	5 y Depletion at 50 mo		7 Iuding No:	-	-	
0) Years Afte	_	1					7 Iuding No	-	-	
0 % %) Years Afte	1 yr	2 yr	3 yr	4 yr	at 50 mo		7 Iuding No	-	-	

7297 InSync Sentry

297 InSync Sentry				Product Characteristics	
US Market Release	Nov-04	Malfunctions (US)	14	NBD Code	VVED
Registered US Implants	9,000	Therapy Function Not Compromised	13	Serial Number Prefix	PRK
Estimated Active US Implants	6,000	Battery	1	Max Delivered Energy	35 J
Normal Battery Depletions (US)	50	Electrical Component	4	Estimated Longevity	See page 20
Advisories	None	Possible Early Battery Depletion	8		
		Therapy Function Compromised	1		
		Electrical Component	1		



US Market Release	Apr-05	Malfunctions (US)	13	NBD Code	VVED
Registered US Implants	30,000	Therapy Function Not Compromised	9	Serial Number Prefix	PRK
Estimated Active US Implants	23,000	Electrical Component	4	Max Delivered Energy	35 J
Normal Battery Depletions (US)	17	Software/Firmware	2	Estimated Longevity	See page 2
Advisories	None	Possible Early Battery Depletion	3		
		Therapy Function Compromised	4		
		Electrical Component	4		
		Electrical component	•		
100					
90					

7303 InSync Maximo

US Market Release	Jun-04	Malfunctions (US)	34	NBD Code	VVED
Registered US Implants	17,000	Therapy Function Not Compromised	29	Serial Number Prefix	PRL
Estimated Active US Implants	10,000	Electrical Component	5	Max Delivered Energy	35 J
Normal Battery Depletions (US)	193	Software/Firmware	1	Estimated Longevity	See page 2
Advisories	None	Possible Early Battery Depletion	23		
		Therapy Function Compromised	5		
		Electrical Component	5		
100					
100					

Product Characteristics

7304 InSync Maximo **Product Characteristics US Market Release** Apr-05 Malfunctions (US) 4 NBD Code VVED 17,000 **Therapy Function Not Compromised** Serial Number Prefix PRL **Registered US Implants** 3 Estimated Active US Implants 13,000 Battery 1 Max Delivered Energy 35 J Normal Battery Depletions (US) **Electrical Component** 2 **Estimated Longevity** 9 See page 20 Advisories None **Therapy Function Compromised** 1 **Electrical Component** 1 100 Device Survival Probability (%) 90 80 2 3 7

0 4 5 6 8 9 10 Years After Implant **Excluding Normal Battery Depletion** ----- Including Normal Battery Depletion 1 yr 2 yr at 30 mo % 100.0 100.0 100.0 % 99.9 99.8 99.8 # 12,000 5,000 1,000 Effective Sample Size

8040 InSync

#

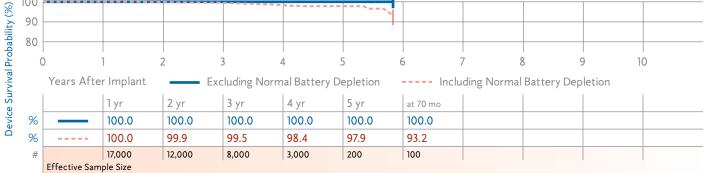
8040 InSyr	าด							Product C	haracteri	istics	
US Market	Release	Aug-01	Mal	functions (U	IS)		28	NBD Code			DDDR
Registered	US Implants	15,000	Th	erapy Funct	ion Not Compr	omised	8	Serial Numb	per Prefix		PIN
Estimated A	Active US Implants	4,000		Electrical C	omponent		4	Estimated L	ongevity		See page 20
Normal Bat	tery Depletions (US)) 248		Electrical Ir	nterconnect		1				
Advisories		None		Possible Ea	rly Battery Dep	letion	3				
			Th	erapy Funct	ion Compromis	ed	20				
				Electrical Ir	iterconnect		20				
Device Survival Probability (%)							-				
08 abili							<u>``</u>				
al Prob	1	2 3		4	5	6	7	8	(9	10
.≥ Yea	rs After Implant	Exc	uding No	ormal Batte	ry Depletion		ncludir	ig Normal Bat	tery Dep	letion	
e Su	1 yr	2 yr	3 yr	4 yr	5 yr	6 yr	at	82 mo			
evice	100.0	100.0	99.9	99.8	99.7	99.5	99	9.5			
<u>م</u> %	99.9	99.7	98.4	96.4	93.1	90.9	81	.8			

4,000

1,000

100

10,000


8,000

6,000

12,000

Effective Sample Size

8042 InSync III **Product Characteristics US Market Release** Feb-03 Malfunctions (US) 5 NBD Code DDDR 25,000 **Therapy Function Not Compromised** Serial Number Prefix PKF **Registered US Implants** 3 2 Estimated Active US Implants 15,000 **Electrical Component Estimated Longevity** See page 20 Normal Battery Depletions (US) Possible Early Battery Depletion 62 1 2 Advisories None **Therapy Function Compromised** 2 **Electrical Interconnect** 100

C154DWK, C164AWK, C174AWK Concerto

C1	54DV	VK, C1644	AWK, C17	4AWK Cor	ncerto					Produc	t Characte	ristics		
	US Ma	arket Release		May-06	Malfur	ictions (US)			13	NBD Co	de		VVED	
	Regist	ered US Impl	ants	35,000	Thera	py Function I	Not Compr	omised	6	Serial N	umber Prefi	x	PVU, PVT, P	VR
	Estima	ated Active U	S Implants	32,000	Eİ	ectrical Comp	onent		2	Max De	livered Ener	gу	35 J	
	Norm	al Battery Dep	pletions (US)	2	Po	ossible Early B	attery Dep	letion	4	Estimat	ed Longevit	у	See page 2	.0
	Adviso	ories		None	Thera	py Function (Compromis	ed	7					
					El	ectrical Comp	onent		6					
					El	ectrical Interc	connect		1					
Dowing Convinuel Decembrahility, 792.)														
Lilit.	100			1		[1							
40	90		•											
	80													
Ū)		2 3	4	4	5	6	7	٤	3	9	10	
		Years Afte	r Implant	Exc	luding Norn	nal Battery D	Depletion		Includin	g Norma	Battery De	epletion		
6	د		1 yr	at 17 mo										
	%		99.9	99.9										
	%		99.8	99.8										
	#		6,000	300										
		Effective Sam	ple Size											

Device Survival Summary (95% Confidence Interval)

The following table shows CRT device survival estimates with 95% confidence intervals. Estimates are shown both with and without normal battery depletions included.

						Malfunctions (US)	ions (US)			Device S	Device Survival Probability (%)	obability	(%)					
		texket Base	istered aplants	nated SU svi stnsl	mal Battery Jetions (US)	rapy Function npromised	rapy ction Not npromised	le		Years Af	Years After Implant	nt						
Number	Family	eleg NS N	NS । ଅକଞ୍ଚ	t>Α		uoŊ	un	ъtоТ		1 yr	2 yr	3 yr	4 yr	5 yr	6 yr	7 yr	8 yr	10 yr
7272	InSync ICD	Jul-02	13,000	3,000	420	14 +	174 = 1	188 Nc	Excluding Normal Battery Depletion	9.99 +0.0/-0.1	99.8 +0.1/-0.1	99.1 +0.2/-0.2	97.8 +0.3/-0.4	97.2 +0.4/-0.4	96.8 +0.7/-0.9 at 65 mo			
								Ž	Including Normal Battery Depletion	99.7 +0.1/-0.1	99.2 +0.2/-0.2	95.5 +0.4/-0.5	88.6 +0.7/-0.8	80.6 +1.1/-1.1	76.5 +2.3/-2.5 at 65 mo			
7277	InSync Marquis	Mar-03	7,000	1,000	196	+ 0	62 =	72 No	Excluding Normal Battery Depletion	100.0 +0.0/-0.1	98.9 +0.3/-0.4	98.2 +0.4/-0.5	97.8 +0.5/-0.6	97.8 +0.5/-0.6 at 55 mo				
	Advisories: <u>see page 146</u> – 2005 Potential Premature Battery Depletion Due to Battery Short	<mark>see page 146</mark> – 2005 Potential 3attery Depletion Due to Batte	5 – 2005 P. etion Due	otential to Battery		 (9) + (0) = (9) (advisory-related subset) 	(0) = elated subs		Including Normal Battery Depletion	9.99 +0.1/-0.1	92.5 +0.7/-0.8	87.2 +1.1/-1.2	84.8 +1.3/-1.4	83.1 +1.5/-1.6 at 55 mo				
7289	InSync II Marquis	Jul-03	28,000	9,000	744		141 = 1	169 No	Excluding Normal Battery Depletion	9.99 +0.0/-0.0+	99.7 +0.1/-0.1	99.0 +0.1/-0.2	98.9 +0.2/-0.2	98.9 +0.2/-0.2 at 50 mo				
	Advisories: <u>see page 146</u> – 2005 Potential Premature Battery Depletion Due to Battery Short	see page 14 attery Depl	<u>5</u> – 2005 P etion Due	otential to Battery	Short	(8) + (advisory-re	 (8) + (0) = (8) dvisory-related subset) 		Including Normal Battery Depletion	99.8 +0.0/-0.1	97.4 +0.2/-0.2	90.2 +0.5/-0.5	81.5 +1.4/-1.5	80.9 +1.6/-1.7 at 50 mo				
7297	InSync Sentry	Nov-04	9,000	6,000	50	+]3 =]4 Ř	Excluding Normal Battery Depletion	100.0 +0.0/-0.1	99.9 +0.1/-0.1	99.8 +0.1/-0.1 at 35 mo						
								Ň	Including Normal Battery Depletion	9.99 +0.1/-0.1	98.5 +0.3/-0.3	98.0 +0.3/-0.4 at 35 mo						
7299	InSync Sentry	Apr-05	30,000	23,000	11	4 +	= 6	13 Nc	Excluding Normal Battery Depletion	100.0 +0.0/-0.0	99.9 +0.0/-0.0	99.9 +0.0/-0.0 at 30 mo						
								Ň	Including Normal Battery Depletion	9.99 +0.0/-0.0+	99.7 +0.1/-0.1	99.7 +0.1/-0.1 at 30 mo						
7303	InSync Maximo	Jun-04	17,000	10,000	193	ر م +	29 =	34 Nc	Excluding Normal Battery Depletion	100.0 +0.0/-0.0	99.8 +0.1/-0.1	99.7 +0.1/-0.1	99.7 +0.1/-0.1 at 41mo					
								Ň	Including Normal Battery Depletion	9.99 +0.0/-0.1	98.1 +0.2/-0.3	96.2 +0.3/-0.4	95.9 +0.5/-0.6 at 41mo					
7304	InSync Maximo	Apr-05	17,000	13,000	σ	+ 	3 =	4 V	Excluding Normal Battery Depletion	100.0 +0.0/-0.0	100.0 +0.0/-0.1	100.0 +0.0/-0.1 at 30 mo						
								ž	Including Normal Battery Depletion	9.99 1.0-/0.0+	99.8 +0.1/-0.1	99.8 +0.1/-0.1 at 30 mo						

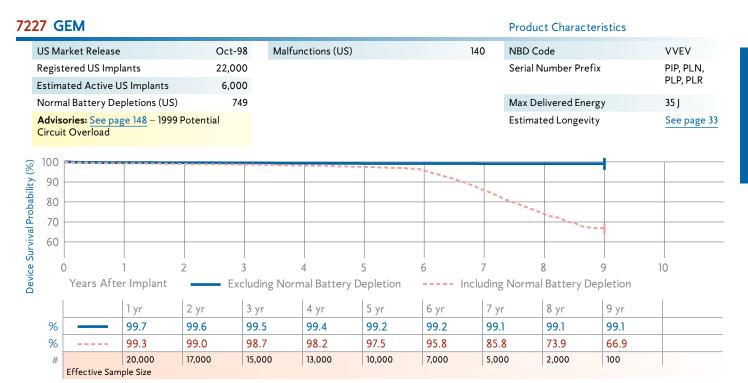
						Malfund	Malfunctions (US)	IS)		Device S	Device Survival Probability (%)	obability	(%)					
		Market ease	jistered Implants	ive US SU svi stast	yaattery (SU) anoiteld	ırapy Function pesimorqu	rrapy ction Not npromised	al		Years Af	Years After Implant	nt						
Number	Family		। SU ଅକ୍ଷ	t>Α			un_	ът		1 yr	2 yr	3 yr	4 yr	5 yr	6 yr	7 yr	8 yr	10 yr
8040	InSync	Aug-01	15,000	4,000	248	20 +	∥ ∞	28	Excluding Normal Battery Depletion	100.0 +0.0/-0.0	100.0 +0.0/-0.1	9.99 +0.0/-0.1	99.8 +0.1/-0.1	99.7 +0.1/-0.2	99.5 +0.2/-0.2	99.5 +0.2/-0.2 at 82 mo		
									Including Normal Battery Depletion	99.9 +0.0/-0.1	99.7 +0.1/-0.1	98.4 +0.2/-0.3	96.4 +0.4/-0.4	93.1 +0.6/-0.6	90.9 +0.8/-0.9	81.8 +4.4/-5.5 at 82 mo		
8042	InSync III	Feb-03	25,000	15,000	62	+	3	5	Excluding Normal Battery Depletion	100.0 +0.0/-0.0	100.0 +0.0/-0.0	100.0 +0.0/-0.1	100.0 +0.0/-0.1	100.0 +0.0/-0.1	100.0 +0.0/-0.1 at 70 mo			
									Including Normal Battery Depletion	100.0 +0.0/-0.0	99.9 +0.0/-0.1	99.5 +0.1/-0.2	98.4 +0.3/-0.4	97.9 +0.4/-0.4	93.2 +2.9/-4.9 at 70 mo			
C154DWK, C164AWK, C174AWK	Concerto	May-06	35,000	32,000	2	+ 2	9	13	Excluding Normal Battery Depletion	99.9 +0.0/-0.1	99.9 +0.0/-0.1 at 17 mo							
									Including Normal Battery Depletion	99.8 +0.1/-0.1	99.8 +0.1/-0.1 at 17 mo							

Reference Chart

The longevity estimates provided are mean values calculated for the parameters given. The actual longevity achieved for any device while implanted will depend on the actual programmed parameters and patient factors, and may differ significantly from these estimates.

					E	Estimate	d Longe	vity		Flactiva	Replacement	
					cy**					(E	RI)***	End of Life
Model Number	Family	Connector Style	Volume/ Mass*	Delivered Energy	Charging Frequency ^{***}	100% Pacing‡	50% Pacing‡	15% Pacing‡	100% Sensing	Battery Voltage	Charge Time	(EOL) Battery Voltage
7272	InSync ICD	DR+LV	66 cc 117 g	34 J	Monthly Quarterly Semiannual	5.4 6.5 6.9	6.3 8.0 8.5	7.3 9.4 10.3	7.8 10.3 11.2	≤ 4.91 V	-	≤ 4.57 V
7277	InSync Marquis	DR+LV split	38 cc 77 g	30 J	Monthly Quarterly Semiannual	3.7 5.0 5.5	4.3 6.0 6.7	4.7 7.0 8.0	4.9 7.5 8.6	≤ 2.62 V	> 16 second charge time	3 months after ERI
7289	InSync II Marquis	DR+LV true	38 cc 76 g	30 J	Monthly Quarterly Semiannual	3.3 4.2 4.5	3.6 4.9 5.4	4.0 5.5 6.1	4.2 5.8 6.6	≤ 2.62 V	> 16 second charge time	3 months after ERI
7295	InSync II Protect	DR+LV true	38 cc 77 g	30 J	Monthly Quarterly Semiannual	3.3 4.2 4.5	3.7 4.9 5.4	4.0 5.5 6.2	4.2 5.9 6.6	≤ 2.62 V	> 16 second charge time	3 months after ERI
7297	InSync Sentry	DR+LV true	40 cc 78 g	35 J	Monthly Quarterly Semiannual	3.3 4.5 5.0	3.7 5.3 6.0	4.1 6.2 7.1	4.3 6.6 7.7	≤ 2.62 V	> 16 second charge time	3 months after ERI
7299	InSync Sentry	DR+LV true	40 cc 78 g	35 J	Monthly Quarterly Semiannual	3.3 4.5 5.0	3.7 5.3 6.0	4.1 6.2 7.1	4.3 6.6 7.7	≤ 2.62 V	> 16 second charge time	3 months after ERI
7303	InSync Maximo	DR+LV true	40 cc 78 g	35 J	Monthly Quarterly Semiannual	3.3 4.5 5.0	3.7 5.3 6.0	4.1 6.2 7.1	4.3 6.6 7.7	≤ 2.62 V	> 16 second charge time	3 months after ERI
7304	InSync Maximo	DR+LV true	40 cc 78 g	35 J	Monthly Quarterly Semiannual	3.3 4.5 5.0	3.7 5.3 6.0	4.1 6.2 7.1	4.3 6.6 7.7	≤ 2.62 V	> 16 second charge time	3 months after ERI

		Estimated Lo	ngevity		
Family	Model Number	Amplitude Setting	500 Lead Ω	1000 Lead Ω	Elective Replacement Time Indicators
InSync	8040	Low 2.5 V (A, RV) Nominal 3.5 V (A, RV) High 5.0 V (A, RV)	11.9 8.9 6.6	13.7 11.4 9.1	**
InSync III	8042	Low 2.5 V (A, RV, LV) Nominal 3.5 V (A, RV, LV) High 5.0 V (A, RV, LV)	8.3 5.9 4.1	9.9 7.8 6.0	**


					I	stimate	d Longe	vity		Repl	nmended acement	
Model Number	Family	Connector Style	Volume/ Mass*	Delivered Energy	Charging Frequency ^{* *}	100% Pacing‡	50% Pacing‡	15% Pacing‡	100% Sensing	Battery Voltage	Time %**(T2	End of Service (EOS)
C154DWK, C164AWK, C174AWK		DR+LV true	38 cm 68 g	35 J	Monthly Quarterly Semiannual	3.8 5.5 6.3	4.3 6.8 8.0	4.8 8.0 9.8	5.0 8.8 11.0	≤ 2.62 V	_	3 month after RRT or > 16-second charge time

* Volume and mass differ by connector style.

** A full charge is a full energy therapeutic shock or capacitor reformation.

*** The minimum time between ERI and EOL (or RRT and EOS) is 3 months (100% pacing, two charges per month).

[‡] Pacing mode is DDD for CRT models. Parameter settings; lower rate at 60 ppm, sensing rate at 70 bpm, (A, RV, LV) 3.0 V amplitude, 0.4 ms pulse width, and 510 ohm pace load per applicable channel. CRT models with shared biventricular pacing; InSync Marquis 7277 (LV impedance set to 510 ohms), InSync ICD 7272 (RV amplitude set to 4.0 V).

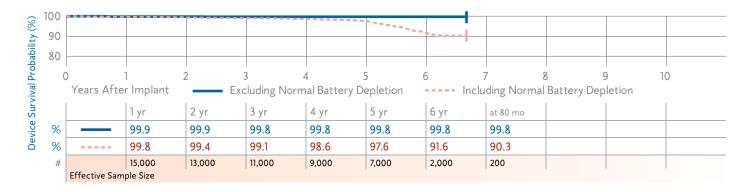
7229 GEM II VR

229 <mark>G</mark>	EM II VR								Produc	t Character	ristics	
US Ma	rket Release		Jul-9	9 Mal	functions (US)		2	6	NBD Co	de		VVEV
Registe	ered US Imp	lants	11,00	C					Serial N	lumber Prefix	(PJJ
Estima	ated Active L	JS Implants	1,00	C					Max De	livered Energ	5y	30 J
Norma	al Battery De	pletions (US)	99	4					Estimat	ed Longevity	,	See page 33
Circuit also se	Overload	ge 148 – 1999 - Performance Behavior										
○ 100								1	-			
Device Survival Probability (%) 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0												
abili 80												
q 70												
00 is												
NINS 50												
40												
									Υ.			
30												
20												
0) Years Afte	1 er Implant	-	3 Iuding No	4 ormal Battery D	5 Depletion	6	7 Iding		8 Battery De _l	9 pletion	10
		1 yr	2 yr	3 yr	4 yr	5 yr	6 yr	7 yr	r	at 91 mo		
%		99.9	99.8	99.8	99.7	99.7	99.7	99.		99.6		
%		99.8	99.5	99.3	98.4	94.4	84.2	56.	5	32.9		
#		9,000	8,000	7,000	6,000	5,000	4,000	1,00	0	200		
	Effective San	nple Size										

7230 Marquis VR

US Market Release		Dec-02
Registered US Implan	ts	19,000
Estimated Active US I	mplants	10,000
Normal Battery Deple	etions (US)	8
Advisories: <u>See page</u> Premature Battery De Battery Short		

Malfunctions (US)
Therapy Function Not Compromised
Electrical Component
Possible Early Battery Depletion
Other
Therapy Function Compromised
Battery
Electrical Component

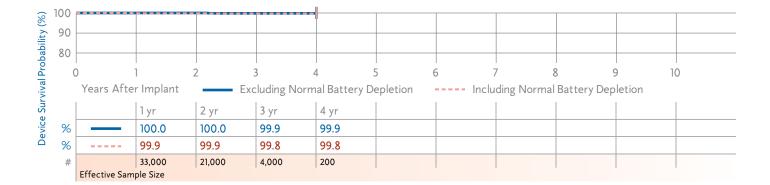

Product Characteristics

VVEV
PKD, PLW, PLY
30 J
See page 33

(%)	100											
	90											
jļt												
bability	80											
Pro	()	1	2	3 4	4	5	6 7	7 8	3)]	0
rvival		Years Afte	r Implant	Exc	luding Norm	al Battery D	epletion	Inclu	ding Normal	Battery Dep	letion	
e Su			l yr	2 yr	3 yr	4 yr	at 59 mo					
evice	%		100.0	99.9	99.9	99.9	99.8					
ð	%		99.9	99.7	99.6	99.6	99.5					
	#		17,000	13,000	9,000	5,000	200					
		Effective Sam	ple Size									

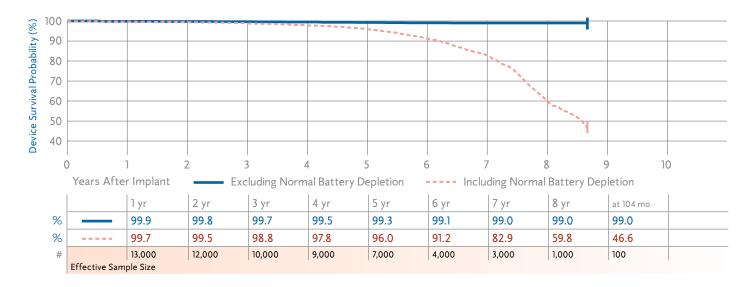
7231 GEM III VR

72	31 GEM III VR				Product Characteristics	
	US Market Release	Dec-00	Malfunctions (US)	31	NBD Code	VVEV
	Registered US Implants	17,000	Therapy Function Not Compromised	23	Serial Number Prefix	PJL
	Estimated Active US Implants	9,000	Battery	1	Max Delivered Energy	30 J
	Normal Battery Depletions (US)	223	Electrical Component	18	Estimated Longevity	See page 33
	Performance Note: see page 157 -		Possible Early Battery Depletion	4		
	Performance note on ICD Battery Discharge Behavior		Therapy Function Compromised	8		
	Discharge Benavior		Battery	1		
			Electrical Component	7		


7232 Maximo VR

Malfunctions (US)
Therapy Function Not Compromised
Electrical Component
Possible Early Battery Depletion
Therapy Function Compromised
Electrical Component
Possible Early Battery Depletion

Product Characteristics


6 5 1

NBD Code	VVED
Serial Number Prefix	PRN
Max Delivered Energy	35 J
Estimated Longevity	See page 33

7271 GEM DR

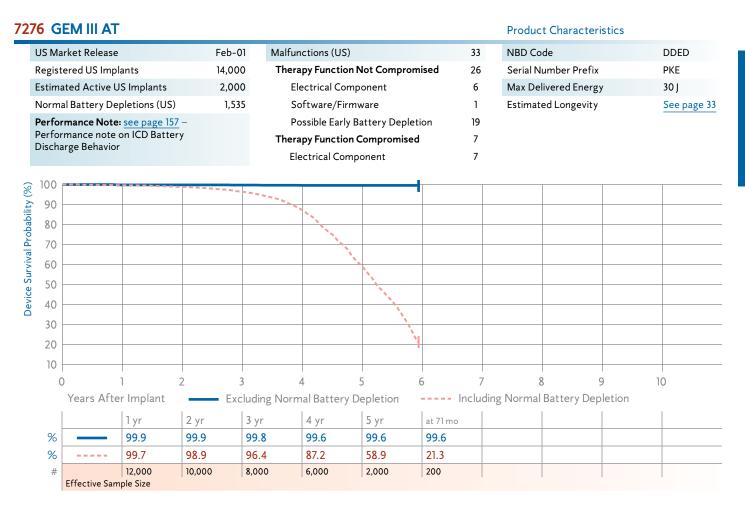
US Market Release	Oct-98	Malfunctions (US)	88	NBD Code	VVED
Registered US Implants	15,000			Serial Number Prefix	PIM
Estimated Active US Implants	3,000			Max Delivered Energy	27 J
Normal Battery Depletions (US)	652			Estimated Longevity	See page 33
Advisories	None				

Product Characteristics

7274 Marquis DR

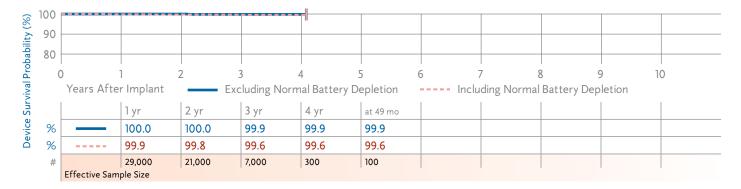
US Market Release	Mar-02
Registered US Implants	48,000
Estimated Active US Implants	21,000
Normal Battery Depletions (US)	203
Advisories: <u>See page 146</u> – 2005 Pot Premature Battery Depletion Due to Battery Short	

Malfunctions (US)	118
Therapy Function Not Compromised	55
Battery (2 malfunctions related to advisory)	4
Electrical Component	22
Possible Early Battery Depletion	29
Therapy Function Compromised	63
Battery (35 malfunctions related to advisory)	42
Electrical Component	21


Product Characteristics

NBD Code	VVED
Serial Number Prefix	РКС
Max Delivered Energy	30 J
Estimated Longevity	See page 33

00											
90						-					
_											
80											
0)	1	2	2	Λ	5	6	7	8	9	10
0)	1	2	5	4	J	0	/	0	2	10
0	Years Afte	r Implant	[Excluding No	rmal Battery	/ Depletion	Ū.	, luding Nor	mal Batter	y Depletion	
	-	r Implant 1 yr	2 yr	Excluding No	rmal Battery	/ Depletion 5 yr	Ū.	; luding Nor	mal Batter	<u> </u>	
%	-		1				Ind	/ cluding Nor	mal Batter	<u> </u>	
	-	l yr	2 yr	3 yr	4 yr	5 yr	at 68 mo	cluding Nor	mal Batter	<u> </u>	


7275 GEM III DR

5 0	EM III DR								Produc	ct Characte	ristics	
JS Ma	arket Release		Nov-0	0 Malfur	ictions (US)			39	NBD Co	ode		VVED
Regist	tered US Imp	lants	20,00	0 Thera	py Function N	lot Comprom	ised	28	Serial Number Prefix Max Delivered Energy		PJM	
	ated Active L		3,00		attery			1			30 J	
	•	ttery Depletions (US) 1,980			Electrical Component			11	Estimated Longevity		See page 3	
		see page 157		Software/Firmware Possible Early Battery Depletion Therapy Function Compromised				1				
	rmance note arge Behavio	on ICD Battery	ý					15				
								11				
					ttery			2				
					ectrical Comp			8				
				Ele	ectrical Interc	onnect		I				
100							-					
90												
80												
70												
60												
50												
40												
30												
20							۲					
)	1	2	3	1	 5 (5	7		8	9	10
(years Afte	-	-	-	4 1al Battery D		-	/		∘ I Battery De	2	10
					, I			1	·	i battery De	pietion	I
		1 yr	2 yr	3 yr	4 yr	5 yr	6 yr	at 7	5 mo			
%		99.9	99.9	99.8	99.8	99.7	99.7	99.	-			
%		99.6	99.0	97.0	91.0	69.4	35.0	24.	-			
#	Effective San	18,000	15,000	12,000	9,000	4,000	1,000	100				

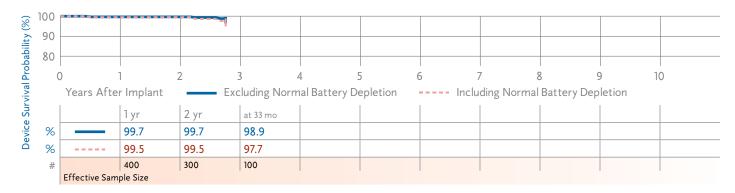
7278 Maximo DR

US Market Release	Oct-03	Malfunctions (US)	17	NBD Code	VVED
Registered US Implants	35,000	Therapy Function Not Compromised	10	Serial Number Prefix	PRM
Estimated Active US Implants	27,000	Electrical Component	7	Max Delivered Energy	35 J
Normal Battery Depletions (US)	22	Possible Early Battery Depletion	3	Estimated Longevity	See page 33
Advisories: See page 146 – 2005 Pote		Therapy Function Compromised	7		
Premature Battery Depletion Due to Battery Short		Electrical Component	6		
Dattery Short		Possible Early Battery Depletion	1		

Product Characteristics

8 Intrinsic			_						
US Market Release		Aug-04	4 Malf	functions (US)		22	NBD Code		VVED
Registered US Impla	nts	30,000	0 The	erapy Function I	Not Compromised	16	Serial Number	r Prefix	PUB
Estimated Active US	5 Implants	25,000	0	Battery		2	Max Delivered	l Energy	35 J
Normal Battery Dep	letions (US)	12	2	Electrical Comp	onent	7	Estimated Lor	ngevity	See page
Advisories		None	e	Software/Firm	ware	1			
				Possible Early B	attery Depletion	6			
			The	erany Function	Compromised	6			
				crupy runction.					
100				Electrical Comp	-	6			
100					-	6			
90					-	6			
90 80					ionent	6			
100 90 80 0 1		2 3	3	Electrical Comp	5 6	7	8	9	10
100 90 80 0 1 Years After			3		5 6	7	8 g Normal Batte		
100 90 80 0 1 Years After			3	Electrical Comp	5 6	7			
100 90 80 0 1 Years After %	Implant	Exc	3 Sluding Not	Electrical Comp 4 rmal Battery D	5 6	7			
90 80 0 1 Years After %	Implant 1 yr	Exc	3 Sluding Nor	Electrical Comp 4 rmal Battery D at 39 mo	5 6	7			

7290 Onyx


90 C	Onyx								Product Cha	racteristics	
US Ma	arket Release		Mar-	04 M	alfunctions (US)	,		3	NBD Code		VVEV
Regist	tered US Impl	ants	1,0	00 T	Therapy Functio	n Not Cor	npromised	2	Serial Numbe	r Prefix	PRP
Estima	ated Active U	S Implants	1,0	00	Electrical Cor	nponent		2	Max Delivere	d Energy	30 J
Norm	al Battery De	pletions (US))	1 1	Therapy Functio	n Compro	mised	1	Estimated Lo	ngevity	See page 33
Adviso	ories		No	one	Electrical Cor	nponent		1			
90 90 80 () Years Afte	1 r Implant	2 E	3 xcluding N	4 Jormal Battery	5 Depletic	6 on	7 Includin	8 g Normal Batte	9 ery Depletion	10
		l yr	2 yr	3 yr	at 38 mo	_					
		99.9	99.6	99.6	99.6						
%		99.8	99.2	98.7	98.7						
#	Effective Com	1,000	1,000	100	100						
	Effective Sam	ple Size									

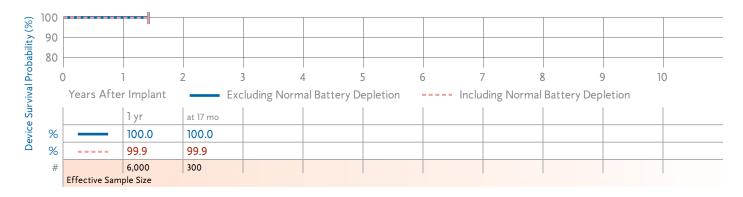
D153ATG, D153DRG EnTrust

US Market Release	Jun-05	Malfunctions (US)	3	NBD Code
Registered US Implants	400	Therapy Function Not Compromised	2	Serial Number Prefix
Estimated Active US Implants	300	Possible Early Battery Depletion	2	Max Delivered Energy
Normal Battery Depletions (US)	0	Therapy Function Compromised	1	Estimated Longevity
Advisories	None	Electrical Component	1	

Product Characteristics

NBD Code	DDED, VVED
Serial Number Prefix	PNR
Max Delivered Energy	30 J
Estimated Longevity	See page 34

D154ATG, D154DRG EnTrust


D154AT	G, D154D	RG EnTru	ist						Produc	t Character	istics	
US Ma	arket Release		Jun-0	5 Malfun	ctions (US)			9	NBD Co	de		DDED, VVED
Regis	tered US Impla	ants	26,00) Thera	py Function N	lot Comprom	nised	5	Serial N	umber Prefix		PNR
Estim	ated Active U	S Implants	23,00	D Ele	ectrical Comp	onent		2	Max De	livered Energ	y	35 J
Norm	al Battery Dep	oletions (US)		5 Po	ssible Early Ba	attery Deplet	ion	3	Estimat	ed Longevity		See page 34
Advis	ories		Non	e Thera	py Function C	ompromised	l	4				
				Ele	ectrical Comp	onent		4				
Device Survival Probability (%)	0 Years After			at 28 mo 100.0 99.9 400	4 5 al Battery De		6 Inc	7 :luding	ş y Normal	Battery Dep	9 9	10
#	Effective Sam		4,000	100							1	1

D154AWG, D164AWG Virtuoso

US Market Release	May-06	Malfunctions (US)	9	NBD Code
Registered US Implants	33,000	Therapy Function Not Compromised	2	Serial Number P
Estimated Active US Implants	32,000	Electrical Component	2	Max Delivered E
Normal Battery Depletions (US)	2	Therapy Function Compromised	7	Estimated Long
Advisories	None	Electrical Component	7	

Product Characteristics

NBD Code	VVED
Serial Number Prefix	PVV, PUL
Max Delivered Energy	35 J
Estimated Longevity	See page 34

	C EnTrus								Produc	t Character	ISTICS	
JS Mar	rket Release		Jun-05	6 Malfur	nctions (US)			9	NBD Co	ode		VVEV
Registe	ered US Impla	ants	14,000	Thera	apy Function	Not Comprom	ised	6	Serial N	lumber Prefix		PNT
Estimat	ted Active U	S Implants	12,000) El	ectrical Comp	oonent		1	Max De	livered Energ	у	35 J
Norma	l Battery Dep	oletions (US)	1	I Po	ossible Early E	attery Deplet	ion	5	Estimat	ed Longevity		See page 34
Advisor	ries		None	e Thera	apy Function	Compromised	l	3				
				El	ectrical Com	oonent		3				
90 - 80 - 0		1	2 3		4	5	6	7		8	9	10
	Years After	r Implant	Exc	luding Norn	nal Battery D	epletion	Ir	ncludin	g Normal	Battery Dep	letion	
		1 yr	2 yr	at 27 mo								
%	_	100.0	99.9	99.9								
%		99.9	99.7	99.7								
#		11,000	1,000	300								
	Effective Sam	nla Siza										

May-06

13,000

12,000

None

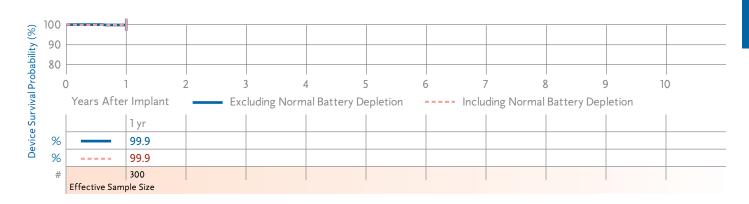
1

Malfunctions (US)

D154VWC, D164VWC Virtuoso

US Market Release

Advisories


Registered US Implants

Estimated Active US Implants

Normal Battery Depletions (US)

Product Characteristics

5	NBD Code	VVEV
1	Serial Number Prefix	PUN
1	Max Delivered Energy	35 J
4	Estimated Longevity	See page 34
4		

Therapy Function Not Compromised

Electrical Interconnect

Electrical Component

Therapy Function Compromised

					E	Malfunc	Malfunctions (US)		Device	Device Survival Probability (%)	obability	(%)					
		Narket Base	istered anglants	bətsm SU əvi stnsl	vəftery (SU) snoifel	rapy Function besimorqu	rapy ction Not npromised		Years A	Years After Implant	Int						
Number	Family		N2। ଅକୃଷ୍ଣ	tοA		uoŊ	no⊃	Tota	1 yr	2 yr	3 yr	4 yr	5 yr	6 yr	7 yr	8 yr	10 yr
7227	GEM	Oct-98	22,000	6,000	749	I	-	140 Excluding Normal Battery Depletion	99.7 +0.1/-0.1	99.6 +0.1/-0.1	99.5 +0.1/-0.1	99.4 +0.1/-0.1	99.2 +0.1/-0.1	99.2 +0.1/-0.2	99.1 +0.1/-0.2	99.1 +0.1/-0.2	99.1 +0.1/-0.2 at 108 mo
	Advisories: se	ee page 148 -	1999 Potent	Advisories: see page 148 – 1999 Potential Circuit Overload	erload	1	' I	- Including Normal Battery Depletion	99.3 +0.1/-0.1	99.0 +0.1/-0.1	98.7 +0.1/-0.2	98.2 +0.2/-0.2	97.5 +0.2/-0.3	95.8 +0.4/-0.4	85.8 +0.8/-0.8	73.9 +1.2/-1.3	66.9 +1.7/-1.8 at 108 mo
7229	GEM II VR	99-lul	11,000	1,000	994	1		26 Excluding Normal Battery Depletion	99.9 +0.0/-0.1	99.8 +0.1/-0.1	99.8 +0.1/-0.1	99.7 +0.1/-0.1	99.7 +0.1/-0.1	99.7 +0.1/-0.1	99.6 +0.1/-0.2	99.6 +0.1/-0.2 at 91 mo	
	Advisories: see pag also see page 157 – Discharge Behavior	ee page 148 – 157 – Perforr havior	1999 Potent nance note	Advisories: <u>see page 148</u> – 1999 Potential Circuit Overload; also see pag <u>e 157 – Perfo</u> rmance note on ICD Battery Discharge Behavior	erload; y	I	1	- Including Normal Battery Depletion	99.8 +0.1/-0.1	99.5 +0.1/-0.2	99.3 +0.2/-0.2	98.4 +0.3/-0.3	94.4 +0.5/-0.6	84.2 +1.0/-1.0	56.5 +1.7/-1.7	32.9 +2.8/-2.8 at 91 mo	
7230	Marquis VR	Dec-02	19,000	10,000	∞	+	15 =	21 Excluding Normal Battery Depletion	100.0 +0.0/-0.0	9.9 +0.0/-0.1	9.9 +0.0/-0.1	99.9 +0.0/-0.1	99.8 +0.1/-0.2 at 59 mo				
	Advisories: se Battery Deple	Advisories: <u>see page 146</u> – 2005 Potenti Battery Depletion Due to Battery Short	2005 Potent lattery Shor	Advisories: <u>see page 146</u> – 2005 Potential Premature Battery Depletion Due to Battery Short		(<mark>0)</mark> (advisory-	(0)(0)(0)(advisory-related subset)	(0) Including Normal Battery Set) Depletion	99.9 +0.0/-0.1	99.7 +0.1/-0.1	99.6 +0.1/-0.1	99.6 +0.1/-0.1	99.5 +0.2/-0.3 at 59 mo				
7231	GEM III VR	Dec-00	17,000	000'6	223	+ ∞	23 = 3	31 Excluding Normal Battery Depletion	99.9 +0.0/-0.1	99.9 +0.0/-0.1	99.8 +0.1/-0.1	99.8 +0.1/-0.1	99.8 +0.1/-0.1	99.8 +0.1/-0.1	99.8 +0.1/-0.1 at 80 mo		
	<u>see page 157</u> – Performance note on ICD Battery Discharge Behavior	– Performar havior	ice note on	ICD Battery				Including Normal Battery Depletion	99.8 +0.1/-0.1	99.4 +0.1/-0.1	99.1 +0.1/-0.2	98.6 +0.2/-0.2	97.6 +0.3/-0.3	91.6 +0.8/-0.9	90.3 +1.0/-1.1 at 80 mo		

The following table shows ICD device survival estimates with 95% confidence intervals. Estimates are shown both with and without normal battery depletions included Device Survival Summary (95% Confidence Interval)

30 Medtronic CRDM Product Performance Report

99.0 +0.2/-0.3 at 104 mo

99.0 +0.2/-0.3

99.0 +0.2/-0.2

99.1 +0.2/-0.2

99.3 +0.1/-0.2

99.5 +0.1/-0.2

99.7 +0.1/-0.1

99.8 +0.1/-0.1

99.9 +0.0/-0.1

Excluding Normal Battery Depletion

88

I

652

3,000

15,000

Oct-98

GEM DR

7271

99.9 +0.0/-0.0+

9.99 +0.0/-0.0+

100.0 +0.0/-0.0

100.0 +0.0/-0.0

Excluding Normal Battery Depletion

18

П

12

+

9

~

33,000

41,000

Oct-03

Maximo VR

7232

99.8 +0.1/-0.1

99.8 +0.0/-0.1

9.99 +0.0/-0.0+

9.99 +0.0/-0.0+

Including Normal Battery Depletion

<u></u>

п

0

+

0

Advisories: see page 146 – 2005 Potential Premature Battery Depletion Due to Battery Short

(advisory-related subset)

46.6 +3.4/-3.4 at 104 mo

59.8 +2.1/-2.1

82.9 +1.0/-1.1

91.2 +0.7/-0.7

96.0 +0.4/-0.4

97.8 +0.3/-0.3

98.8 +0.2/-0.2

99.5 +0.1/-0.1

99.7 +0.1/-0.1

Including Normal Battery Depletion

95.6 +0.5/-0.6

96.9 +0.3/-0.3

98.0 +0.2/-0.2

98.8 +0.1/-0.1

99.6 +0.1/-0.1

99.8 +0.0/-0.0

Including Normal Battery Depletion

(37)

5

+ (35)

Advisories: see page 146 – 2005 Potential Premature Battery Depletion Due to Battery Short

(advisory-related subset) П

99.5 +0.1/-0.1 at 68 mo

99.5 +0.1/-0.1

99.6 +0.1/-0.1

99.8 +0.0/-0.1

9.99 +0.0/-0.0

100.0 +0.0/-0.0

Excluding Normal Bat tery Depletion

118

п

55

+

63

203

21,000

48,000

Mar-02

Marquis DR

7274

continued
Summary
rvival
Sur
evice
۵

		10 yr														
		8 yr														
		7 yr	99.7 +0.1/-0.1 at 75 mo	24.9 +2.4/-2.3 at 75 mo												
		6 yr	99.7 +0.1/-0.1	35.0 +1.7/-1.7	99.6 +0.1/-0.2 at 71 mo	21.3 +2.3/-2.2 at 71 mo										
		5 yr	99.7 +0.1/-0.1	69.4 +1.0/-1.0	99.6 +0.1/-0.2	58.9 +1.4/-1.4	99.9 +0.0/-0.0 at 49 mo	99.6 +0.1/-0.1								
(%)		4 yr	99.8 +0.1/-0.1	91.0 +0.5/-0.5	99.6 +0.1/-0.2	87.2 +0.7/-0.8	9.99 +0.0/-0.0	99.6 +0.1/-0.1	99.9 +0.0/-0.0 at 39 mo	99.7 +0.1/-0.1 at 39 mo	99.6 +0.3/-0.9 at 38 mo	98.7 +0.7/-1.4 at 38 mo				
Device Survival Probability (%)	Years After Implant	3 yr	99.8 +0.1/-0.1	97.0 +0.3/-0.3	99.8 +0.1/-0.1	96.4 +0.3/-0.4	9.9 +0.0/-0.0	99.6 +0.1/-0.1	9.9 +0.0/-0.0	99.7 +0.1/-0.1	99.6 +0.3/-0.9	98.7 +0.7/-1.4	98.9 +0.8/-2.4 at 33 mo	97.7 +1.3/-2.8 at 33 mo	100.0 +0.0/-0.0 at 28 mo	99.9 +0.0/-0.1 at 28 mo
urvival Pi		2 yr	99.9 +0.0/-0.1	99.0 +0.1/-0.2	99.9 +0.0/-0.1	98.9 +0.2/-0.2	100.0 +0.0/-0.0	99.8 +0.0/-0.1	99.9 +0.0/-0.0	99.8 +0.1/-0.1	99.6 +0.3/-0.9	99.2 +0.5/-1.0	99.7 +0.2/-1.5	99.5 +0.4/-1.5	100.0 +0.0/-0.0	9.99 +0.0/-0.1
Device S	Years A	l yr	99.9 +0.0/-0.0	99.6 +0.1/-0.1	99.9 +0.0/-0.1	99.7 +0.1/-0.1	100.0 +0.0/-0.0	9.99 +0.0/-0.0+	100.0 +0.0/-0.0	99.9 +0.0/-0.0	99.9 +0.1/-0.7	99.8 +0.2/-0.7	99.7 +0.2/-1.5	99.5 +0.4/-1.5	100.0 +0.0/-0.0	9.99 +0.0/-0.0+
-			Excluding Normal Battery Depletion	Including Normal Battery Depletion	Excluding Normal Battery Depletion	Including Normal Battery Depletion	Excluding Normal Battery Depletion	Including Normal Battery Depletion	Excluding Normal Battery Depletion	Including Normal Battery Depletion	Excluding Normal Battery Depletion	Including Normal Battery Depletion	Excluding Normal Battery Depletion	Including Normal Battery Depletion	Excluding Normal Battery Depletion	Including Normal Battery Depletion
	ls	toT	6													
suo	toN notion besimorqmo		39		33		11	(0) bset)	22		æ		3		6	
Ę.	toN noits	unj	28 = 3		26 = 33		10 = 17	(0) = (0) elated subset)	16 = 22		2 = 3		2 = 3		5 = 9	
Malfunctio		on 94T Fun	Ш		п		н	(0) + (0) = (0) advisory-related subset)	Ш		II		II		II	
Malfunctions	npromised rapy ction Not	and ad no ad ad ad ad ad	+ 28 =		+ 26 =		+ 10	(0) + (0) = (advisory-related subs	= +		+ 2 =		+ 2 =		+ 11	
Malfunctio	əletions rapy Function npromised ction Not	Act Imp Mor Con Con Con Con Con	ll + 28 =	D Battery	7 + 26 =	D Battery	7 + 10 =	(0) + (0) = (advisory-related subs	e 16 =		1 + 2 =		1 + 2 =		4 + 5 =	
Malfunctio	ive US hants mal Battery hetions npromised npromised ction Not ction Not	USI Esti Mor Dep The Con The Con	1,980 11 + 28 =	e note on ICD Battery	1,535 7 + 26 =	e note on ICD Battery	22 7 + 10 =	(0) + (0) = (advisory-related subs	12 6 + 16 =		1 + 2 =		0 1 + 2 =		5 + + 5 =	
Malfunctio	mplants mated lants mal Battery npromised mpromised repy ction Not ction	Rele Reg Dcp Dcp Con The Con The Con	3,000 1,980 11 + 28 =	Performance note on ICD Battery vior	2,000 1,535 7 + 26 =	Performance note on ICD Battery vior	27,000 22 7 + 10 =	(0) + (0) = (advisory-related subs	25,000 12 6 + 16 =		1,000 1 1 + 2 =		300 0 1 + 2 =		23,000 5 4 + 5 =	
Malfunctio	sasee istered mplants mal Battery ise US mal Battery mated mpromised mpromised mpromised	Rele Reg Dcp Dcp Con The Con The Con	20,000 3,000 1,980 11 + 28 =	see page 157 – Performance note on ICD Battery Discharge Behavior	14,000 2,000 1,535 7 + 26 =	see page 157 – Performance note on ICD Battery Discharge Behavior	35,000 27,000 22 7 + 10 =	Advisories:see page 1462005 Potential Premature(0)+(0)=(0)Battery Depletion Due to Battery Short(advisory-related subset)	30,000 25,000 12 6 + 16 =		1,000 1,000 1 1 + 2 =		400 300 0 1 + 2 =		26,000 23,000 5 4 + 5 =	

		8 yr						
		7 yr						
		6 yr						
		5 yr						
(%)		4 yr						
obability (1 t	3 yr			99.9 +0.1/-0.1 at 27 mo	99.7 +0.1/-0.2 at 27 mo		
Device Survival Probability (%)	Years After Implant	2 yr	100.0 +0.0/-0.0 at 17 mo	99.9 +0.0/-0.0 at 17 mo	99.9 +0.1/-0.1	99.7 +0.1/-0.2		
Device S	Years Af	1 yr	100.0 +0.0/-0.0	99.9 +0.0/-0.0	100.0 +0.0/-0.1	99.9 +0.0/-0.1	99.9 +0.0/-0.1	99.9 +0.1/-0.1
ł			Excluding Normal Battery Depletion	Including Normal Battery Depletion	Excluding Normal Battery Depletion	Including Normal Battery Depletion	Excluding Normal Battery Depletion	Including Normal Battery Depletion
	al	ът	6		6		5	
ctions	srapy ction Not ppromised	unj	2 =		= 9		" -	
Malfunctions	srapy Function ppromised		+		+ 3		4	
t	mal Battery snoiteio		2		-		-	
	bətemi ive US stnsla	tэА	32,000		12,000		12,000	
	US Market Release Registered US Implants		33,000		14,000		13,000	
			May-06		Jun-05		May-06	
		Family	Virtuoso DR		EnTrust VR		D154VWC, Virtuoso VR D164VWC	
		Number	D154AWG D164AWG		D154VRC		D154VWC, D164VWC	

Device Survival Summary continued

Reference Chart

The longevity estimates provided are mean values calculated for the parameters given. The actual longevity achieved for any device while implanted will depend on the actual programmed parameters and patient factors, and may differ significantly from these estimates.

	Family			Delivered Energy		Estimate	d Longe	Elective I (El				
Model Number		Connector Style	Volume/ Mass*		Charging Frequency ^{**}	100% Pacing‡	50% Pacing‡	15% Pacing‡	100% Sensing	Battery Voltage	Charge Time	End of Life (EOL) Battery Voltage
7227	GEM	B, Cx, D, E	49 cc* 90 g	35 J	Monthly Quarterly Semiannual	5.3 7.7 8.8	5.7 8.5 10.0	6.0 9.3 11.0	6.1 9.6 11.5	≤ 2.55 V	-	≤ 2.40 V [§]
7229	GEM II VR	Сх	39 cc 77 g	30 J	Monthly Quarterly Semiannual	3.6 5.0 5.6	3.9 5.5 6.3	4.1 6.0 6.9	4.2 6.2 7.1	≤ 2.55 V	_	≤ 2.40 V
7230	Marquis VR	B, Cx, E	36 cc 75 g	30 J	Monthly Quarterly Semiannual	4.9 7.3 8.5	5.2 8.0 9.3	5.4 8.5 10.0	5.5 8.7 10.4	≤ 2.62 V	> 16-second charge time	3 months after ERI
7231	GEM III VR	Сх	39 cc 77 g	30 J	Monthly Quarterly Semiannual	4.3 6.0 6.6	4.7 6.8 7.5	5.0 7.4 8.5	5.2 7.8 8.9	≤ 2.55 V	_	≤ 2.40 V
7232	Maximo VR	B, Cx, E	39 cc 76 g	35 J	Monthly Quarterly Semiannual	4.4 7.0 8.2	4.7 7.5 9.0	4.8 8.0 9.7	4.9 8.3 10.0	≤ 2.62 V	> 16-second charge time	3 months after ERI
7271	GEM DR	DR	62 cc 115 g	35 J	Monthly Quarterly Semiannual	6.0 7.4 7.9	6.9 8.4 9.0	7.5 9.3 10.0	7.8 9.8 10.6	≤ 4.91 V	_	≤ 4.57 V⁵
7274	Marquis DR	DR+LV	36 cc 75 g	30 J	Monthly Quarterly Semiannual	4.0 5.6 6.2	4.4 6.4 7.2	4.8 7.1 8.1	4.9 7.5 8.6	≤ 2.62 V	> 16-second charge time	3 months after ERI
7275	GEM III DR	DR	39.5 cc 78 g	30 J	Monthly Quarterly Semiannual	3.3 4.2 4.5	3.8 5.0 5.5	4.3 5.8 6.5	4.4 6.3 7.0	≤ 2.55 V	_	≤ 2.40 V
7276	GEM III AT	DR	39 cc 77 g	30 J	Monthly Quarterly Semiannual	3.3 4.3 4.5	3.8 5.1 5.5	4.3 5.9 6.5	4.5 6.3 7.0	≤ 2.55 V	-	≤ 2.40 V
7278	Maximo DR	DR	39 cc 77 g	35 J	Monthly Quarterly Semiannual	3.7 5.3 6.0	4.1 6.1 7.0	4.3 6.8 8.0	4.5 7.1 8.5	≤ 2.62 V	> 16-second charge time	3 months after ERI
7287	Intrinsic 30	DR	36 cc 75 g	30 J	Monthly Quarterly Semiannual	4.0 5.5 6.2	4.3 6.3 7.2	4.7 7.0 8.2	4.8 7.4 8.6	≤ 2.62 V	> 16-second charge time	3 months after ERI
7288	Intrinsic	DR	38 cc 76 g	35 J	Monthly Quarterly Semiannual	3.7 5.4 6.1	4.1 6.1 7.0	4.3 6.8 8.0	4.5 7.1 8.5	≤ 2.62 V	> 16-second charge time	3 months after ERI
7290	Onyx	Cx	39 cc 77 g	30 J	Monthly Quarterly Semiannual	3.8 5.0 5.4	4.1 5.6 6.1	4.3 6.2 6.7	4.5 6.4 7.0	≤ 2.55 V	> 16-second charge time	≤ 2.40 V

* Volume and mass differ by connector style.

** A full charge is a full energy the rapeutic shock or capacitor reformation.

*** The minimum time between ERI and EOL is 3 months (100% pacing, two charges per month).

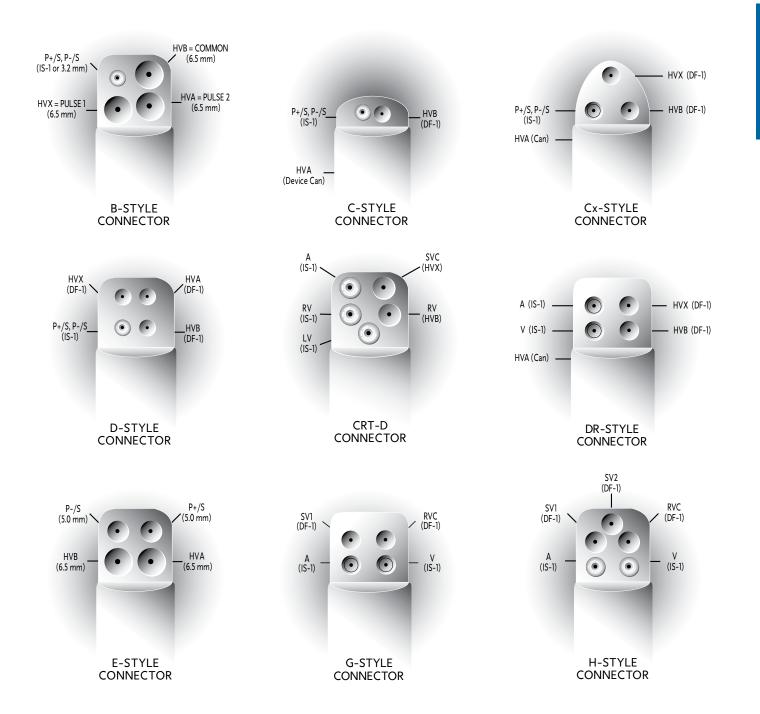
‡ Pacing mode is VVI for single chamber models and DDD for dual chamber and CRT models. Parameter settings: lower rate at 60 ppm, sensing rate at 70 bpm, (A, RV, LV) 3.0 V amplitude, 0.4 ms pulse width, and 510 ohm pace load per applicable channel. CRT models with shared biventricular pacing: InSync Marquis 7277 (LV impedance set to 510 ohms), InSync ICD 7272 (RV amplitude set to 4.0 V).

For Model 7223 devices, if charge time exceeds 60 seconds, the devices are at EOL. If 2 consecutive charge cycles exceed 60 seconds, the "charge circuit inactive" indicator is tripped and all therapies except emergency output VVI pacing are disabled.

\$ For Model 7271 and 7227 devices, if charge time exceeds 30 seconds, the device is at EOL. Immediate replacement is recommended. If 3 consecutive charge cycles exceed 30 seconds, the "charge circuit inactive" indicator is tripped and all therapies except emergency VVI pacing are disabled.

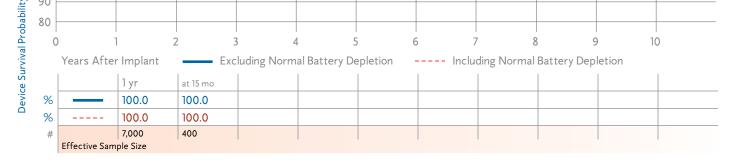
Reference Chart continued

						stimate	d Longe	vity		nmended acement		
					Charging Frequency ^{**}						RT)***	_
Model Number	Family	Connector Family Style	Volume/ Mass*			100% Pacing‡	50% Pacing‡	15% Pacing‡	100% Sensing	Battery Voltage	Charge Time	End of Service (EOS)
D153ATG, D153DRG	EnTrust	DR	33 cc 63 g	30 J	Monthly Quarterly Semiannual	3.5 4.8 5.3	3.8 5.4 6.1	4.1 6.0 6.9	4.2 6.3 7.2	≤ 2.61 V	_	3 months after RRT or > 16-second charge time
D153VRC	EnTrust	Cx	32 cc 63 g	30 J	Monthly Quarterly Semiannual	4.4 6.8 7.9	4.7 7.4 8.7	4.9 7.9 9.5	5.0 8.1 9.8	≤ 2.61 V	_	3 months after RRT or > 16-second charge time
D154ATG, D154DRG	EnTrust	DR	35 cc 68 g	35 J	Monthly Quarterly Semiannual	3.8 5.5 6.1	4.2 6.1 7.0	4.4 6.8 7.9	4.6 7.0 8.3	≤ 2.61 V	_	3 months after RRT or > 16-second charge time
D154AWG, D164AWG	Virtuoso	DR	37 cc 68 g	35 J	Monthly Quarterly Semiannual	4.1 6.3 7.3	4.5 7.3 8.7	4.8 8.3 10.1	5.0 8.8 11.0	≤ 2.62 V	_	3 months after RRT or > 19-second charge time
D154VRC	EnTrust	Cx	35 cc 68 g	35 J	Monthly Quarterly Semiannual	4.8 7.5 9.0	5.0 8.3 10.0	5.2 8.8 10.7	5.3 9.0 11.0	≤ 2.61 V	_	3 months after RRT or > 16-second charge time
D154VWC, D164VWC	Virtuoso	Cx	37 cc 68 g	35 J	Monthly Quarterly Semiannual	4.8 8.1 10.0	5.1 9.0 11.2	5.3 9.6 12.3	5.4 10.0 12.9	≤ 2.62 V	_	3 months after RRT or > 19-second charge time


* Volume and mass differ by connector style.

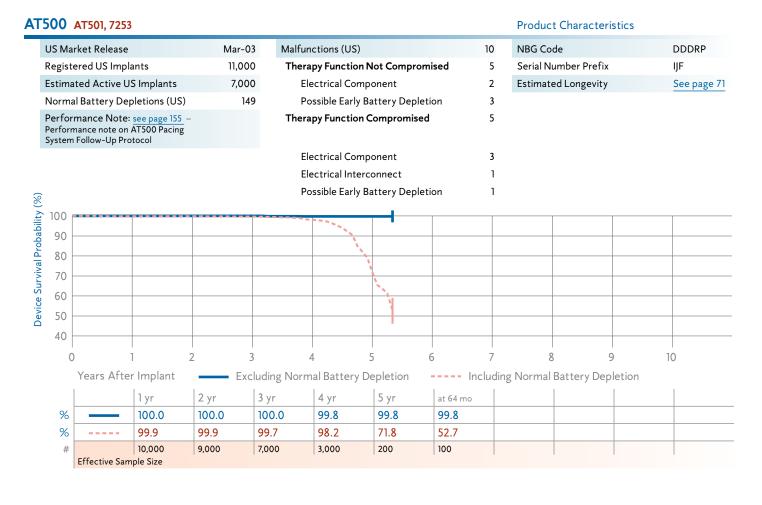
** A full charge is a full energy the rapeutic shock or capacitor reformation.

*** The minimum time between RRT and EOS is 3 months (100% pacing, two charges per month).


[‡] Pacing mode is VVI for single chamber models and DDD for dual chamber models. Parameter settings; lower rate at 60 ppm, sensing rate at 70 bpm, (A, RV, LV) 3.0 V amplitude, 0.4 ms pulse width, and 510 ohm pace load per applicable channel.

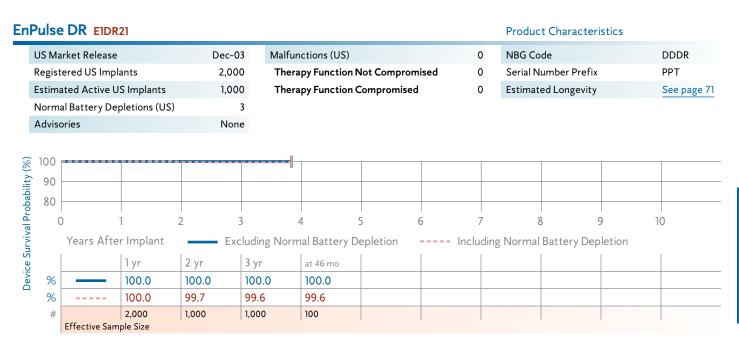
ICD Connector Styles

Adapta DR ADDR01, ADDR03, AI	DDR06, ADD	01		Product Characteristics	
US Market Release	Jul-06	Malfunctions (US)	3	NBD Code	DDDR, DDD
Registered US Implants	58,000	Therapy Function Not Compromised	3	Serial Number Prefix	PWB, PWD,
Estimated Active US Implants	55,000	Electrical Component	3		PWC
Normal Battery Depletions (US)	0	Therapy Function Compromised	0	Estimated Longevity	See page 71
Advisories	None				


Adapta	DR	ADDRL1

Ac	lapta	DR ADDR	u						Product Cha	racteristics	
	US Mai	rket Release		Jul-06	Malfunctions	(US)		0	NBG Code		SSIR
	Registe	ered US Impla	ants	4,000	Therapy Fun	ction Not Com	promised	0	Serial Numbe	r Prefix	PWM, PWP,
	Estima	ted Active US	5 Implants	3,000	Therapy Fund	ction Comproi	nised	0			PWN
	Norma	al Battery Dep	oletions (US)	0					Estimated Lor	ngevity	See page 71
	Adviso	ories		None							
Device Survival Prohability (%)	90 80 0 % %	Years After	1 yr 100.0 100.0	3 —— Excludir	4 ng Normal Batt	5 cery Depletion	6 n	7 Including	8 g Normal Batte	9 9 ery Depletion	10
	#	Effective Sam	200 pla Siza								
		Enective Sam	pie size								

US Market Release	Jul-06	Malfunctions (US)		0	NBG Co	de		SSIR
Registered US Implants	5,000	Therapy Function Not Cor	mpromised	0	Serial N	umber Prefix		PWM, PWI
Estimated Active US Implants	5,000	Therapy Function Compro	omised	0				PWN
Normal Battery Depletions (US)	0				Estimate	ed Longevity		See page
Advisories	None							
100								
00								
90								
80								
80	2 3	4 5	6	7	8	9	1	0
80		4 5 ding Normal Battery Depletic	-	/	-	9 Battery Deple		0
80 0 1 2 Years After Implant	Exclue		-	/	-	-		0
80 0 1 2 Years After Implant	at 14 mo		-	/	-	-		0
80 0 1 Years After Implant % 100.0	at 14 mo		-	/	-	-		0
80 0 1 2 Years After Implant	at 14 mo		-	/	-	-		0

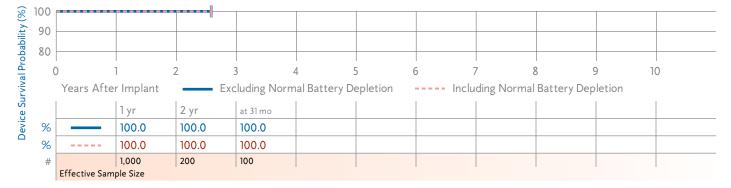

Adapta SR ADSR01, ADSR03, ADSR06

Jul-06	Malfunctions	(US)		0	NBG Cod	e	SSIR
11,000	Therapy Fun	tion Not Con	promised	0	Serial Nu	mber Prefix	PWM, PWP
10,000	Therapy Fun	tion Compro	mised	0			PWN
) 0					Estimated	d Longevity	See page 7
None							
2 3	4	5	6	7	8	9	10
Exclud	ing Normal Batt	erv Depletio	n 	Includin	o Normal B	Battery Depletio	n
1							
100.0							
100.0							
100.0							
	11,000 10,000) 0 None 2 3 Exclud at 14 mo 100.0	II,000 Therapy Fund 10,000 Therapy Fund 0 0 None 10 2 3 4 Excluding Normal Batt at 14 mo 100.0	11,000 Therapy Function Not Common 10,000 Therapy Function Comprosition 0 0 None 10000 2 3 4 5 Excluding Normal Battery Depletion at 14 mo 100.0	11,000 Therapy Function Not Compromised 10,000 Therapy Function Compromised 0 0 None Image: State of the state	11,000 Therapy Function Not Compromised 0 10,000 Therapy Function Compromised 0 0 0 None 2 3 4 5 6 7	11,000 Therapy Function Not Compromised 0 Serial Nu 10,000 Therapy Function Compromised 0 Estimated None None Image: Serial Nu Image: Serial Nu 2 3 4 5 6 7 8 Excluding Normal Battery Depletion Image: Serial Nu Image:	11,000 Therapy Function Not Compromised 0 Serial Number Prefix 10,000 Therapy Function Compromised 0 Estimated Longevity None None Image: Serial Number Prefix Image: Serial Number Prefix None None Image: Serial Number Prefix Image: Serial Number Prefix None None Image: Serial Number Prefix Image: Serial Number Prefix Image: Serial Number Prefix Image: Serial Number Prefix Image: Serial Number Prefix Image: Serial Number Prefix Image: Serial Number Prefix Image: Serial Number Prefix Image: Serial Number Prefix Image: Serial Number Prefix Image: Serial Number Prefix Image: Serial Number Prefix Image: Serial Number Prefix Image: Serial Number Prefix Image: Serial Number Prefix Image: Serial Number Prefix Image: Serial Number Prefix Image: Serial Number Prefix Image: Serial Number Prefix Image: Serial Number Prefix Image: Serial Number Prefix Image: Serial Number Prefix Image: Serial Number Prefix Image: Serial Number Prefix Image: Serial Number Prefix Image: Serial Number Prefix Image: Serial Number Prefix Image: Serial Number Prefix Image: Serial Number Prefix Image: Serial Number Prefi

EnPulse DR EIDR01, EIDR03, EIDR06

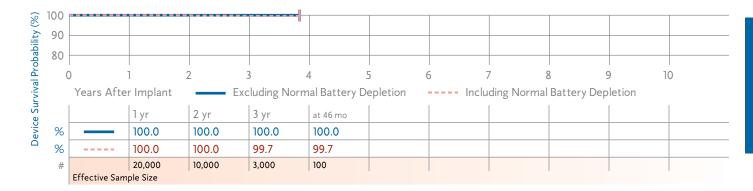
JS Market Release		Dec-	-03 Mal	functions (US)			1	NBG Cod	de		DDDR
Registered US Implar	ts	7,0	00 Th	erapy Function	Not Comp	romised	1	Serial Nu	umber Prefi	x	PRA
Estimated Active US	Implants	5,0	00	Electrical Com	ponent		1	Estimate	ed Longevity	1	See page
Normal Battery Deple	etions (US)		4 Th	erapy Function	Compromi	ised	0				
Advisories		No	one								
100				-							
90											
80											
0 1		2	3	4	5	6	7	8		9	10
Years After	mplant	- F	xcluding No	ormal Battery I	Depletion		Including	-	Battery De	-	10
1						I			buttery be		1
	yr	2 yr	3 yr	at 47 mo							
% 1	00.0	100.0	100.0	100.0							
% 1	00.0	100.0	99.9	99.8							
# 6	6,000	5,000	5,000	200							

EnPulse 2 DR E2DR01, E2DR03, E2DR06


US Market Release	Feb-04	Malfunctions (US)	8	NBG Code	DDDR
Registered US Implants	101,000	Therapy Function Not Compromised	5	Serial Number Prefix	PNB, PNC,
stimated Active US Implants	78,000	Electrical Component	5		PNH
Normal Battery Depletions (US)	6	Therapy Function Compromised	3	Estimated Longevity	See page 71
Advisories	None	Battery	1		
		Electrical Component	2		
100					
90					

4	C	/	1	~	· ·	+	5	0		0	9	10
ırviva		Years Afte	r Implant	Exc	luding Norm	al Battery D	epletion	Inclu	ding Norma	l Battery De	pletion	
ie Sl			1 yr	2 yr	3 yr	at 44 mo						
evio	%		100.0	100.0	100.0	100.0						
	%		100.0	100.0	99.9	99.9						
	#		89,000	53,000	17,000	400						
		Effective Sam	ple Size									

US Market Release	e	Feb-0	4 Malf	unctions (US)			0	NBG Cod	de		DDDR
Registered US Imp	lants	12,00	0 The	erapy Functior	n Not Compromis	sed	0	Serial Nu	umber Prefix	x	PMU
Estimated Active l	US Implants	9,00	0 The	erapy Functior	n Compromised		0	Estimate	ed Longevity	1	See page 7
Normal Battery De	epletions (US)		11								
Advisories		Non	e								
100											
100											
90											
80											
80	1	2	3	4	5 6		7	8		9	10
90 90 80 0 Voors Aft]	_	-				7	-		-	10
90	1 er Implant	_	-	4 rmal Battery			7 zludin	-	Battery De	-	10
90	l er Implant	_	-				7 zludin	-		-	10
90 90 80 0 Years Afte		Exc	cluding No	rmal Battery			7 2	-		-	10
90 80 0 Years Afte	1 yr	Exc 2 yr	cluding Nor 3 yr	rmal Battery			7 2ludin:	-		-	10


EnPulse 2 DR E2DR31, E2DR33

EnPulse 2 DR E2DR31, E2DR33				Product Characteristics	
US Market Release	Feb-04	Malfunctions (US)	0	NBG Code	DDDR
Registered US Implants	1,000	Therapy Function Not Compromised	0	Serial Number Prefix	PNL
Estimated Active US Implants	500	Therapy Function Compromised	0	Estimated Longevity	See page 71
Normal Battery Depletions (US)	0				
Advisories	None				

EnPulse 2 SR E2SR01, E2SR03, E2SR06

US Market Release	Dec-03	Malfunctions (US)	3	NBG Code	SSIR
Registered US Implants	25,000	Therapy Function Not Compromised	2	Serial Number Prefix	PMW, PMY,
Estimated Active US Implants	18,000	Electrical Component	1		PNA
Normal Battery Depletions (US)	6	Possible Early Battery Depletion	1	Estimated Longevity	See page 71
Advisories	None	Therapy Function Compromised	1		
		Other	1		

EnPulse 2 VDD E2VDD01

				rioduct characteristics	
US Market Release	Dec-03	Malfunctions (US)	0	NBG Code	VDD
Registered US Implants	1,000	Therapy Function Not Compromised	0	Serial Number Prefix	PMV
Estimated Active US Implants	1,000	Therapy Function Compromised	0	Estimated Longevity	See page 7
Normal Battery Depletions (US)	0				
Advisories	None				
2 100					
90					
80					
0 1 2	. 3	4 5 6	7	8 9	10

Irviva		Years Afte	r Implant	Exc	Excluding Normal Battery Depletion Including Normal Battery Depletion									
e St			1 yr	2 yr	at 34 mo									
evic	%		100.0	100.0	100.0									
	%		100.0	100.0	100.0									
	#		1,000	300	100									
Effective Sample Size														

Product Characteristics

EnRhythm DR PI50IDR **Product Characteristics US Market Release** May-05 Malfunctions (US) 18 NBG Code DDDRP 64,000 **Therapy Function Not Compromised** Serial Number Prefix PNP **Registered US Implants** 5 5 Estimated Active US Implants 55,000 **Electrical Component Estimated Longevity** See page 71 Normal Battery Depletions (US) **Therapy Function Compromised** 13 0 Advisories None **Electrical Component** 13 100 Device Survival Probability (%) 90 80 2 8 3 5 6 7 9 10 0 4 Years After Implant **Excluding Normal Battery Depletion** ----- Including Normal Battery Depletion 1 yr 2 yr at 31 mo 99.9 99.9 % 100.0 % 99.9 99.9 100.0

Kappa 400 DR KDR401, KDR403

Effective Sample Size

#

44,000

11,000

200

	arket Release		Jan	-98 Ma	lfunctions (US))		22 NE	3G Code		DDD/RO
egist	ered US Imp	lants	47,0	000 Tł	erapy Functio	n Not Compro	omised	13 Se	rial Number Pre	fix	PER, PET
	ated Active l	•		000	Electrical Cor	nponent		9 Es	timated Longevi	ity	See page 71
lorma	al Battery De	epletions (US)) 3,	269	Electrical Inte	erconnect		1			
dvisc	ories		N	one	Possible Early	/ Battery Dep	etion	2			
					Other			1			
				Tł	erapy Functio	-	ed	9			
					Electrical Cor	•		7			
					Electrical Inte	erconnect		2			
100											
90											
80									•		
70											
60											
50									1		
40											
30											
20											
10											
0)	1	2	3	4	5	6	7	8	9	10
0	Years Afte	er Implant			ormal Battery			, Icluding No	ormal Battery D		1.4
		l yr	2 yr	3 yr	4 yr	5 yr	6 yr	7 yr	8 yr	at 103 mo	
%		100.0	100.0	100.0	100.0	99.9	99.9	99.9	99.9	99.9	
%		99.9	99.9	99.8	99.6	99.1	97.7	90.6	62.1	8.6	
#		42,000	37,000	33,000	29,000	24,000	19,000	13,000	4,000	300	

Kappa 400 SR KSR401, KSR403

US Market Release	Feb-98	Malfunctions (US)	4	NBG Code
Registered US Implants	15,000	Therapy Function Not Compromised	3	Serial Number Prefix
Estimated Active US Implants	4,000	Electrical Component	3	Estimated Longevity
Normal Battery Depletions (US)	455	Therapy Function Compromised	1	
Advisories	None	Electrical Interconnect	1	

6,000

5,000

3,000

1,000

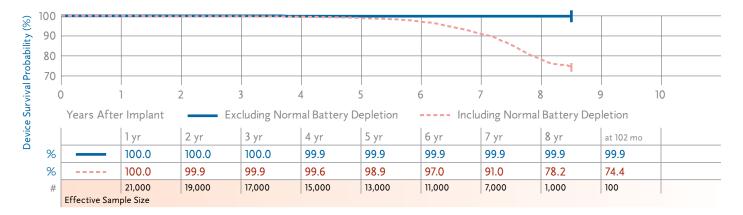
Product Characteristics

300

Kappa 600 DR KDR601, KDR603, KDR606

13,000

Effective Sample Size


11,000

9,000

8,000

#

Jan-99	Malfunctions (US)	21	NBG Code	DDD/RO
24,000	Therapy Function Not Compromised	3	Serial Number Prefix	PHF, PHH,
7,000	Electrical Component	3		PHG
746	Therapy Function Compromised	18	Estimated Longevity	See page 71
ential	Electrical Component	2		
	Electrical Interconnect (11 malfunctions related to advisory)	16		
	24,000 7,000	24,000Therapy Function Not Compromised7,000Electrical Component746Therapy Function CompromisedentialElectrical ComponentElectrical InterconnectElectrical Interconnect	24,000Therapy Function Not Compromised37,000Electrical Component3746Therapy Function Compromised18entialElectrical Component2Electrical Interconnect16	24,000Therapy Function Not Compromised3Serial Number Prefix7,000Electrical Component3746Therapy Function Compromised18Estimated LongevityentialElectrical Component2Electrical Interconnect16

Product Characteristics

SSI/R PEU, PGD See page 71

100

Kappa 600 DR KDR651, KDR653

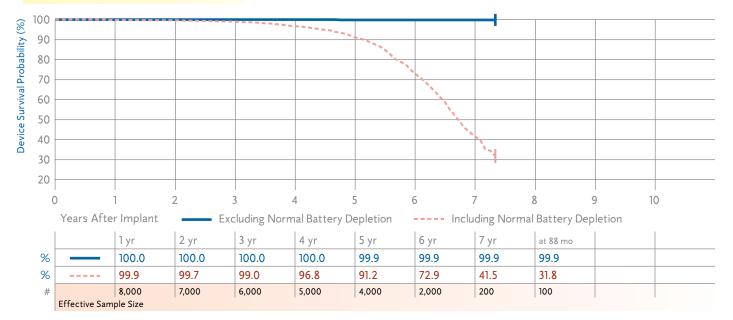
US Market Release	Mar-01	Malfunctions (US)	6	NBG Code	DDD/RO
					,
Registered US Implants	14,000	Therapy Function Not Compromised	2	Serial Number Prefix	PLJ, PLK
Estimated Active US Implants	7,000	Electrical Component	1	Estimated Longevity	See page 71
Normal Battery Depletions (US)	111	Possible Early Battery Depletion	1		
Advisories: See page 147 – 2002 Pot	ential	Therapy Function Compromised	4		
Fractured Power Supply Wires		Electrical Component	1		
		Electrical Interconnect (1 malfunction related to advisory)	3		
<u></u> 100					
			1		

ty (9	90							1				
bability	80											
Prob	()] ·	2	3	1	5	6 7	 7 9)]()
vival		Years Afte	r Implant	- Exc	uding Norm	al Battery D	-	-	ding Normal	Battery Dep		~
e Sur			1 yr	2 yr	3 yr	4 yr	5 yr	6 yr	at 79 mo			
evice	%		100.0	100.0	100.0	100.0	100.0	100.0	99.8			
Ō	%		100.0	99.9	99.8	99.4	98.5	96.9	96.3			
	#		13,000	11,000	10,000	9,000	8,000	3,000	100			
		Effective Sam	ple Size									

Карра 700 D кD701, кD703, кD706

US Market Release	Jan-99	Malfunctions	(US)		0	NBG Code		DDD
Registered US Implants	300	Therapy Fun	Therapy Function Not Compromised			Serial Number	Prefix	РНК
Estimated Active US Implants	100	Therapy Fun	ction Compro	mised	0	Estimated Lon	gevity	See page 7
Normal Battery Depletions (US)	5							
Advisories: See page 147 – 2002 Pot Fractured Power Supply Wires	ential							
100								
0.0								
90								
80								
	3	4	5	6	7	8	9	10

te Su		1 yr	2 yr	3 yr	4 yr	5 yr	6 yr	at 78 mo		
% evic	,	100.0	100.0	100.0	100.0	100.0	100.0	100.0		
<u>م</u>		100.0	100.0	100.0	99.0	97.8	96.3	94.5		
#		300	200	200	200	200	100	100		
	Effective Sa	mple Size								


Product Characteristics

Kappa 700 DR KDR701, KDR703, KDR706

US Market Release Feb-99 Malfunctions (US) 219 NBG Code DDD/RO PGU, PGY, **Registered US Implants** 192,000 **Therapy Function Not Compromised** 27 Serial Number Prefix PGW **Estimated Active US Implants** 84,000 Battery 1 Normal Battery Depletions (US) 3,732 **Electrical Component** 20 **Estimated Longevity** See page 72 Advisories: See page 147 – 2002 Potential **Electrical Interconnect** 1 Fractured Power Supply Wires Possible Early Battery Depletion 3 2 Other 192 **Therapy Function Compromised Electrical Component** 14 **Electrical Interconnect** 178 (124 malfunctions related to advisory) 100 Device Survival Probability (%) 90 80 70 60 0 2 3 4 5 6 7 8 9 10 Years After Implant **Excluding Normal Battery Depletion** ----- Including Normal Battery Depletion 1 yr 2 yr 3 yr 4 yr 5 yr бyr 7 yr 8 yr at 105 mo % 100.0 100.0 99.9 99.9 99.9 99.8 99.8 99.8 99.8 % 99.9 99.9 99.7 99.3 98.4 96.3 90.5 75.1 67.5 # 172,000 150,000 127,000 103,000 80,000 56,000 26,000 6,000 100 **Effective Sample Size**

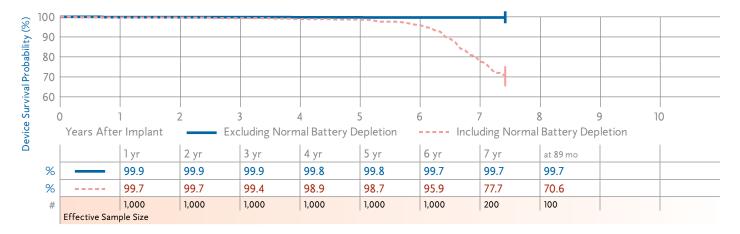
Kappa 700 DR KDR721

US Market Release	Feb-99	Malfunctions (US)	5	NBG Code	DDD/RO
Registered US Implants	10,000	Therapy Function Not Compromised	1	Serial Number Prefix	PGR
Estimated Active US Implants	1,000	Electrical Component	1	Estimated Longevity	See page 72
Normal Battery Depletions (US)	806	Therapy Function Compromised	4		
Advisories: See page 147 – 2002 Por Fractured Power Supply Wires	tential	Electrical Interconnect (4 malfunctions related to advisory)	4		

DG

45 Medtronic CRDM Product Performance Report

Product Characteristics


Kappa 700 SR KSR701, KSR703, KSR706

ppa 700 SR ksr701, ksr70	3, KSR706					Product Characteristics	
US Market Release	Feb-99	Malfunctions (L	JS)		9	NBG Code	SSI/R
Registered US Implants	55,000	Therapy Funct	tion Not Com	promised	3	Serial Number Prefix	PHT, PHW,
Estimated Active US Implants	19,000	Electrical Component			2		PHU
Normal Battery Depletions (US)	866	Possible Early Battery Depletion 1				Estimated Longevity	See page 72
Advisories	dvisories None			ised			
		Electrical C	Component		4		
		Electrical I	nterconnect		2		
2 100							
> 90							
80							
70							
	3	4	5	6	7	8 9	10
Years After Implant	Exclud	ing Normal Batte	ery Depletion	1	ncludin	g Normal Battery Depletion	
	2				-	0	

		lyr	2 yr	3 yr	4 yr	5 yr	6 yr	/ yr	8 yr	at 103 mo
%		100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
%		99.9	99.9	99.6	99.0	97.8	95.4	89.8	76.3	71.6
#		45,000	36,000	29,000	23,000	17,000	12,000	5,000	1,000	100
	Effective Sam	ple Size								

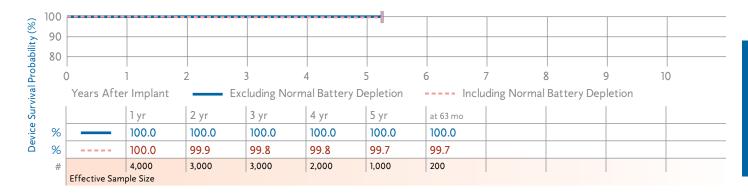
Карра 700 VDD куролог

Ka	ppa 700 VDD KVDD701				Product Characteristics	
	US Market Release	Jan-99	Malfunctions (US)	3	NBG Code	VDD/RO
	Registered US Implants	2,000	000 Therapy Function Not Compromised		Serial Number Prefix	PHP
	Estimated Active US Implants	400	Therapy Function Compromised	3	Estimated Longevity	See page 72
	Normal Battery Depletions (US)	73	Electrical Interconnect	3		
	Advisories: See page 147 – 2002 Pote Fractured Power Supply Wires	ntial	(3 malfunctions related to advisorγ)			

Kappa 800 DR KDR801, KDR803

US Market Release	Jan-02
Registered US Implants	4,000
Estimated Active US Implants	3,000
Normal Battery Depletions (US)	4
Advisories	None

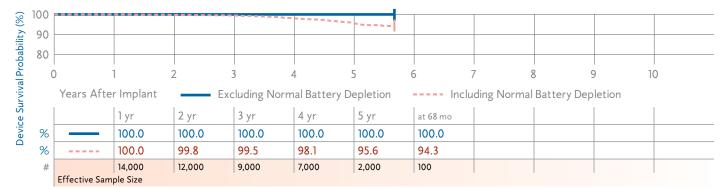
Malfunctions (US) Therapy Function Not Compromised Therapy Function Compromised


Product Characteristics

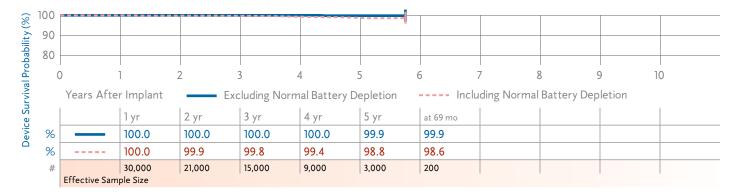
0

0

0


NBG CodeDDD/ROSerial Number PrefixPKW, PKYEstimated LongevitySee page 72

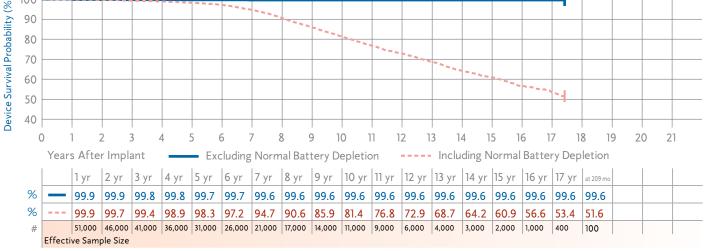
Kappa 900 DR KDR901, KDR903, KDR906

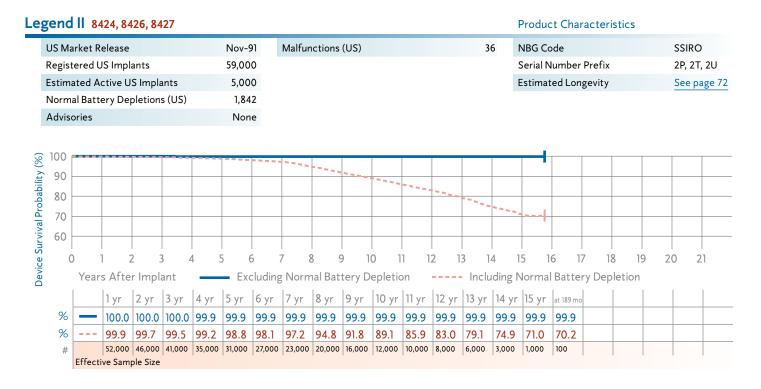

JS Ma	irket Release		Jan-0	2 Malfu	nctions (US)			23	NBG Code		DDD/RO
Regist	ered US Impla	nts	125,00	0 The	apy Functior	Not Compr	omised	11	Serial Numbe	r Prefix	PKM, PKN,
Estima	ated Active US	Implants	81,00	0 E	Electrical Component						PKP
Norma	al Battery Dep	letions (US)	19	The	apy Functior	Compromis	ed	12	Estimated Lo	ngevity	See page
Advisc	ories		Non	e E	Electrical Component						
				E	lectrical Inte	rconnect		4			
100 f							-				
90							-				
80											
0			2	3	4	F		7	0	9	10
0) 1	4			4	5	6	/	8	9	10
	Years After	Implant	Exc	luding Nori	nal Battery	Depletion		Includir	ng Normal Batte	ery Depletion	
		l yr	2 yr	3 yr	4 yr	5 yr	at 71 mo				
%		100.0	100.0	100.0	100.0	100.0	100.0				
%		100.0	100.0	99.8	99.6	99.2	99.0				
#		112,000	91,000	70,000	46,000	17,000	100				
	Effective Samp	le Size									

			Product Characteristics	
Jan-02	Malfunctions (US)	1	NBG Code	DDD/RO
16,000	Therapy Function Not Compromised	0	Serial Number Prefix	PKR
9,000	Therapy Function Compromised	1	Estimated Longevity	See page 72
139	Electrical Interconnect	1		
None				
	, 16,000 9,000 139	16,000Therapy Function Not Compromised9,000Therapy Function Compromised139Electrical Interconnect	16,000Therapy Function Not Compromised09,000Therapy Function Compromised1139Electrical Interconnect1	Jan-02Malfunctions (US)1NBG Code16,000Therapy Function Not Compromised0Serial Number Prefix9,000Therapy Function Compromised1Estimated Longevity139Electrical Interconnect1

Kappa 900 SR KSR901, KSR903, KSR906

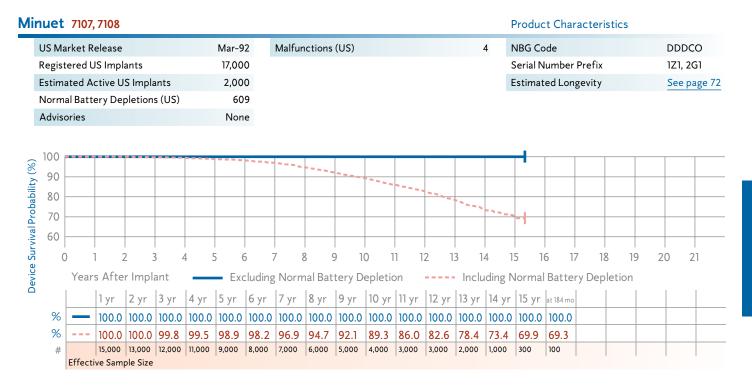
Ka	арра 900 SR кsr901, кsr903,	KSR906			Product Characteristics	
	US Market Release	Jan-02	Malfunctions (US)	10	NBG Code	VVEV
	Registered US Implants	37,000	Therapy Function Not Compromised	8	Serial Number Prefix	PLF, PLG,
	Estimated Active US Implants	21,000	Electrical Component	7		PLH
	Normal Battery Depletions (US)	57	Possible Early Battery Depletion	1	Estimated Longevity	See page 72
	Advisories	None	Therapy Function Compromised	2		
			Electrical Interconnect	2		

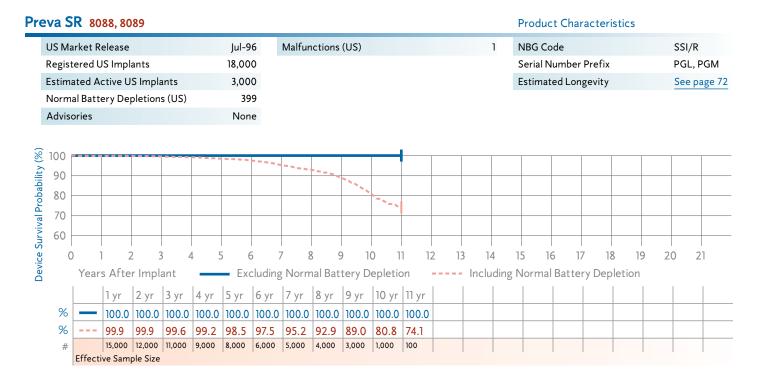



US Market Release	Jan	n-02	Malfunctions (US)	0	NBG Code	VDD	
Registered US Implants	1,0	,000	Therapy Function Not Compromised	0	Serial Number Prefix	PLE	
Estimated Active US Implar	ts 4	400	Therapy Function Compromised	0	Estimated Longevity	See page 7	
Normal Battery Depletions	(US)	0					
Normal Battery Depletions Advisories		0 None					
, ,							
Advisories							

S										
ice			l yr	2 yr	3 yr	4 yr	5 yr	at 61 mo		
Dev	%		100.0	100.0	100.0	100.0	100.0	100.0		
	%		100.0	100.0	100.0	100.0	100.0	100.0		
	#		1,000	500	400	300	100	100		
		Effective Sam	ole Size							

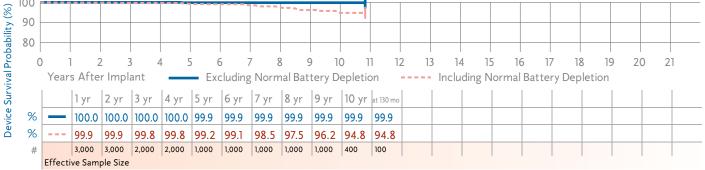
Legend 8416, 8417, 8417M, 8418, 8419

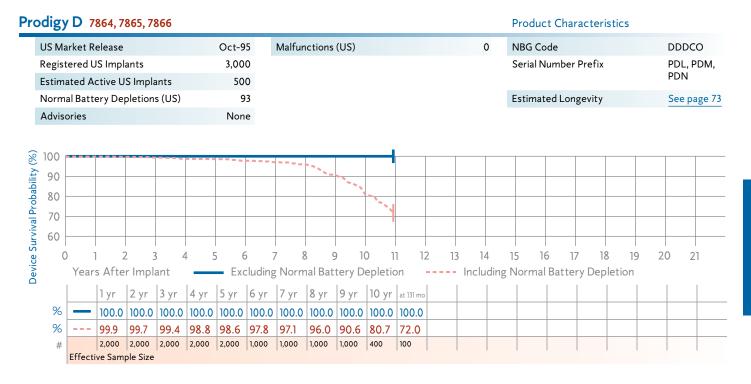

				Product Characteristics	
US Market Release	Aug-89	Malfunctions (US)	143	NBG Code	SSIRO
Registered US Implants	57,000			Serial Number Prefix	XT, WJ, WN,
Estimated Active US Implants	2,000				ZT
Normal Battery Depletions (US)	2,706			Estimated Longevity	See page 72
Advisories	None				

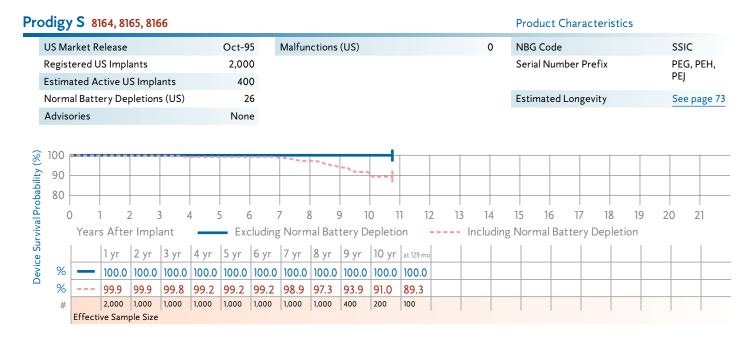


Minix/Minix ST 8330, 8331, 8331M, 8340, 8341, 8341M, 8342

,	,	,.	, ,	,	,.	,														
US Market Release	e			Dec-8	9	Malfun	ictions ((US)				49	1 (NBG Co	ode				SSIRO	
Registered US Imp	olants			58,00	0								9	Serial N	lumber	Prefix			2P, 2T,	2L
Estimated Active	US Impla	ants		4,00	0								E	Estimat	ed Lon	gevity			See pa	ige
Normal Battery De	epletion	s (US)		1,48	5															
Advisories: See pa																				
Delayed Restoration	on of Pe	rmane	nt Sett	ings																
100	-																-			
90																				
80																				
70																****				
	2	3	4			7 (0 1		2 1	3 1	4 7	 	 	 7 1	8 1			
0 1	Z	5 '	4 :	5 (5 7	/ č	89	' 1	0 1	1 1	Ζ Ι	3 1	4 1	5 1	6 1	7 1	8 1	9 20) 2	. I
Years Aft	er Impl	ant		Exc	luding	Norm	nal Batt	ery D	epletic	on		Inclu	ıding N	lorma	Batte	ry Dep	letion			
1vr	2 yr	3 yr	4 yr	5 yr	6 yr	7 yr	8 yr	9 yr	10 yr	11 yr	12 yr	13 yr	14 yr	15 yr	16 vr	17 yr	18 vr	at 222 mc		
% - 100.0) 99.9	99.9	99.9	99.9	99.9	99.9		99.9	99.9	99.9	99.9	99.9	99.9	99.9	99.9	99.9	99.9	99.9		+
% 99.9		99.5	99.2		97.7	95.2		89.3			83.9	82.3	81.2	80.1	79.4	78.3	76.4	75.8		+
	0 43,000										8,000	6,000	5,000	3,000	2,000	1,000	300	100		+
Effective San																			1	1




Preva DR 7088, 7089 **Product Characteristics** US Market Release Jul-96 Malfunctions (US) NBG Code DDD/RO 3 PGJ, PGK **Registered US Implants** 26,000 Serial Number Prefix **Estimated Active US Implants** 5,000 **Estimated Longevity** See page 72 941 Normal Battery Depletions (US) Advisories None 100 Device Survival Probability (%) 90 80 70 60 2 3 6 7 8 9 10 11 5 12 13 14 15 16 17 18 19 20 21 4 Years After Implant **Excluding Normal Battery Depletion** ----- Including Normal Battery Depletion 1 yr 2 yr 3 yr 4 yr 5 yr 6 yr 7 yr 8 yr 9 yr 10 yr 11 yr at 134 mo % 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 % 100.0 99.9 99.7 99.5 98.9 98.0 96.6 93.2 87.2 75.8 66.0 65.3 22,000 20,000 18,000 16,000 14,000 12,000 11,000 9,000 200 # 5,000 2,000 100 Effective Sample Size


Prevail	S	8085,	8086

US Market Release	Oct-95	Malfunctions (US)	1	NBG Code	SSI
Registered US Implants	4,000			Serial Number Prefix	PGL, PGM
Estimated Active US Implants	1,000			Estimated Longevity	See page 7
Normal Battery Depletions (US)	22				
Advisories	None				

odigy	DR	7860,	7861,	7862											Prod	uct (Char	racte	eristi	cs			
US Ma	arket R	elease				Oct-9	5	Malfun	ictions	(US)				11	NBG	Code						DD	D/RO
Regist	ered U	S Impla	ants			38,00	0								Seria	l Nurr	ıber	Pref	ix				H, PDJ,
Estima	ated A	ctive U	S Impla	ants		8,00	0															PD	ί.
Norm	al Batte	ery Dep	oletion	s (US)		1,32	21								Estin	ated	Lon	gevit	y			See	e page 73
Adviso	ories					Non	e																
100												-											
90																_			_				
80															_	_			_	$ \rightarrow$		<u> </u>	
70																							
100 90 80 70 60 50												4											
50																							
101	 1	2)) 2	, ,		6	 : -	, 8	3 9) 10	0 1	 1 1:	 ว า [.]	 3 14	15	16	17	7	18	 19	, · ·	20	21
U	Year	s Afte					, , luding	-			÷ .		Z I.			16 nal Ba	atter	, ry De			4	20	21
		1 yr	2 yr	3 yr	4 yr	5 yr	6 yr	7 yr	8 yr	9 yr	10 yr	11 yr	at 136 mo										
%		100.0	100.0		100.0		100.0	100.0	100.0	100.0		100.0	100.0										
%		99.9	99.9	1	99.5		98.1		93.1	87.1	76.4		62.2									1	
#		33,000			24,000					7,000	3,000	400	100										
	Effecti	ve Samp	ole Size																				

Prodigy SR	8158, 8160, 8161, 8162
------------	------------------------

Pro	odigy	' SR	8158,	8160, 8	8161, 81	62											Produ	ct Cha	ract	teris	tics				
	US Ma	arket R	elease				Oct-9	5	Malfun	ctions	(US)				5		NBG C	ode					SS	I/R	
	Registered US Implants Estimated Active US Implants			22,00	0									Serial N	lumbe	r Pre	fix				M, PED,				
				4,00	0												PEE, PEF								
	Norm	al Batte	ery Dep	pletion	s (US)		48	4									Estima	ted Lo	ngevi	ity			Se	e page 7	3
	Advis	ories					Non	e																	
Device Survival Probability (%)	100 90 80 70)			3		6)](2 13	3 14		15 1	6	17	18]	9	20	21	
vice Su		Year	s Afte	r Impla				luding					1		Includ	ding	Norma	Batte	ery D	Deple	etion	I	I		
De			1 yr	2 yr	3 yr	4 yr	5 yr	6 yr	7 yr	8 yr	9 yr	10 yr	11 yr	at 135 mo											
	%	_	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0											
	%		99.8	99.7	99.4	99.0	98.3	97.3	95.9	93.3	89.4	81.9	74.0	74.0											
	#		1	16,000	13,000	11,000	9,000	8,000	6,000	5,000	3,000	1,000	200	100											
		Effecti	ve Sam	ple Size																					

2,000

Effective Sample Size

#

300

Sensia DR SEDR01, SED01					Produc	t Characterist	ics	
US Market Release	Jul-06	Malfunctions (US)		0	NBG Co	de	SSI/F	R
Registered US Implants	20,000	Therapy Function	lot Compromis	ed 0	Serial N	umber Prefix	DDD	, DDDR
Estimated Active US Implants	18,000	Therapy Function Compromised			Estimate	Estimated Longevity Se		
Normal Battery Depletions (US)	0							
Advisories	None							
Device Structure and the second secon								
Vears After Implant	3 Excludi	4 ng Normal Battery D	5 6 epletion -	7 Includi	8 ng Normal	9 Battery Deple	10 tion	
lyr a	t 14 mo							
<u>ک</u> % <u> </u>	00.0							
% 100.0 1	0.00							

ISIA SR SESR01, SES01					Product Cha	aracteristics		
US Market Release	Jul-06	Malfunctions (l	US)	0	NBG Code		SSIR, SSI	
Registered US Implants	12,000	Therapy Func	tion Not Compromise	ed 0	Serial Numbe	Serial Number Prefix		
Estimated Active US Implant	s 11,000	11,000 Therapy Function Compromised				0 Estimated Longevity		
Normal Battery Depletions (I	JS) 0							
Advisories	None							
90 80 0 1	2 3	4	5 6	7	8	9	10	
80 0 1 Years After Implant		4 ding Normal Batte		7 Includir	8 ng Normal Batte	-		
80 0 1 Years After Implant				7 Includir		-		
90 80 0 1 Years After Implant % 1 yr % 100.0	Exclu			7 Includir		-		
80 0 1 Years After Implant	at 14 mo			7 Includir		-		

1,000

Effective Sample Size

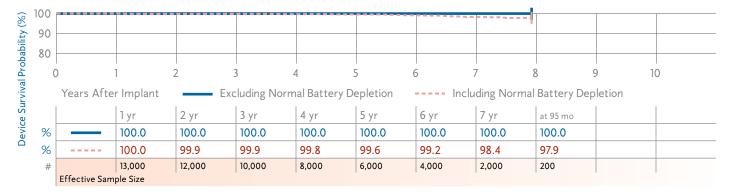
500

400

300

JS Marke	et Release		Aug-	.99 Ma	alfunctions (US)		0	NBG Code		SSI
Register	ed US Impla	ants	1,0	00 т	Therapy Function Not Compromised				Serial Number	Prefix	PJG, PJH
Estimate	ed Active U	S Implants	2	00 Т	Therapy Function Compromised 0				Estimated Lon	See page 7	
Normal E	Battery Dep	oletions (US)		4							
100											
100 90 80											
90 -			2	3	4	5	6	7	8	9	10
90	/ears After	l I r Implant	2 E>	3 xcluding N	4 lormal Battery	5 y Depletion	6	7 cluding I	8 Normal Batter	2	
90	Years After	1 r Implant 1 yr	2 Ex Ex	3 xcluding N 3 yr	4 lormal Battery 4 yr	5 y Depletion 5 yr	6	7 7 cluding I at 79	Normal Batter	2	
90	/ears After		1				6 In	I U	Normal Batter	2	

200


100

100

Sigma 200 DR SDR203

#

0					
US Market Release	Aug-99	Malfunctions (US)	4	NBG Code	DDD/RO
Registered US Implants	16,000	Therapy Function Not Compromised	1	Serial Number Prefix	PJD
Estimated Active US Implants	7,000	Electrical Component	1	Estimated Longevity	See page 73
Normal Battery Depletions (US)	39	Therapy Function Compromised	3		
Advisories: See page 145 – 2005 Pot	ential	Electrical Component	1		
Separation of Interconnect Wires		Electrical Interconnect (1 malfunction related to advisory)	2		

Sigma 200 SR SSR203

US Market Release	Sep-99
Registered US Implants	12,000
Estimated Active US Implants	4,000
Normal Battery Depletions (US)	21

Malfunctions (US) Therapy Function Not Compromised Therapy Function Compromised Electrical Interconnect (3 malfunctions related to advisory)

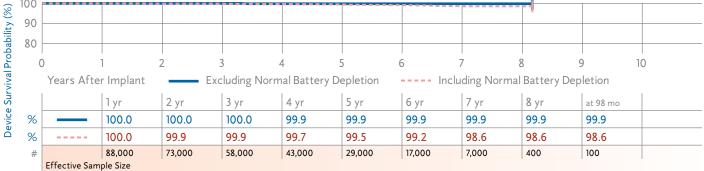
Product Characteristics

3

0

3

3

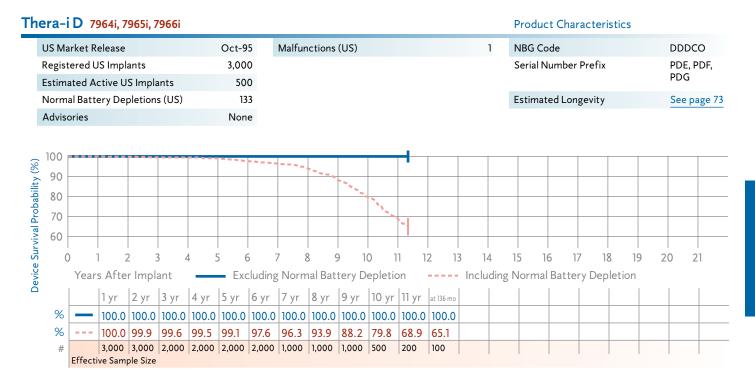

NBG Code	SSI/R
Serial Number Prefix	PJG
Estimated Longevity	See page 73

Advisories: See page 145 – 2005 Potential Separation of Interconnect Wires

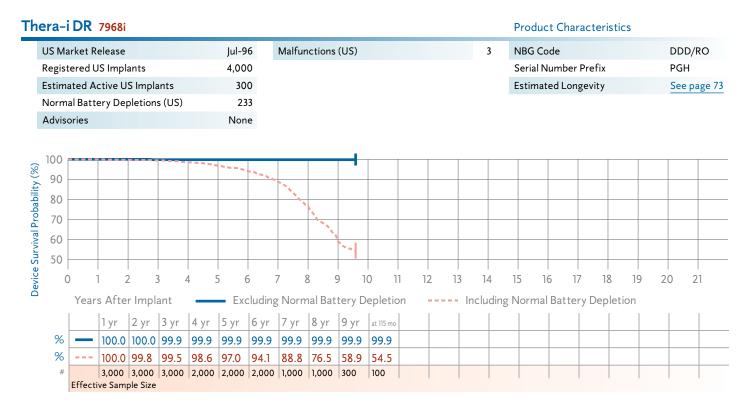
100											
90											
80											
(Ċ	1	2	3	4	5	6	7	8	9	10
	Years Afte	r Implant	E E	cluding Norr	nal Rattory F)oplation	Inclu	iding Norma	l Battery Dep	lation	
	1001071110	i inipiani	L/	cluuing Norr	nai Dattery L	repletion	Incl	iung Norma	i battery bep	Jetion	
		1 yr	2 yr	3 yr	4 yr	5 yr	6 yr	7 yr	at 94 mo		
%		, _	1		1.		1	-	1		
% %		l yr	2 yr	3 yr	4 yr	5 yr	6 yr	7 yr	at 94 mo		
		1 yr 100.0	2 yr 100.0	3 yr 100.0	4 yr 100.0	5 yr 99.9	6 yr 99.9	7 yr 99.9	at 94 mo		

Sigma 300 DR SDR303, SDR306

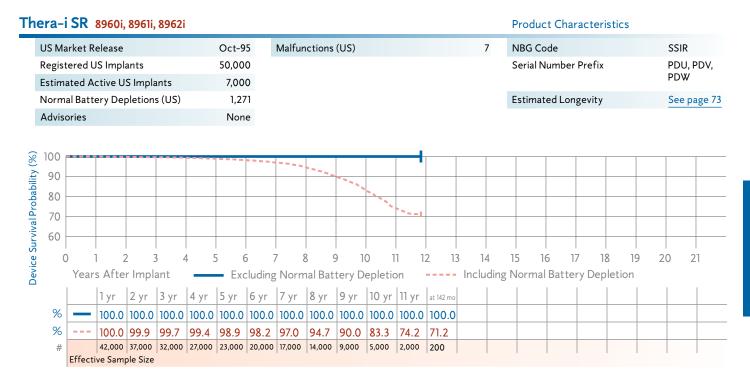
Aug-99	Malfunctions (US)	72	NBG Code	DDD/RO
106,000	Therapy Function Not Compromised	10	Serial Number Prefix	PJD, PJE
60,000	Electrical Component	4	Estimated Longevity	See page 73
129	Electrical Interconnect	5		
ential	Possible Early Battery Depletion	1		
	Therapy Function Compromised	62		
	Electrical Component	6		
	Electrical Interconnect (28 malfunctions related to advisory)	56		
	60,000 129	106,000 Therapy Function Not Compromised 60,000 Electrical Component 129 Electrical Interconnect rential Possible Early Battery Depletion Therapy Function Compromised Electrical Component Electrical Interconnect Electrical Component Electrical Interconnect Electrical Component Electrical Interconnect Electrical Component	106,000Therapy Function Not Compromised1060,000Electrical Component4129Electrical Interconnect5Possible Early Battery Depletion1Therapy Function Compromised62Electrical Component6Electrical Interconnect56	106,000Therapy Function Not Compromised10Serial Number Prefix60,000Electrical Component4Estimated Longevity129Electrical Interconnect5rentialPossible Early Battery Depletion1Therapy Function Compromised62Electrical Component6Electrical Interconnect56


Sigma 300 SR SSR303, SSR306

US Market Release	Sep-99	Malfunctions (US)	13	NBG Code	SSI/R
Registered US Implants	53,000	Therapy Function Not Compromised	1	Serial Number Prefix	PJG, PJH
Estimated Active US Implants	24,000	Electrical Component	1	Estimated Longevity	See page 73
Normal Battery Depletions (US)	65	Therapy Function Compromised	12		
Advisories: See page 145 - 2005 Pot	tential	Electrical Component	3		
Separation of Interconnect Wires		Electrical Interconnect (5 malfunctions related to advisory)	9		
_ 100					


%												
	90											
bability	80											
ba	00				l					l		
Pro	() .	1	2 :	3 4	4	5	6	7 8	3	Э 1()
vival		Years Afte	r Implant	Exc	luding Norm	nal Battery D	epletion	Inclu	ding Normal	Battery Dep	letion	
Sur			1 yr	2 yr	3 yr	4 yr	5 yr	6 yr	7 yr	8 yr		
vice	%		100.0	100.0	100.0	100.0	99.9	99.9	99.9	99.9		
De	%		100.0	99.9	99.9	99.7	99.5	99.1	98.6	98.1		
	#		40,000	31,000	23,000	16,000	10,000	6,000	2,000	100		
		Effective Sam	ple Size									

Sigma 300 VDD SVDD303


Sigma	300 VDD	SVDD303							Produc	t Character	ristics	
US M	larket Release		Sep-9	9 Malfur	ictions (US)			0	NBG Co	de		VDDD
Regis	stered US Impla	ants	1,000	D Thera	Therapy Function Not Compromised			0	Serial Number Prefix		(PJD
Estim	nated Active U	S Implants	300	D Thera	Therapy Function Compromised			0	Estimated Longevity			See page 73
Norn	nal Battery Dep	oletions (US)	(C								
	sories: <u>See pag</u> ration of Intere											
₃ 100												
09 t 7												
08 abili												
Prob	0	1	2 3	}	4 !	5	6	7	8	8	9	10
Device Survival Probability (%)	Years Afte	r Implant	Exc	luding Norm	al Battery D	epletion	lr	icluding	g Normal	Battery De	pletion	
e St		1 yr	2 yr	3 yr	4 yr	5 yr	6 yr	at 7	7 mo			
% evic		100.0	100.0	100.0	100.0	100.0	100.0	100	0.0			
õ _%		100.0	100.0	100.0	100.0	100.0	100.0	100	0.0			
#	Effective Sam	1,000 ple Size	500	400	400	300	200	100				

era-i	i DR	7960i ,	, <mark>796</mark> 1i,	, <mark>796</mark> 2i											Pr	oduc	t Cha	racte	ristics	5		
US Ma	arket R	elease				Oct-9	5	Malfun	ctions	(US)				50	N	3G Co	de				DDI	D/RO
Regist	tered U	S Impl	ants			122,00	0								Se	erial N	umbei	r Prefix	(B, PDC,
Estim	ated A	ctive U	S Impla	ants		17,00	0														PDD)
	al Batte	ery Dep	oletion	s (US)		5,96									Es	timat	ed Lor	ngevity	/		See	page 7
Advis	ories					Non	e															
100																						
90																				_		_
80																						
70																						
60																				_		
50												` . ────										
40												-										
() .		2 3	3 4	4 5	5 6	5 7	7 8	3 9	9 1	0 1	1 1	2 13	14	15	16	5 1	7	18	19	20	21
	Year	s Afte	r Impla	ant		Exc	luding	Norm	al Bat	tery D	epletio	on		Includi	ng No	ormal	Batte	ery De	pletic	n		
		1 yr	2 yr	3 yr	4 yr	5 yr	бyr	7 yr	8 yr	9 yr	10 yr	11 yr	at 141 mo									
%		100.0	100.0	100.0	100.0	100.0	99.9	99.9	99.9	99.9	99.9	99.9	99.9									
%		100.0	99.9	99.7	99.5	99.0	98.2	96.6	93.1	86.2	73.9	56.7	49.2									
#			1	1	80,000	71,000	62,000	54,000	44,000	29,000	14,000	4,000	200									
	Effecti	ve Sam	ple Size																			

era-i S 8964i, 896	5i, 8966i											Prod	uct (Chara	acter	istic	S			
US Market Release		Oct-9	5	Malfund	tions	(US)					1	NBG	Code					S	SIR	
Registered US Implant	s	4,00	0									Seria	l Nurr	ıber I	Prefix				DY, P	EA,
Estimated Active US In	mplants	1,00	0															P	EB	
Normal Battery Deple	tions (US)	5	2									Estim	nated	Long	gevity			5	ee pa	nge 73
Advisories		Non	e																	
% — 100.0 10 % 99.9 99	yr 3 yr 0.0 100.0 9.8 99.7	4 yr 5 yr	6 yr 100.0 98.1	7 yr 100.0 97.5	8 yr 100.0 96.1	9 yr 100.0 93.2	0 1 epletic 10 yr	11 yr	at 138 mo			15 Norm	16 nal Ba	17 atter		8 oletio	19 on	20	2	1
Effective Sample	Size																			

The	ra-i		896	8i													Proc	duct (Chara	cter	istic	:s			
ι	JS Ma	arket R	elease				Mar-9	6	Malfun	ctions	(US)				(0	NBG	Code					١	/DD	
R	legist	ered U	IS Impla	ants			5,00	0									Seria	ıl Nun	ıber F	refix	:		F	EC	
Е	stima	ated A	ctive U	S Impla	ants		1,00	0									Estir	nated	Long	evity			5	iee p	age 73
Ν	lorm	al Batte	ery Dep	oletion	s (US)		8	31																	
A	Adviso	ories					Non	e																	
Device Survival Probability (%)	100 90 80 0) Year	l 2 s Afte		3 4 ant 3 yr	4 yr		luding		al Bat		0 1 epletic		2 1: at 135 mo	3 1 Inclu	4 Iding	15 Norr	16 nal Ba	17 attery	l V Dep	8 8	19 on	20	2	21
vice	%		100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0											
De	%		99.9	99.8	99.6	99.5	99.2	99.2	99.1	98.4	96.8	91.0	84.0	83.0											
	#				3,000	3,000	3,000	2,000	2,000	2,000	1,000	1,000	200	100											
		Effecti	ve Samp	ple Size																					

rsa DR VEDR01						Product Cha	racteristics	
US Market Release	Jul-06	Malfunction	s (US)		0	NBG Code		DDDR
Registered US Implants	20,000	Therapy Fu	nction Not Com	promised	0	Serial Number	r Prefix	PWH
Estimated Active US Implants	19,000	Therapy Fu	nction Compror	nised	0	Estimated Lor	ngevity	See page 7
Normal Battery Depletions (US)	0							
Advisories	None							
100								
100 90 80 0 1	3	4	5	6	7	8	9	10
100 90 80 0 1 2 Years After Implant	5	4 ding Normal Ba	5 ttery Depletion	-	7 Includiną	8 g Normal Batte	-	
100 90 80 0 1 2 Years After Implant	5	4 ding Normal Ba	-	-	7 Includiną		-	
100 90 80 0 1 2 Years After Implant % 100.0	Exclue	4 ding Normal Ba	-	-	7 Including		-	
90 80 0 1 2 Years After Implant % 100.0	Exclude at 14 mo	4 ding Normal Ba	-	-	7 Including		-	

		14 yr 16 yr														
		12 yr 1														
		10 yr														
		8 yr														
	-	7 yr														
	-	6 yr									99.8 +0.1/-0.2 at 64 mo	52.7 +6.3/-6.7 at 64 mo				
		5 yr									99.8 +0.1/-0.2	71.8 +4.6/-5.3				
ility (%)	-	4 yr									99.8 +0.1/-0.2	98.2 +0.4/-0.5	100.0 +0.0/-0.1 at 47 mo	99.8 +0.1/-0.2 at 47 mo	100.0 +0.0/-0.0 at 46 mo	9.66
Device Survival Probability (%)	ıplant	3 yr									100.0 +0.0/-0.1	99.7 +0.1/-0.1	100.0 +0.0/-0.1	99.9 +0.1/-0.1	100.0 +0.0/-0.0	9.66
Surviva	Years After Implant	2 yr	100.0 +0.0/-0.0 at 15 mo	100.0 +0.0/-0.0 at 15 mo			100.0 +0.0/-0.0 at 14 mo	100.0 +0.0/-0.0 at 14 mo	100.0 +0.0/-0.0 at 14 mo	100.0 +0.0/-0.0 at 14 mo	100.0 +0.0/-0.1	99.9 +0.1/-0.1	100.0 +0.0/-0.0	100.0 +0.0/-0.0	100.0 +0.0/-0.0	99.7
Device	Years	1 yr	100.0 +0.0/-0.0	100.0 +0.0/-0.0	100.0 +0.0/-0.0	100.0 +0.0/-0.0	100.0 +0.0/-0.0	100.0 +0.0/-0.0	100.0 +0.0/-0.0	100.0 +0.0/-0.0	100.0 +0.0/-0.1	99.9 +0.0/-0.1	100.0 +0.0/-0.0	100.0 +0.0/-0.0	100.0 +0.0/-0.0	100.0
			Excluding Normal Battery Depletion	Including Normal Battery Depletion	Excluding Normal Battery Depletion	Including Normal Battery Depletion	Excluding Normal Battery Depletion	Including								
S)	le:	ъот	3		0		0		0		10		-		0	
Malfunctions (US)	erapy iction Not mpromised	- 1	" 3		" 0		" 0		" 0		5		"-		н О	
lalfunc			+		+		+									
21	mpromised erapy Function	юЭ РЧТ	0		0		0		+		دی +		+		+	
2	rmal Battery pletions (US) erapy Function mpromised	РАТ Реп	0 0		0							acing				
2	Pletions (US)	hoM Indi Indi Indi Indi Indi Indi Indi Indi					0		0		S	te on AT500 Pacing	0		0	
2	tive US plants pletions (US) (US)	SU SU SU SE SE SE SE SE SE SE SE SE SE SE SE SE	0		0		0		0		149 5	rmance note on AT 500 Pacing stocol	4		3	
2	Implants ive US plants pletions (US) pletions (US)	Rel Beg Dep Beg Beg Beg Beg Beg Beg Beg Beg Beg Beg	55,000 0		3,000 0		5,000 0 0		10,000 0		7,000 149 5	5 – Performance note on AT500 Pacing low-Up Protocol	5,000 4 0		1,000 3 0	
2	ease jistered implants rmal Battery pletions (US) pletions (US)	The Def Ref US Est Ref US US US US US US US US US US US US US	58,000 55,000 0		4,000 3,000 0		5,000 5,000 0		0 0 10,000 0		11,000 7,000 149 5	see page 155 – Performance note on AT500 Pacing System Follow-Up Protocol	7,000 5,000 4 0		2,000 1,000 3 0	

						Malfunction	ctions	(SU)		Device	e Surviva	Device Survival Probability (%)	llity (%)								
	jel nber	Aarket sase	istered stnslqm	bətam VU əvi SU tanışı	mal Battery letions (US)	rapy Function promised	rapy stion Not promised			Years	Years After Implant	ıplant									
	ooM nuN	eleg NSU		İτοΑ			no Pnu Fund	stoT		1 yr	2 yr	3 yr	4 yr	5 yr	6 yr	7 yr	8 yr	10 yr	12 yr	14 yr	16 yr
EnPulse 2 DR	E2DR01, E2DR03, E2DR06	Feb-04	101,000	78,000	9	+ ~	ъ	∞	Excluding Normal Battery Depletion	100.0 +0.0/-0.0	100.0 +0.0/-0.0	100.0+0.0	100.0 +0.0/-0.0 at 44 mo								
									Including Normal Battery Depletion	100.0 +0.0/-0.0	100.0 +0.0/-0.0	9.99 +0.0/0.0+	99.9 +0.0/-0.0 at 44 mo								
EnPulse 2 DR	E2DR21	Feb-04	12,000	000'6	=	+	0	0	Excluding Normal Battery Depletion	100.0 +0.0/-0.0	100.0 +0.0/-0.0	100.0 +0.0/-0.0	100.0 +0.0/-0.0 at 42 mo								
									Including Normal Battery Depletion	100.0 +0.0/-0.1	99.8 +0.1/-0.1	99.7 +0.1/-0.2	99.7 +0.1/-0.2 at 42 mo								
EnPulse 2 DR	E2DR31, E2DR33	Feb-04	1,000	500	0	+	0	0	Excluding Normal Battery Depletion	100.0 +0.0/-0.0	100.0 +0.0/-0.0	100.0 +0.0/-0.0 at 31 mo									
									Including Normal Battery Depletion	100.0 +0.0/-0.0	100.0 +0.0/-0.0	100.0 +0.0/-0.0 at 31 mo									
EnPulse 2 SR	E2SR01, E2SR03, E2SR06	Dec-03	25,000	18,000	9	+	2	3	Excluding Normal Battery Depletion	100.0 +0.0/-0.0	100.0 +0.0/-0.0	100.0 +0.0/-0.0	100.0 +0.0/-0.0 at 46 mo								
									Including Normal Battery Depletion	100.0 +0.0/-0.0	100.0 +0.0/-0.0	99.7 +0.1/-0.2	99.7 +0.1/-0.2 at 46 mo								
EnPulse 2 VDD	E2VDD01	Dec-03	1,000	1,000	0	+	0	0	Excluding Normal Battery Depletion	100.0 +0.0/-0.0	100.0 +0.0/-0.0	100.0 +0.0/-0.0 at 34 mo									
									Including Normal Battery Depletion	100.0 +0.0/-0.0	100.0 +0.0/-0.0	100.0 +0.0/-0.0 at 34 mo									
EnRhythm DR	PISOIDR	May-05	64,000	55,000	0	13 +	5	= 18	Excluding Normal Battery Depletion	100.0 +0.0/-0.0	9.09 +0.0/-0.0	99.9 +0.0/-0.0 at 31 mo									
									Including Normal Battery Depletion	100.0 +0.0/-0.0	99.9 +0.0/-0.0	99.9 +0.0/-0.0 at 31 mo									
Kappa 400 DR	KDR401, KDR403	Jan-98	47,000	8,000	3,269	ۍ +	13	= 22	Excluding Normal Battery Depletion	100.0 +0.0/-0.0	100.0 +0.0/-0.0	100.0 +0.0/-0.0	100.0 +0.0/-0.0	9.99 +0.0/-0.0+	9.99 + 0.0/-0.0+	9.99 +0.0/-0.0+	9.99 +0.0/-0.0+	99.9 +0.0/-0.0 at 103 mo			
									Including Normal Battery Depletion	99.9 +0.0/-0.0	9.99 +0.0/-0.0+	99.8 +0.0/-0.1	99.6 +0.1/-0.1	99.1 +0.1/-0.1	97.7 +0.2/-0.2	90.6 +0.4/-0.4	62.1 +1.0/-1.0	8.6 +1.4/-1.3 at 103 mo			
Kappa 400 SR	KSR401, KSR403	Feb-98	15,000	4,000	455	+ 	•	4	Excluding Normal Battery Depletion	100.0 +0.0/-0.0	100.0 +0.0/-0.0	100.0 +0.0/-0.0	100.0++0.0/-0.0	100.0 +0.0/-0.0	100.0	100.0++0.0/-0.1	100.0 +0.0/-0.1	100.0 +0.0/-0.1 at 112 mo			
									Including Normal Battery Depletion	99.9 +0.0/-0.1	9.99 +0.0/-0.1	99.8 +0.1/-0.1	99.6 +0.1/-0.2	99.4 +0.1/-0.2	98.5 +0.3/-0.3	95.2 +0.6/-0.7	78.5 +1.6/-1.7	47.4 +3.5/-3.5 at 112 mo			

continued

						Malfunctions (US)		Device	Survival	Device Survival Probability (%)	lity (%)								
λlir	del nber	Market ease	ristered Implants	bətsmi VU əvi SU əstnslı	mal Battery (US) anoiteid	stapy Function npromised ction Not opromised al		Years A	Years After Implant	olant									
nsi	w MuN	Rele US I	NS । ଅକୃଥି	ţ>Α	Nor Dep	run Fun Fun		1 yr	2 yr	3 yr	4 yr 5	5 yr (6 yr	7 yr 8	8 yr	10 yr 1	12 yr	14 yr	16 yr
Kappa 600 DR	KDR601, KDR603, KDR606	Jan-99	24,000	7,000	746	18 + 3 = 21	Excluding Normal Battery Depletion	100.0 +0.0/-0.0	100.0++0.0/-0.0	100.0 +	9.9 •+ 0.0-/0.0+	9.99 	9.99 + 0.0/-0.0+	9.99 + 0.0/-0.0+	9.99 +0.0/-0.0+	99.9 +0.0/-0.1 at 102 mo			
	Advisorie: Power Sup	s: see page oply Wires	<u>- 147</u> – 200:	Advisories: <u>see page 147</u> – 2002 Potential Fractured Power Supply Wires	ctured	<pre>(11) + (0) = (11) (advisory-related subset)</pre>	Including Normal Battery Depletion	100.0 +0.0/-0.0	9.99 +0.0/-0.0+	9.99 + 0.0/-0.0+	99.6 +0.1/-0.1	98.9 +0.2/-0.2	97.0 +0.3/-0.3	91.0 +0.5/-0.6	78.2 +1.2/-1.3	74.4 +2.1/-2.2 at 102 mo			
Kappa 600 DR	KDR651, KDR653	Mar-01	14,000	7,000	E	4 + 2 = 6	Excluding Normal Battery Depletion	100.0 +0.0/-0.0	100.0++0.0/-0.0	100.00 + 0.0/-0.0+	100.00 +0.0/-0.1	100.00+ + 1.0.0/-0.1	100.00 +0.0/-0.1	99.8 +0.2/-0.6 at 79 mo					
	Advisorie: Power Sup	Advisories: <mark>see page</mark> Power Supp <mark>ly W</mark> ires	<u>- 147</u> – 200:	<u>see page 147</u> – 2002 Potential Fractured I <mark>y Wires</mark>	ctured	<pre>(1) + (0) = (1) (advisory-related subset)</pre>	Including Normal Battery Depletion	100.0 +0.0/-0.1	9.99 +0.0/-0.1	99.8 +0.1/-0.1	99.4 +0.1/-0.2	98.5 +0.2/-0.3	96.9 +0.4/-0.5	96.3 +0.6/-0.7					
Kappa 700 D	KD701, KD703, KD706	Jan-99	300	100	S	0 = 0 + 0	Excluding Normal Battery Depletion	100.0 +0.0/-0.0	100.0++0.0/-0.0	100.0++0.0/-0.0	100.0 +0.0/-0.0	100.00 +0.0/-0.0+	100.0 +0.0/-0.0 a	100.0 +0.0/-0.0 at 78 mo					
	Advisories Power Sup	Advisories: <mark>see page</mark> Power Supp <mark>ly W</mark> ires	<u>147</u> – 200:	Advisories: <u>see page 147</u> – 2002 Potential Fractured Power Suppl <mark>y Wires</mark>	ctured	(1) + (0) = (1)(advisory-related subset)	Including Normal Battery Depletion	100.0 +0.0/-0.0	100.0 +0.0/-0.0	100.0 9	99.0 +0.8/-3.1	97.8 +1.4/-3.6	96.3 +2.0/-4.4	94.5 +2.8/-5.4 at 78 mo					
Kappa 700 DR	KDR701, KDR703, KDR706	Feb-99	192,000	84,000	3,732	1 <mark>92</mark> + 27 = 219	Excluding Normal Battery Depletion	100.0 +0.0/-0.0	100.0	9.99 + 0.0-/0.0+	9.99 + 0.0-/0.0+	9.99 + 0.0-/0.0+	99.8 + 0.0-/0.0+	99.8 + 0.0/-0.0+	99.8 +0.0/-0.0	99.8 +0.0/-0.0 at 105 mo			
	Advisorie: Power Sup	s: see page oply Wires	<u>: 147</u> – 200:	Advisories: <u>see page 147</u> – 2002 Potential Fractured Power Suppl <mark>y Wires</mark>	ctured	(124) + (0) = (124) (advisory-related subset)	Including Normal Battery Depletion	9.99.9 +0.0/-0.0	9.99 0.0-/0.0+	99.7 + 0.0/-0.0+	99.3 +0.0/-0.0	98.4 +0.1/-0.1	96.3 +0.1/-0.1	90.5 +0.3/-0.3	75.1 +0.7/-0.7	67.5 +2.2/-2.3 at 105 mo			
Kappa 700 DR	KDR721	Feb-99	10,000	1,000	806	4 + 1 = 5	Excluding Normal Battery Depletion	100.0 +0.0/-0.1	100.0 +0.0/-0.1	100.00 + 0.0/-0.1	100.00 +0.0/-0.1	99.9 +0.0/-0.1	99.9 +0.0/-0.1	99.9 +0.0/-0.1	99.9 +0.0/-0.1 at 88 mo				
	Advisorie: Power Sup	s: see page oply Wires	<u>- 147</u> – 200:	Advisories: <u>see page 147</u> – 2002 Potential Fractured Power Suppl <mark>y Wires</mark>	ctured	(4) + (0) = (4)(advisory-related subset)	Including Normal Battery Depletion	9.99 +0.0/-0.1	99.7 +0.1/-0.2	99.0 +0.2/-0.3	96.8 +0.4/-0.5	91.2 +0.7/-0.8	72.9 +1.4/-1.4	41.5 3 +2.8/-2.8 a	31.8 +3.5/-3.5 at 88 mo				
Kappa 700 SR	KSR701, KSR703, KSR706	Feb-99	55,000	19,000	886	6 + + 9	Excluding Normal Battery Depletion	100.0 +0.0/-0.0	100.0++0.0/-0.0	100.0++0.0/-0.0+	100.0 +0.0/-0.0	100.00 +0.0/-0.0+	100.00 +0.0/-0.0+	100.00 +0.0/-0.0+	100.0 +0.0/-0.0	100.0 +0.0/-0.0 at 103 mo			
							Including Normal Battery Depletion	9.99.9 +0.0/-0.0	9.99 + 0.0/-0.0+	99.6 +0.1/-0.1	99.0 +0.1/-0.1	97.8 +0.2/-0.2	95.4 8 +0.3/-0.3 +	89.8 +0.6/-0.6	76.3 +1.4/-1.5	71.6 +2.3/-2.5 at 103 mo			
Kappa 700 VDD	KVDD701	Jan-99	2,000	400	73	3 + 0 = 3	Excluding Normal Battery Depletion	99.9 +0.1/-0.4	99.9 +0.1/-0.4	99.9 +0.1/-0.4 +	99.8 +0.1/-0.5	99.8 +0.1/-0.5	99.7 +0.2/-0.6	99.7 +0.2/-0.6	99.7 +0.2/-0.6 at 89 mo				
	Advisorie: Power Sup	s: see page oply Wires	<u>: 147</u> – 200:	Advisories: <u>see page 147</u> – 2002 Potential Fractured Power Supply Wires	ctured	(3) + (0) = (3)	Including Normal Battery Depletion	99.7 +0.2/-0.4	99.7 +0.2/-0.4	99.4 +0.3/-0.6	98.9 +0.5/-0.8	98.7 +0.5/-0.8	95.9 +1.1/-1.5	77.7 +3.5/-4.1 a	70.6 +4.7/-5.3 at 89 mo				

IPG Implantable Pulse Generators, continued

Device Survival Summary continued

Ddl

	impiantat	JIEI	l l	Jeriera	lors, co	onunue	l		I		I		9	0 ²	00	0
		16 yr											99.6 +0.1/-0.1 at 209 mo	51.6 +2.0/-2.0 at 209 mo	99.9 +0.0/-0.0 at 189 mo	70.2 +1.2/-1.3 at 189 mo
		14 yr											99.6 +0.1/-0.1	64.2 +0.9/-0.9	9.99 +0.0/-0.0	7 4.9 +0.9/-0.9
		12 yr											99.6 +0.1/-0.1	72.9 +0.7/-0.7	9.99 +0.0/-0.0+	83.0 +0.6/-0.6
		10 yr											9.66 +0.1/-0.1	81.4 +0.6/-0.6	9.99 +0.0/-0.0	89.1 +0.4/-0.4
		8 yr											99.6 +0.1/-0.1	90.6 +0.4/-0.4	9.99 +0.0/-0.0	94.8 +0.3/-0.3
		7 yr											99.6 +0.1/-0.1	94.7 +0.3/-0.3	9.99 +0.0/-0.0	97.2 +0.2/-0.2
		6 yr	100.0 +0.0/-0.0 at 63 mo	99.7 +0.2/-0.4 at 63 mo	100.0 +0.0/-0.0 at 71mo	99.0 +0.1/-0.2 at 71mo	99.9 +0.0/-0.1 at 69 mo	98.6 +0.3/-0.3 at 69 mo	100.0 +0.0/-0.0 at 61 mo	100.0 +0.0/-0.0 at 61 mo	100.0 +0.0/-0.1 at 68 mo	94.3 +0.8/-1.0 at 68 mo	99.7 1.0-/l.0+	97.2 +0.2/-0.2	9.99 +0.0/-0.0	98.1 +0.1/-0.1
		5 yr	100.0 +0.0/-0.0	99.7 +0.2/-0.4	100.0 +0.0/-0.0	99.2 +0.1/-0.1	9.99 +0.0/-0.1	98.8 +0.2/-0.3	100.0 +0.0/-0.0	100.0 +0.0/-0.0	100.0 +0.0/-0.1	95.6 +0.6/-0.6	99.7 +0.0/-0.1	98.3 +0.1/-0.1	9.99 +0.0/-0.0	98.8 +0.1/-0.1
ility (%)		4 yr	100.0 +0.0/-0.0	99.8 +0.1/-0.2	100.0 +0.0/-0.0	99.6 +0.0/-0.1	100.0 +0.0/-0.1	99.4 +0.1/-0.1	100.0 +0.0/-0.0	100.0 +0.0/-0.0	100.0 +0.0/-0.1	98.1 +0.3/-0.3	9.08.00+ 0.0/0.0+	98.9 +0.1/-0.1	9.99 +0.0/-0.0	99.2 +0.1/-0.1
Device Survival Probability (%)	plant	3 yr	100.0 +0.0/-0.0	99.8 +0.1/-0.2	100.0 +0.0/-0.0	99.8 +0.0/-0.0	100.0 +0.0/-0.0	99.8 +0.1/-0.1	100.0 +0.0/-0.0	100.0 +0.0/-0.0	100.0 +0.0/-0.1	99.5 +0.1/-0.2	9.8 0.0-/0.0+	99.4 +0.1/-0.1	100.0 +0.0/-0.0	99.5 +0.1/-0.1
Surviva	Years After Implant	2 yr	100.0 +0.0/-0.0	99.9 +0.1/-0.2	100.0 +0.0/-0.0	100.0 +0.0/-0.0	100.0 +0.0/-0.0	9.99 0.0-/0.0+	100.0 +0.0/-0.0	100.0 +0.0/-0.0	100.0 +0.0/-0.0	99.8 +0.1/-0.1	9.9- 0.0-/0.0+	99.7 +0.0/-0.1	100.0 +0.0/-0.0	99.7 +0.0/-0.0
Device	Years /	1 yr	100.0 +0.0/-0.0	100.0 +0.0/-0.0	100.0 +0.0/-0.0	100.0 +0.0/-0.0	100.0 +0.0/-0.0	100.0 +0.0/-0.0	100.0 +0.0/-0.0	100.0 +0.0/-0.0	100.0 +0.0/-0.0	100.0 +0.0/-0.1	9.9 0.0-/0.0+	9.99.9 +0.0/-0.0	100.0 +0.0/-0.0	9.99 .0 +0.0/-0.0
			Excluding Normal Battery Depletion	Including Normal Battery Depletion	Excluding Normal Battery Depletion	Including Normal Battery Depletion	Excluding Normal Battery Depletion	Including Normal Battery Depletion	Excluding Normal Battery Depletion	Including Normal Battery Depletion	Excluding Normal Battery Depletion	Including Normal Battery Depletion	Excluding Normal Battery Depletion	Including Normal Battery Depletion	Excluding Normal Battery Depletion	Including Normal Battery Depletion
	le	stoT	0		23		0		0		-		143		36	
su	ction Not pesimorqu		Ш		Ш		Ш		Ш		Ш					
Malfunctior	rapy ction Not		0 +		+		∞ +		0 +		0 +					
Malf	rapy Function rapy Function		0		12		2		0		-				1	
	mal Battery Metions		4		161		57		0		139		2,706		1,842	
	bətem ive US stnsl	t>Α	3,000		81,000		21,000		400		9,000		2,000		5,000	
	istered mplants	। SN ^{ଥି} ବଧ୍ଧ	4,000		125,000		37,000		1,000		16,000		57,000		59,000	
	Narket sase		Jan-02		Jan-02		Jan-02		Jan-02		Jan-02		Aug-89		Nov-91	
	jel nber	nuN Moo	KDR801, KDR803		KDR901, KDR903, KDR906		KSR901, KSR903, KSR906		KVDD901		KDR921		8416, 8417, 8417M, 8418, 8419		8424, 8426, 8427	
1	۱	шsЯ	Kappa 800 DR		Kappa 900 DR		Kappa 900 SR		Kappa 900 VDD		Kappa 920 DR		Legend		LegendII	

IPG Implantable Pulse Generators, continued

				•		Malfunction	ctions			Device	Device Survival Probability (%)	Probab	ility (%)								
۲ü	lel Iber	Aarket Aarket	istered stnslqm	bətem Və US stns	mal Battery letions	rapy Function Ipromised	rapy toN noit: besimorqi	η	<u> </u>	Years A	Years After Implant	plant									
тsЯ	boM nuN	elea N SU	I SU	itoA			unj	stoT		1 yr	2 yr	3 yr	4 yr	5 yr	6 yr	7 yr	8 yr	10 yr	12 yr	14 yr	16 yr
Minix/ Minix ST	8330, 8331, 8331M, 8331M, 8340, 8341, 8341, 8342	Dec-89	58,000	4,000	1,485	T	1	49	Excluding Normal Battery Depletion	0.0	9.99 0.0-/0.0+	9.99 0.0-/0.0+	9.99 0.0-/0.0+	9.99 0.0-/0.0+	9.99 0.0-/0.0+	9.9 0.0-/0.0+	9.99 0.0-/0.0+	9.99 0.0-/0.0+	9.99 0.0-/0.0+	9.99 0.0-/0.0+	99.9 +0.0/-0.0 at 222 mo
	Advisories: Restoration		<mark>e 152</mark> - 1991 anent Setti	see page 152 - 1991 Potential Delayed of Permanent Settings	layed	I.	I	I	Including Normal Battery Depletion	9.99 +0.0/-0.0	99.7 +0.0/-0.0+	99.5 +0.1/-0.1	99.2 +0.1/-0.1	98.7 +0.1/-0.1	97.7 +0.2/-0.2	95.2 +0.3/-0.3	91.9 +0.4/-0.4	87.2 +0.5/-0.5	83.9 +0.6/-0.6	81.2 +0.7/-0.7	75.8 +1.5/-1.6 at 222 mo
Minuet	7107, 7108	Mar-92	17,000	2,000	609	1	I	4	Excluding Normal Battery Depletion	100.0 +0.0/-0.0	100.0	100.0 +0.0/-0.0	100.00 +0.0/-0.1	100.0+0.1	100.0 +0.0/-0.1	100.0 +0.0/-0.1	100.00+0.01	100.0 +0.0/-0.1	100.0 +0.0/-0.1	100.0 +0.0/-0.1	100.0 +0.0/-0.1 at 184 mo
									Including Normal Battery Depletion	100.0 +0.0/-0.0	100.0+0.0	99.8 +0.1/-0.1	99.5 +0.1/-0.1	98.9 +0.2/-0.2	98.2 +0.2/-0.3	96.9 +0.3/-0.4	94.7 +0.5/-0.5	89.3 +0.7/-0.8	82.6 +1.0/-1.1	73.4 +1.5/-1.6	69.3 +2.1/-2.3 at 184 mo
Preva DR	7088, 7089	Jul-96	26,000	5,000	941	1	I	3	Excluding Normal Battery Depletion	100.0 +0.0/-0.0	100.0++0.0/-0.0	100.0 +0.0/-0.0	100.0 +0.0/-0.0	100.0+0.0	100.0	100.0 +0.0/-0.0	100.0++0.0/-0.0	100.0 +0.0/-0.0	100.0 +0.0/-0.0 at 134 mo		
									Including Normal Battery Depletion	100.0 +0.0/-0.0	99.9 +0.0/-0.1	99.7 +0.1/-0.1	99.5 +0.1/-0.1	98.9 +0.1/-0.2	98.0 +0.2/-0.2	96.6 +0.3/-0.3	93.2 +0.4/-0.5	75.8 +1.1/-1.2	65.3 +2.1/-2.2 at 134 mo		
Preva SR	8088, 8089	Jul-96	18,000	3,000	399	I	1	-	Excluding Normal Battery Depletion	100.0 +0.0/-0.0	100.0+0.0	100.0 +0.0/-0.0	100.0 +0.0/-0.1	100.0++0.0/-0.1	100.0++0.0/-0.1	100.0 +0.0/-0.1	100.0++0.0/-0.1	100.0 +0.0/-0.1	100.0 +0.0/-0.1 at 132 mo		
									Including Normal Battery Depletion	99.9 +0.0/-0.1	99.9 +0.0/-0.1	99.6 +0.1/-0.1	99.2 +0.1/-0.2	98.5 +0.2/-0.3	97.5 +0.3/-0.4	95.2 +0.5/-0.5	92.9 +0.6/-0.7	80.8 +1.5/-1.6	74.1 +2.5/-2.8 at 132 mo		
Prevail S	8085, 8086	Oct-95	4,000	1,000	22	I	1	-	Excluding Normal Battery Depletion	100.0 +0.0/-0.0	100.0+0.0	100.0 +0.0/-0.0	100.0 +0.0/-0.0	99.9 +0.1/-0.4	99.9 +0.1/-0.4	99.9 +0.1/-0.4	99.9 +0.1/-0.4	99.9 +0.1/-0.4	99.9 +0.1/-0.4 at 130 mo		
									Including Normal Battery Depletion	99.9 +0.1/-0.2	99.9 +0.1/-0.2	99.8 +0.1/-0.2	99.8 +0.1/-0.2	99.2 +0.3/-0.6	99.1 +0.4/-0.6	98.5 +0.6/-0.9	97.5 +0.8/-1.1	94.8 +1.4/-1.9	94.8 +1.4/-1.9 at 130 mo		
Prodigy D	7864, 7865, 7866	Oct-95	3,000	500	93	I	I	0	Excluding Normal Battery Depletion	100.0 +0.0/-0.0	100.0+0.0/-0.0	100.0 +0.0/-0.0	100.0 +0.0/-0.0	100.0+0.0/-0.0	100.0+0.0/-0.0	100.0 +0.0/-0.0	100.0+0.0/-0.0	100.0 +0.0/-0.0	100.0 +0.0/-0.0 at 131 mo		
									Including Normal Battery Depletion	99.9 +0.1/-0.2	99.7 +0.2/-0.3	99.4 +0.3/-0.4	98.8 +0.4/-0.6	98.6 +0.4/-0.6	97.8 +0.6/-0.8	97.1 +0.7/-1.0	96.0 +0.9/-1.2	80.7 +2.8/-3.2	72.0 +4.2/-4.8 at 131 mo		
Prodigy DR	7860, 7861, 7862	Oct-95	38,000	8,000	1,321	I	I	F	Excluding Normal Battery Depletion	100.0 +0.0/-0.0	100.0 +0.0/-0.0	100.0 +0.0/-0.0	100.0 +0.0/-0.0	100.0 +0.0/-0.0	100.0+0.0/-0.0	100.0 +0.0/-0.0	100.0 +0.0/-0.0	100.0 +0.0/-0.0	100.0 +0.0/-0.0 at 136 mo		
									Including Normal Battery Depletion	9.0-/0.0+	0.0-/0.0+	99.8 +0.0/-0.1	99.5 +0.1/-0.1	98.9 +0.1/-0.1	98.1 +0.2/-0.2	96.5 +0.2/-0.3	93.1 +0.4/-0.4	76.4 +1.0/-1.0	62.2 +2.3/-2.4 at 136 mo		

DGI

		12 yr 14 yr 16 yr	100.0 +0.0/-0.0 at 129 mo	89.3 +2.7/-3.5 at 129 mo	100.0 +0.0/-0.0 at 135 mo	74.0 +2.2/-2.4 at 135 mo										
		10 yr	100.0 +0.0/-0.0	91.0 +2.3/-3.1	100.0 +0.0/-0.0	81.9 +1.3/-1.4								9.0		
		8 yr	100.0 +0.0/-0.0	97.3 +1.0/-1.5	100.0 +0.0/-0.0	93.3 + +0.5/-0.6					0		1 100.0 +0.0/-0.1 at 95 mo	97.9 +0.5/-0. at 95 m	99.9 +0.0/-0.1 at 94 mo	
		7 yr	100.0 +0.0/-0.0	7 98.9 +0.5/-0.9	0 +0.0/-0.0	95.9 +0.4/-0.4					0 100.0 +0.0/-0.0 at 79 mo	97.1 +1.7/-4.0 at 79 mo	100.0 +0.0/-0.1	98.4 +0.3/-0.4	9.99 +0.0/-0.1	
		6 yr		7 99.2 +0.4/-0.7	0 +0.0/-0.0	2 97.3 +0.3/-0.3					0 +0.0/-0.0	98.6 +0.9/-2.6	100.0 +0.0/-0.1	99.2 +0.2/-0.3	99.9 +0.0/-0.1	
(9		5 yr	100.0 +0.0/-0.0	7 99.2 +0.4/-0.7	100.0 +0.0/-0.0	98.3 +0.2/-0.2					0 +0.0/-0.0	98.6 +0.9/-2.6	100.0 +0.0/-0.1	99.6 +0.1/-0.2	99.9 1 +0.0/-0.1	1
Device Survival Probability (%)		4 yr	.0 +0.0/-0.0	.4 99.2 +0.4/-0.7	0 +0.0/-0.0	99.0 +0.2/-0.2					.0 +0.0/-0.0	99.5 + 0.3/-1.4	.0 +0.0/-0.0	99.8 1.0-/1.0+	.0 +0.0/-0.1	-
val Prob	mplant	3 yr	.0 +0.0/-0.0	3 +0.2/-0.4	0 +0.0/-0.0	1 99.4 +0.1/-0.1	0.0	0.0	0.0	0.0	.0 +0.0/-0.0	.0 99.5 +0.3/-1.4	.0 +0.0/-0.0	1.0-/0.0+	.0 +0.0/-0.0	:
ce Surviv	Years After Implant	2 yr	100.0 +0.0/-0.0	99.9 +0.1/-0.3	100.0 +0.0/-0.0	1.0-/1.0+	100.0 +0.0/-0.0 at 14 mo	.0 +0.0/-0.0 at 14 mo	100.0 +0.0/-0.0 at 14 mo	100.0 +0.0/-0.0 at 14 mo	100.0 +0.0/-0.0	100.0	0 +0.0/-0.0	0.0-/0.0+ 0.	0 100.0 +0.0/-0.0	0
Devid	Years	1 yr	100.0 +0.0/-0.0	99.9 +0.1/-0.3	t 100.0 +0.0/-0.0	99.8 +0.0/-0.1	100.0 +0.0/-0.0	100.0 +0.0/-0.0	100.0 +0.0/-0.0	100.0 +0.0/-0.0	100.0 +0.0/-0.0	100.0 +0.0/-0.0	100.0 +0.0/-0.0	100.0 +0.0/-0.0	100.0 +0.0/-0.0	
			Excluding Normal Battery Depletion	Including Normal Battery Depletion	Excluding Normal Battery Depletion	Including Normal Battery Depletion	Excluding NormalBattery Depletion	Including Normal Battery Depletion	Excluding Normal Battery Depletion	Including Normal Battery Depletion	Excluding Normal Battery Depletion	Including Normal Battery Depletion	Excluding Normal Battery Depletion	Including Normal Battery Depletion	Excluding Normal Battery Depletion	-
	le	toT	0		Ŋ		0		0		0	= (0) subset)	4	= (1) subset)	ŝ	
Ictions	rapy ction Not npromised	unj	I		1		0		" 0		" 0	(0) related	-	(0) related	" 0	:
Malfunction	rapy Function ppromised	uo⊃ əq⊥	I		1		+		+		+	(0) + (advisory	+ ~	(1) + (advisory	+ ~	:
5	mal Battery Jetions		26		484		0		0		4	paration	39	paration	21	
	bətsm SU svi stnsi	ţ>Α	400		4,000		18,000		11,000		200	Advisories: <u>see page 145</u> – 2005 Potential Separation of Interconnect Wires	7,000	Advisories: <u>see page 145</u> – 2005 Potential Separation of Interconnect Wires	4,000	
5	istered mplants	। SN ଞ୍ଚିଅ	2,000		22,000		20,000		12,000		1,000	145 – 2005 25	16,000	145 – 2005 SS	12,000	1000 111
	Narket 235e		Oct-95		Oct-95		Jul-06		Jul-06		Aug-99	Advisories: <u>see page 1</u> 4 of Interconnect Wires	Aug-99	Advisories: <u>see page 1</u> 4 of Interconnect Wires	Sep-99	2005 Print P
	lel nber	ooM nuN	8164, 8165, 8166		8158, 8160, 8161, 8162		SEDR01, SED01		SESRO1, SES01		SS103, SS106	Advisori of Interc	SDR203	Advisori of Interc	SSR203	•
	٨li	гат	Prodigy S		Prodigy SR		Sensia DR		Sensia SR		Sigma 100 S		Sigma 200 DR		Sigma 200 SR	

Device Survival Summary continued

continued

continued
Summary
rvival
Sur
evice

	impiantai				itors, c						I		1		I	
		16 yr														
		14 yr														
		12 yr							100.0 +0.0/-0.2 at 136 mo	65.1 +4.2/-4.6 at 136 mo	99.9 +0.0/-0.0 at 141 mo	49.2 +1.2/-1.2 at 141 mo			100.0 +0.0/-0.3 at 138 mo	87.9 +2.3/-2.8 at 138 mo
		10 yr	99.9 +0.0/-0.0 at 98 mo	98.6 +0.2/-0.2					100.0 +0.0/-0.2	79.8 +2.5/-2.8	9.9 +0.0/-0.0	7 3.9 +05/-0.5	99.9 +0.1/-0.2 at 115 mo	54.5 +3.9/-4.0 at 115 mo	100.0 +0.0/-0.3	91.9 +1.6/-1.9
		8 yr	9.99 +0.0/-0.0+	98.6 +0.2/-0.2	9.99 +0.0/-0.0+	98.1 +0.5/-0.6			100.0 +0.0/-0.2	93.9 +1.1/-1.4	9.0-/0.0+	93.1 +0.2/-0.2	99.9 +0.1/-0.2	76.5 +2.2/-2.4	100.0 +0.0/-0.3	96.1 +0.9/-1.2
		7 yr	9.99 +0.0/-0.0+	<mark>98.6</mark> +0.2/-0.2	9.99 +0.0/-0.0	98.6 +0.3/-0.3	100.0 +0.0/-0.0 at 77 mo	100.0 +0.0/-0.0 at 77 mo	100.0 +0.0/-0.2	96.3 +0.8/-1.0	9.99 +0.0/-0.0+	96.6 +0.1/-0.1	99.9 +0.1/-0.2	88.8 +1.4/-1.6	100.0 +0.0/-0.3	97.5 +0.7/-0.9
		6 yr	9.09 +0.0/-0.0	99.2 +0.1/-0.1	9.99 +0.0/-0.0	99.1 +0.2/-0.2	100.0 +0.0/-0.0	100.0 +0.0/-0.0	100.0 +0.0/-0.2	97.6 +0.6/-0.8	9.99 +0.0/-0.0+	98.2 +0.1/-0.1	99.9 +0.1/-0.2	94.1 +1.0/-1.1	100.0 +0.0/-0.3	98.1 +0.5/-0.8
		5 yr	9.99 +0.0/-0.0+	99.5 +0.1/-0.1	9.99 +0.0/-0.0	99.5 +0.1/-0.1	100.0 +0.0/-0.0	100.0 +0.0/-0.0	100.0 +0.0/-0.2	99.1 +0.3/-0.5	100.0 +0.0/-0.0	99.0 +0.1/-0.1	99.9 +0.1/-0.2	97.0 +0.6/-0.8	100.0 +0.0/-0.3	98.9 +0.4/-0.6
ility (%)		4 yr	9.99 +0.0/-0.0+	99.7 +0.0/-0.0	100.0 +0.0/-0.0	99.7 +0.1/-0.1	100.0 +0.0/-0.0	100.0 +0.0/-0.0	100.0 +0.0/-0.2	99.5 +0.2/-0.4	100.0 +0.0/-0.0	99.5 +0.0/-0.1	99.9 +0.1/-0.2	9 8.6 +0.4/-0.6	100.0 +0.0/-0.3	99.2 +0.3/-0.5
Survival Probability (%)	plant	3 yr	100.0 +0.0/-0.0	9.99 .0+0.0	100.0 +0.0/-0.0	9.99 +0.0-/0.0+	100.0 +0.0/-0.0	100.0 +0.0/-0.0	100.0 +0.0/-0.2	99.6 +0.2/-0.3	100.0 +0.0/-0.0	99.7 +0.0/-0.0	99.9 +0.1/-0.2	99.5 +0.2/-0.3	100.0 +0.0/-0.0	99.7 +0.1/-0.3
Surviva	Years After Implant	2 yr	100.0 +0.0/-0.0	9.99 .0+0.0	100.0 +0.0/-0.0	9.99.9 +0.0/-0.0+	100.0 +0.0/-0.0	100.0 +0.0/-0.0	100.0 +0.0/-0.2	99.9 +0.1/-0.2	100.0 +0.0/-0.0	9.99 +0.0/-0.0	100.0 +0.0/-0.0	99.8 +0.1/-0.2	100.0 +0.0/-0.0	99.8 +0.1/-0.3
Device	Years /	1 yr	100.0 +0.0/-0.0	100.0 +0.0/-0.0	100.0 +0.0/-0.0	100.0 +0.0/-0.0	100.0 +0.0/-0.0	100.0 +0.0/-0.0	100.0 +0.0/-0.0	100.0 +0.0/-0.0	100.0 +0.0/-0.0	100.0 +0.0/-0.0	100.0 +0.0/-0.0	100.0 +0.0/-0.0	100.0 +0.0/-0.0	99.9 +0.0/-0.2
			825	60 거 도	ᅇᆞᅮᄃ	50 > F		50 > F		2 × 00						bo > E
			Excluding Normal Battery Depletion	Including Normal Battery Depletion	Excluding Normal Battery Depletion	Including Normal Battery Depletion	Excluding Normal Battery Depletion	Including Normal Battery Depletion	Excluding Normal Battery Depletion	Including Normal Battery Depletion	Excluding Normal Battery Depletion	Including Normal Battery Depletion	Excluding Normal Battery Depletion	Including Normal Battery Depletion	Excluding Normal Battery Depletion	Including Normal Battery Depletion
	Įt	stoT	72 Excludir NormalBatte Depleti	~	13 Excludin Normal Batter Depletio		0 Excluding Normal Battery Depletion	Norm] Excluding Normal Battery Depletion	Including Normal Battery Depletio	50 Excluding Normal Battery Depletion	Including Normal Battery Depletior	3 Excluding NormalBattery Depletior	Including Normal Battery Depletior	1 Excluding Normal Batter Depletio	Includin Normal Batter Depletio
tions	bəsimorqr	noD	Norm	= (29) ed subset)	Norm	= (5) ed subset)	Norm	= (0) ed subset)	- 1 Excluding Normal Battery Depletion	Including Normal Battery Depletion	Norm	Including Normal Battery Depletior	Norm	Including Normal Battery Depletion	- 1 Excluding Normal Batter Depletion	Includin Normal Batter Depletio
		no onu 9dT 9dT	= 72 Norm	= (29) ed subset)	= 13 Norm	= (5) ed subset)	= 0 Norm	= (0) ed subset)	— – 1 Excluding Normal Batter, Depletio	Including Normal Battery Depletio	Norm	Including Normal Battery Depletion	Norm	Including Normal Battery Depletion	— —] Excluding Normal Batter Depletion	Includin Normal Batter Depletio
Malfunctions	ıpromised rapy ortom Not apromised	no pon a A T a d a d a d a d	+ 10 = 72 Norm	<pre>(28) + (1) = (29) (advisory-related subset)</pre>	+ 1 = 13 Norm	(5) + (0) = (5)(advisory-related subset)	+ 0 = 0 Norm	(0) + (0) = (0)(advisory-related subset)	133 – – 1 Excluding Normal Batter, Depletio	Including Normal Battery Depletio	– 50 Norm	Including Normal Battery Depletion	Norm	Including NormalBattery Depletion	– –	Includin Normal Batter Depletio
	ive US lants mal Battery letions rapy Function ppromised rapy rapy rapy	Acti Iqml Nori Dep The The The The Con	129 62 + 10 = 72 Norm	<pre>(28) + (1) = (29) (advisory-related subset)</pre>	65 12 + 1 = 13 Norr	(5) + (0) = (5)(advisory-related subset)	0 + 0 = 0 Norm	(0) + (0) = (0)(advisory-related subset)	133 – – 1 Norr	Including Normal Battery Depletio	5,963 – – 50 Norm	Including Normal Battery Depletion	233 – – 3 Norm	Including NormalBattery Depletion	52 – – 1 Norr	Includin Normal Batter Depletio
	Mated Isnts Isnts Isnts Isntery Ietions Ietions Ietion Ietion Ietion Ietion Ietion Ietion Ietion Ietion Ietion Ietion Ietion Ietion Ietion Ietion Ietion Ietion Ietion Ietion Ietions	Estii Acti Imp Non Dep The Con The Con	60,000 129 62 + 10 = 72 Norm	<pre>(28) + (1) = (29) (advisory-related subset)</pre>	24,000 65 12 + 1 = 13 Norm	(5) + (0) = (5)(advisory-related subset)	300 0 + 0 = 0 Norm	(0) + (0) = (0)(advisory-related subset)	500 133 – – 1 Norr	Including Normal Battery Depletio	17,000 5,963 – – 50 Norm	Including NormalBattery Depletion	300 233 — — 3 _{Мотт}	Including Normal Battery Depletion	1,000 52 – – 1 Norm	Includin Normal Batter Depletio
	ive US lants mal Battery letions rapy Function ppromised rapy rapy rapy	USII Estin Mon Dep The Con The Con	106,000 60,000 129 62 + 10 = 72 Norm	<pre>(28) + (1) = (29) (advisory-related subset)</pre>	53,000 24,000 65 12 + 1 = 13 Norm	(5) + (0) = (5)(advisory-related subset)	1,000 300 0 + 0 = 0 Norm	(0) + (0) = (0)(advisory-related subset)	3,000 500 133 – – 1 Norm	Including Normal Battery Depletion	122,000 17,000 5,963 – – 50 Norm	Including Normal Battery Depletion	4,000 300 233 – – 3 _{Мотт}	Including NormalBattery Depletion	4,000 1,000 52 1 Norm	Includin Normal Batter Depletio
	mplants mated ive US mal Battery letions letions repy repy repy repy repy rep	Rele Reg Lon Don Don Don Don The Con The Con	Aug-99 106,000 60,000 129 62 + 10 = 72 Norm	<pre>(28) + (1) = (29) (advisory-related subset)</pre>	24,000 65 12 + 1 = 13 Norm	(5) + (0) = (5)(advisory-related subset)	Sep-99 1,000 300 0 0 + 0 = 0 Norm	(0) + (0) = (0)(advisory-related subset)	500 133 – – 1 Norr	Including Normal Battery Depletion	17,000 5,963 – – 50 Norm	Including Normal Battery Depletion	300 233 — — 3 _{Мотт}	Including NormalBatter Depletion	1,000 52 – – 1 Norm	Includin NormalBatter Depletio
	nber Market Market mplants mal Battery Me US Me US Me US Merked Merions Merion	US N Reg Breis Reg Acti Dep The Com	106,000 60,000 129 62 + 10 = 72 Norm	= (29) ed subset)	53,000 24,000 65 12 + 1 = 13 Norm	= (5) ed subset)	1,000 300 0 + 0 = 0 Norm	= (0) ed subset)	3,000 500 133 – – 1 Norm	Including Normal Battery Depletion	122,000 17,000 5,963 – – 50 Norm	Including Normal Battery Depletion	4,000 300 233 – – 3 _{Мотт}	Including NormalBattery Depletion	4,000 1,000 52 1 Norm	Includin Normal Batter Depletio

DGI

			16 yr						
			14 yr 1						
			12 yr	100.0 +0.0/-0.0 at 142 mo	71.2 +1.3/-1.4 at 142 mo	100.0 +0.0/-0.0 at 135 mo	83.0 +2.8/-3.3 at 135 mo		
			10 yr	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	100.0 99.9 99.7 99.4 98.9 98.2 97.0 70.2 70.3 83.3 71.2 10.2/-0.3 +0.2/-0.3 10.7/-0.7 11.3/-1.4 13.7/-1.4 13.7/-1.4 10.2/-0.2 10.3/-0.3 10.7/-0.7 11.3/-1.4 11.3/-1.4 10.2/-0.5 10.3/-0.5	100.00 10	99.6 99.5 99.5 99.2 99.2 99.1 98.4 91.0 +0.2/-0.3 +0.2/-0.3 +0.2/-0.4 +0.3/-0.4 +0.3/-0.4 +0.3/-0.6 +1.5/-1.8		
			8 yr	100.0 +0.0/-0.0	94.7 +0.3/-0.3	100.0 +0.0/-0.0	98.4 +0.4/-0.6	4 +0.4/-0.6	
			7 yr	100.0 +0.0/-0.0	97.0 +0.2/-0.1	100.0 +0.0/-0.0	99.1 + 0.3/-0.4		
			6 yr	100.0 +0.0/-0.0	98.2 +0.2/-0.1	0 +0.0/-0.0	99.2 + +0.3/-0.4		
	()		5 yr	0 +0.0/-0.	98.9 +0.1/-0.1	0 +0.0/-0.	3 +0.2/-0.		
	ability (9		4 yr	0 +0.0/-0.	99.4 +0.1/-0.1	0 +0.0/-0.	.3 +0.2/-0.		
	/al Proba	mplant	3 yr	0 +0.0/-0.	0 +0.1/-0.1	0 +0.0/-0.	2 99.6 +0.2/-0.	0	0
	Device Survival Probability (%)	Years After Implant	2 yr	100.0 +0.0/-0.	0 +0.0/-0.	0 +0.0/-0.	99.8 +0.1/-0.2	100.0 100.0 +0.0/-0.0 +0.0/-0.0 at 14 mo	100.0 +0.0/-0.0 +0.0/-0.0 at 14 mo
	Devid	Years	1 yr				99.9 / +0.1/-0.1		
				Excluding Normal Battery Depletion	Including Normal Battery Depletion	Excluding Normal Battery Depletion	Including Normal Battery Depletion		Including Normal Battery Depletion
				ž	ž	Ŷ	°N	Nor	Nor
		Įt	stoT	7 No	Ž	° N 0	No	0 Nor	N
	ictions	γوه۲ toN noi±: b∋simoזqr اا	no⊃		ž		S	0 0	Nor
pe	Malfunctions	ton Noit bəsimorqr	no⊃ onu∃ ∍dT	2	Ž	0	2	0	Nor
continued	Malfunctions	npromised rapy cfion Not basimorqr	no pon a A T no b a A T e q a d a d	۲ –	Ż	0	2	0 0 +	Nor
1mary continued	Malfunctions	letions rapy Function rapy rion Not tion Not ppromised	Acti Mori Dep The Con The Con		Ż	0	2	19,000 0 + 0 = 0	Nor
' al Summary continued	Malfunctions	Ve US lants mal Battery letions rapy Function ppromised rapy rapy rapy	USI Estin Acti Imp Dep The Con The Con	7 – – 7 7	Ż	8	2	0 0 + 0	Nor
e Survival Summary continued	Malfunctions	mplants mated be US lants mal Battery letions letions rapy rapy rapomised rapomised	Rege Estin DCI Dep The Con The Con	7,000 1,271 - 7	Ż	0 – – 0	2	19,000 0 + 0 = 0	Nor
Device Survival Summary continued	Malfunctions	nber Aarket mplants Market Market Jants Jants Jetions Jetions Ietions Tapy Tapy Tapy Tapy Tapy Tapy Tapy Tapy	US N Rele Reg DS I Dep The Con The Con	50,000 7,000 1,271 7	Ż	5,000 1,000 81 0	2	20,000 19,000 0 + 0 = 0	Nor

Reference Chart

The longevity estimates provided are mean values calculated for the parameters given. The longevity estimates shown here assume a lower rate of 60 ppm, 100% pacing, and pulse width of 0.4 ms unless noted otherwise. The actual longevity achieved for any device while implanted will depend on the actual programmed parameters and patient factors, and may differ significantly from these estimates. The elective replacement time is indicated via telemetry indication, and rate and mode change to 65 ppm and VVI respectively (VOO/65 with magnet), unless noted otherwise.

		Estimated Longevity			
Family	Model Number	Amplitude Setting	500 Lead Ω	1000 Lead Ω	Elective Replacement Indicators
Adapta DR	ADDR01, ADDR03, ADDR06, ADD01	Low 2.5 V (A, RV) Nominal 3.5 V (A, RV) High 5.0 V (A, RV)	7.4 6.0 4.5	8.2 7.3 6.0	**
Adapta DR	ADDRS1	Low 2.5 V (A, RV) Nominal 3.5 V (A, RV) High 5.0 V (A, RV)	5.5 4.3 3.2	6.1 5.4 4.4	**
Adapta DR	ADDRL1	Low 2.5 V (A, RV) Nominal 3.5 V (A, RV) High 5.0 V (A, RV)	9.1 7.4 5.4	10.1 9.0 7.3	**
Adapta SR	ADSR01, ADSR03, ADSR06	Low 2.5 V (RV) Nominal 3.5 V (RV) High 5.0 V (RV)	7.3 6.4 5.0	7.8 7.4 6.2	**
Adapta VDD	ADVDD01	Low 2.5 V (RV) Nominal 3.5 V (RV) High 5.0 V (RV)	6.2 5.5 4.4	6.5 6.2 5.4	**
AT500	AT501, 7253	Low 2.0 V (A, RV) Nominal 3.0 V (A, RV) High 5.0 V (A, RV)	7.7 5.8 3.7	8.3 7.0 5.2	Telemetry indication. Pacing mode and rate (magnet and non-magnet) as programmed.
EnPulse DR	E1DR01, E1DR03, E1DR06	Low 2.5 V (A, RV) Nominal 3.5 V (A, RV) High 5.0 V (A, RV)	7.5 6.2 4.4	8.5 7.6 5.9	**
EnPulse DR	EIDR21	Low 2.5 V (A, RV) Nominal 3.5 V (A, RV) High 5.0 V (A, RV)	5.4 4.3 3.0	6.0 5.4 4.2	**
EnPulse 2 DR	E2DR01, E2DR03, E2DR06	Low 2.5 V (A, RV) Nominal 3.5 V (A, RV) High 5.0 V (A, RV)	7.5 6.2 4.4	8.5 7.6 5.9	**
EnPulse 2 DR	E2DR21	Low 2.5 V (A, RV) Nominal 3.5 V (A, RV) High 5.0 V (A, RV)	5.4 4.3 3.0	6.0 5.4 4.2	**
EnPulse 2 DR	E2DR31, E2DR33	Low 2.5 V (A, RV) Nominal 3.5 V (A, RV) High 5.0 V (A, RV)	9.0 7.4 5.2	10.1 9.1 7.1	**
EnPulse 2 SR	E2SR01, E2SR03, E2SR06	Low 2.5 V (A, RV) Nominal 3.5 V (A, RV) High 5.0 V (A, RV)	7.2 6.3 4.8	7.7 7.3 6.1	**
EnPulse 2 VDD	E2VDD01	Low 2.5 V (RV) Nominal 3.5 V (RV) High 5.0 V (RV)	6.1 5.5 4.3	6.5 6.2 5.4	**
EnRhythm DR	P1501DR	Low 2.5 V (A, RV) Nominal 3.5 V (A, RV) High 5.0 V (A, RV)	10.6 8.0 5.4	12.3 10.3 7.8	**
Kappa 400 DR	KDR401, KDR403	Low 2.5 V (A, RV) Nominal 3.5 V (A, RV) High 5.0 V (A, RV)	7.8 6.4 5.1	8.5 7.5 6.5	**
Kappa 400 SR	KSR401, KSR403	Low 2.5 V (RV) Nominal 3.5 V (RV) High 5.0 V (RV)	7.9 6.9 5.8	8.4 7.7 7.0	**
Kappa 600 DR	KDR601, KDR603, KDR606	Low 2.5 V (A, RV) Nominal 3.5 V (A, RV) High 5.0 V (A, RV)	7.7 6.3 4.4	8.6 7.7 6.0	**
Kappa 600 DR	KDR651, KDR653	Low 2.5 V (A, RV) Nominal 3.5 V (A, RV) High 5.0 V (A, RV)	7.7 6.3 4.4	8.6 7.7 6.0	**

**Telemetry indication. Rate and mode change to 65 ppm and VVI respectively (VOO/65 with magnet).

continued

Reference Chart continued

		Estimated Long	evity		
Family	Model Number	Amplitude Setting	500 Lead Ω	1000 Lead Ω	Elective Replacement Indicators
Kappa 700 D	KD701, KD703, KD706	Low 2.5 V (A, RV) Nominal 3.5 V (A, RV) High 5.0 V (A, RV)	7.7 6.3 4.4	8.6 7.7 6.0	***
Kappa 700 DR	KDR701, KDR703, KDR706	Low 2.5 V (A, RV) Nominal 3.5 V (A, RV) High 5.0 V (A, RV)	7.7 6.3 4.4	8.6 7.7 6.0	**
Kappa 700 DR	KDR721	Low 2.5 V (A, RV) Nominal 3.5 V (A, RV) High 5.0 V (A, RV)	5.5 4.4 3.0	6.1 5.5 4.2	**
Kappa 700 SR	KSR701, KSR703, KSR706	Low 2.5 V (RV) Nominal 3.5 V (RV) High 5.0 V (RV)	7.4 6.5 4.9	7.9 7.5 6.2	**
Kappa 700 VDD	KVDD701	Low 2.5 V (RV) Nominal 3.5 V (RV) High 5.0 V (RV)	6.2 5.6 4.4	6.6 6.3 5.3	**
Kappa 800 DR	KDR801, KDR803	Low 2.5 V (A, RV) Nominal 3.5 V (A, RV) High 5.0 V (A, RV)	7.7 6.3 4.4	8.6 7.7 6.0	**
Kappa 900 DR	KDR901, KDR903, KDR906	Low 2.5 V (A, RV) Nominal 3.5 V (A, RV) High 5.0 V (A, RV)	7.7 6.3 4.4	8.6 7.7 6.0	**
Kappa 920 DR	KDR921	Low 2.5 V (A, RV) Nominal 3.5 V (A, RV) High 5.0 V (A, RV)	5.5 4.4 3.0	6.1 5.5 4.3	**
Kappa 900 SR	KSR901, KSR903, KSR906	Low 2.5 V (RV) Nominal 3.5 V (RV) High 5.0 V (RV)	7.3 6.4 4.9	7.9 7.4 6.1	**
Kappa 900 VDD	KVDD901	Low 2.5 V (RV) Nominal 3.5 V (RV) High 5.0 V (RV)	6.2 5.6 4.4	6.6 6.3 5.4	**
Legend	8416, 8417, 8417M, 8418, 8419	Low 2.5 V (RV) Nominal 3.3 V (RV) High 5.0 V (RV)	15.6 11.3 9.0	17.7 14.5 12.5	If programmed to non-rate responsive mode (e.g. VVI), rate decrease of 10% from programmed rate. Telemetry indication. If programmed to rate responsive mode (e.g. VVIR), rate change to 65 ppm and mode change to VVI. Telemetry indication.
Legend II	8424, 8426, 8427	Low 2.5 V, 0.36 ms (RV) Nominal 3.3 V, 0.36 ms (RV) High 5.0 V, 0.36 ms (RV)	12.9 9.4 7.8	14.5 11.8 10.5	If programmed to non-rate responsive mode (e.g. VVI), rate decrease of 10% from programmed rate. Telemetry indication. If programmed to rate responsive mode (e.g. VVIR), rate change to 65 ppm and mode change to VVI. Telemetry indication.
Minix	8340, 8341, 8341M, 8342	Low 2.5 V (RV) Nominal 3.3 V (RV) High 5.0 V (RV)	14.9 10.2 7.9	17.3 13.6 11.3	Telemetry indication. Rate decrease of 10% from programmed rate.
Minix ST	8330, 8331, 8331M	Low 2.5 V (RV) Nominal 5.0 V (RV) High 8.0 V (RV)	14.9 7.9 4.0	17.3 11.4 7.0	Telemetry indication. Rate decrease of 10% from programmed rate.
Minuet	7107, 7108	Low 2.5 V, 0.36 ms (A, RV) Nominal 4.0 V, 0.36 ms (A, RV) High 5.0 V, 0.36 ms (A, RV)	12.5 7.7 4.7	15.6 10.9 7.6	**
Preva DR	7088, 7089	Low 2.5 V (A, RV) Nominal 3.5 V (A, RV) High 5.0 V (A, RV)	9.9 7.4 5.4	11.3 9.4 7.5	**
Preva SR	8088, 8089	Low 2.5 V (RV) Nominal 3.5 V (RV) High 5.0 V (RV)	9.8 8.0 6.4	10.7 9.5 8.1	**
Prevail S	8085, 8086	Low 2.5 V, 0.42 ms (RV) Nominal 3.3 V, 0.42 ms (RV) High 5.0 V, 0.42 ms (RV)	16.4 10.8 8.6	19.4 14.4 12.4	Telemetry indication. Rate decrease of 10% from programmed rate.

**Telemetry indication. Rate and mode change to 65 ppm and VVI respectively (VOO/65 with magnet).

continued

Reference Chart continued

		Estimated L	ongevity		
Family	Model Number	Amplitude Setting	500 Lead Ω	1000 Lead Ω	Elective Replacement Indicators
Prodigy D	7864, 7865, 7866	Low 2.5 V (A, RV) Nominal 3.5 V (A, RV) High 5.0 V (A, RV)	10.0 7.4 5.4	11.4 9.5 7.6	**
Prodigy DR	7860, 7861, 7862	Low 2.5 V (A, RV) Nominal 3.5 V (A, RV) High 5.0 V (A, RV)	9.9 7.4 5.4	11.3 9.4 7.5	**
Prodigy S	8164, 8165, 8166	Low 2.5 V (RV) Nominal 3.5 V (RV) High 5.0 V (RV)	10.0 8.1 6.4	10.9 9.6 8.2	***
Prodigy SR	8158, 8160, 8161, 8162	Low 2.5 V (RV) Nominal 3.5 V (RV) High 5.0 V (RV)	9.8 8.0 6.4	10.7 9.5 8.1	**
Sensia DR	SEDR01, SED01	Low 2.5 V (A, RV) Nominal 3.5 V (A, RV) High 5.0 V (A, RV)	7.5 6.1 4.5	8.3 7.4 6.0	**
Sensia DR	SEDRLI	Low 2.5 V (A, RV) Nominal 3.5 V (A, RV) High 5.0 V (A, RV)	9.1 7.4 5.4	10.1 9.0 7.3	**
Sensia SR	SESR01, SES01	Low 2.5 V (RV) Nominal 3.5 V (RV) High 5.0 V (RV)	7.3 6.4 5.0	7.8 7.4 6.2	**
Sigma 100 S	SS103, SS106	Low 2.5 V (RV) Nominal 3.5 V (RV) High 5.0 V (RV)	10.1 8.2 6.4	11.1 9.8 8.4	**
Sigma 200 DR	SDR203	Low 2.5 V (A, RV) Nominal 3.5 V (A, RV) High 5.0 V (A, RV)	10.1 7.5 5.5	11.7 9.6 7.8	***
Sigma 200 SR	SSR203	Low 2.5 V (RV) Nominal 3.5 V (RV) High 5.0 V (RV)	10.1 8.2 6.4	11.1 9.8 8.4	**
Sigma 300 DR	SDR303, SDR306	Low 2.5 V (A, RV) Nominal 3.5 V (A, RV) High 5.0 V (A, RV)	10.1 7.5 5.5	11.7 9.6 7.8	**
Sigma 300 SR	SSR303, SSR306	Low 2.5 V (RV) Nominal 3.5 V (RV) High 5.0 V (RV)	10.1 8.2 6.4	11.1 9.8 8.4	**
Sigma 300 VDD	SVDD303	Low 2.5 V (RV) Nominal 3.5 V (RV) High 5.0 V (RV)	8.9 7.3 5.8	9.7 8.6 7.4	**
Thera-i D	7964i, 7965i, 7966i	Low 2.5 V (A, RV) Nominal 3.5 V (A, RV) High 5.0 V (A, RV)	10.0 7.4 5.4	11.4 9.5 7.6	**
Thera-i DR	7960i, 7961i, 7962i	Low 2.5 V (A, RV) Nominal 3.5 V (A, RV) High 5.0 V (A, RV)	9.9 7.4 5.4	11.3 9.4 7.5	**
Thera-i DR	7968i	Low 2.5 V (A, RV) Nominal 3.5 V (A, RV) High 5.0 V (A, RV)	7.2 5.4 3.9	8.3 6.9 5.5	**
Thera-i S	8964i, 8965i, 8966i	Low 2.5 V (RV) Nominal 3.5 V (RV) High 5.0 V (RV)	10.0 8.1 6.4	10.9 9.6 8.2	**
Thera-i SR	8960i, 8961i, 8962i	Low 2.5 V (RV) Nominal 3.5 V (RV) High 5.0 V (RV)	9.8 8.0 6.4	10.7 9.5 8.1	**
Thera-i VDD	8968i	Low 2.5 V (RV) Nominal 3.5 V (RV) High 5.0 V (RV)	11.5 9.6 7.7	12.4 11.1 9.7	**
Versa DR	VEDR01	Low 2.5 V (A, RV) Nominal 3.5 V (A, RV) High 5.0 V (A, RV)	7.5 6.1 4.5	8.3 7.4 6.0	**

**Telemetry indication. Rate and mode change to 65 ppm and VVI respectively (VOO/65 with magnet).

Method for Estimating Lead Performance

Medtronic CRDM has tracked lead survival for over 20 years with its multicenter, global chronic lead studies.

Leads Performance Analysis

Implanted leads operate in the challenging biochemical environment of the human body and the body's response to foreign objects. Implanted leads are also subject to mechanical stresses associated with heart motion, body motion, and patient anatomy.

In this environment, pacemaker and defibrillation leads cannot be expected to last forever. While IPGs and ICDs have a battery that will deplete after a predictable length of time, a lead's longevity cannot be predicted nor are there simple indicators that a lead is approaching the end of its service life. Therefore, regular monitoring while implanted, and evaluation of lead integrity upon IPG or ICD replacement, is necessary to determine if a lead may be approaching the end of its service life.

Returned Product Analysis Shortfalls

All leads and lead segments returned to Medtronic are analyzed to determine whether or not they meet performance limits established by Medtronic. Although returned product analyses are valuable for gaining insight into lead failure mechanisms, this data cannot be used by itself for determining the survival probability of leads because only a small fraction of leads are explanted and returned for analysis. Additionally, those leads which are returned cannot be assumed to be statistically representative of the performance of the total population for a given lead model. Partial or total lead extraction can result in significant damage to a lead, making a definitive analysis of a suspected failure and its cause impossible. Thus, lead survival probabilities are more appropriately determined through a clinical surveillance study. Although returned product analysis results are presented in this report, Medtronic tracks lead survival through its System Longevity Study.

System Longevity Study (SLS)

The SLS is a prospective, multicenter, global study designed to monitor the performance of marketreleased cardiac therapy products. Medtronic has been monitoring the performance of its cardiac therapy products for 25 years and has evaluated the performance of more than 75,000 leads, with ata reported from 14 countries on 4 continents. Patients are eligible for enrollment in the study if

- 1 They are within 6 months post-implant of a Medtronic market-released lead connected to a market-released CRT, ICD, or IPG device, and the lead is used for a pacing, sensing, or defibrillation application, or
- 2 They participated in a qualifying study of a market-released Medtronic cardiac therapy product; complete implant and follow-up data are available; and the data is appropriately and legally released for use in the study.

Lead Complications

The SLS complication criteria are defined below. These criteria do not, however, enable a lead integrity or "hardware" failure to be conclusively differentiated from other clinical events such as an undetected lead dislodgement, exit block, or concurrent pulse generator failure manifested as a sensing or capture problem.

A lead-related complication is considered to have occurred if at least one of the following clinical observations is reported and at least one of the following clinical actions is made 30 days or more after the implant.

Clinical Observations

- Failure to capture
- Failure to sense/undersensing
- Oversensing
- Abnormal pacing impedance (based on lead model, but normal range is typically 200-3000 ohms)
- Abnormal defibrillation impedance (based on lead model, but normal range is typically 20-200 ohms)
- Insulation breach, observed visually, that has degraded system performance
- Conductor fracture, observed visually or radiographically
- Extracardiac stimulation
- Cardiac perforation
- Lead dislodgement

continued

Method for Estimating Lead Performance continued

The Standard Actuarial Method is used to determine estimates of lead survival.

Clinical Actions

- Lead surgically abandoned/capped
- Lead electrically abandoned/capped
- Lead explanted
- Lead replaced
- Polarity reprogrammed (i.e., bipolar to unipolar; unipolar to bipolar)
- Lead use continued based on medical judgment despite a known clinical performance issue
- Other lead-related surgery performed (e.g., lead mechanical alteration or unsuccessful repositioning)

Note: Successful lead repositioning is not a qualifying action.

Methods

The performance of leads is expressed in terms of lead survival estimates, where "survival" refers to the function of the lead, not the survival of the patient. These survival estimates are intended to illustrate the probability that a lead will survive for a given number of years without a lead-related complication.

The survival estimates are determined from the analysis of the data collected through the SLS. These data are presented graphically and numerically.

The SLS protocol requires regular follow-up reporting on all leads actively followed in the study. Each study center must inform Medtronic whenever a lead complication has occurred or when a patient is no longer participating in the study. Under the study protocol, each lead is assumed to be normally active unless a lead-related complication is confirmed, the lead is abandoned or explanted, or the patient is no longer available for follow-up. The data analyses assume that the patient is still part of the study and there are no lead complications at the time of the report cutoff date unless specifically reported by the center.

Medtronic evaluates center compliance with study protocol through, at a minimum, annual clinical monitoring at each study site. Additionally, study center personnel must be trained in the study procedures prior to participating and they must adhere to the policies and procedures of their local ethics boards. Implant times are calculated from the implant date to the earlier of the complication date, out-of-service date (for example, patient leaves the study or the lead is no longer being used), or the cutoff date of the report. If a lead experiences more than one complication, the first is used to calculate survival time; although all complications associated with a lead are reported in PPR tables.

Of the several different statistical methods available for survival analysis, the Standard Actuarial Method, with suspensions assumed distributed across the intervals (Cutler-Ederer Method), is used to determine estimates of lead survival. This method is commonly used by medical researchers and clinicians.

On the following pages, each graph includes a survival curve where events include qualifying lead-related complications. This survival estimate is a good representation of the probability a lead will survive a period of time without a lead-related complication. For example, if a survival probability is 95% after 5 years of service, then the lead has a 5% chance of experiencing a lead-related complication in the first 5 years following implant.

Since the survival estimate can become very imprecise with small effective sample sizes, Medtronic truncates the survival curve when the number of leads entering an interval is less than 50 leads. When the number of leads entering an interval reaches 50, the next data point is added to the survival curve.

Although the report provides tabular data in one year intervals, the curves are actually computed and plotted using three-month intervals.

The data in the tables is rounded to the nearest tenth of one percent. Occasionally, a graph may show 100% survival, but have 1 or more complications. This occurs because even with the complications, the data rounds to 100%.

The survival curves are statistical estimates. As performance experience accumulates, the estimation improves. Confidence intervals are provided as a way to indicate the degree of certainty of the estimates. Greenwood's formula is used to calculate corresponding 95% confidence intervals for the standard errors, and the complementary log-log method is used to produce the confidence bounds.

continued

Method for Estimating Lead Performance continued

Medtronic urges all physicians to return explanted product and to notify Medtronic when a product is no longer in use, regardless of reason for explant or removal from use.

Sample Size and How the Population and Population Samples Are Defined

The population sample from which the survival estimates are derived is comprised of the patients successfully enrolled in the SLS as of the report cutoff date. The number of enrolled implants is listed for each model.

This sample based on SLS enrollments is considered to be representative of the worldwide population, including data from 14 countries on 4 continents, and therefore the survival estimates shown in this report should be representative of the performance worldwide of these models.

In general, a model or model family will be included in this report when more than 100 leads have been enrolled and no fewer than 50 leads followed for at least 6 months. Models will remain in the report as long as Medtronic estimates at least 500 leads remain active in the United States, based on estimated US implants.

Returned Product Analysis Results

Every lead or lead portion returned to Medtronic receives an analysis. Although the returned product analysis data is not used to generate the survival estimates, the data provides valuable insight into the causes of lead malfunction.

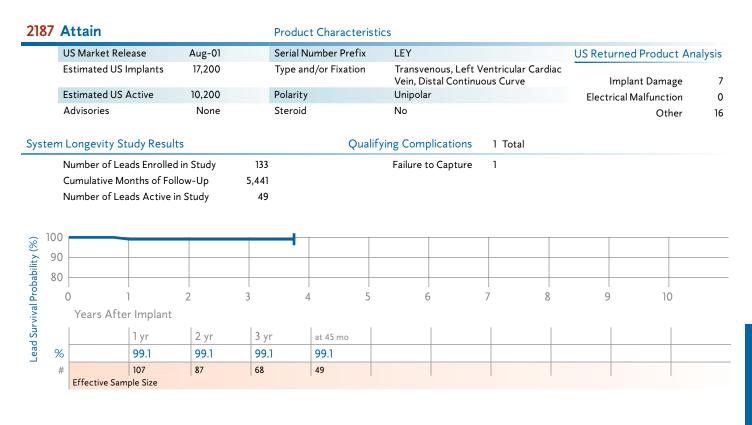
For reporting returned product analysis results, Medtronic CRDM considers a lead as having malfunctioned whenever the analysis shows that any parameter was outside the performance limits established by Medtronic while implanted and in service. To be considered a malfunction for returned product analysis reporting, the lead must have been returned to Medtronic and analyzed.

Lead malfunctions are divided into three categories: Implant Damage, Electrical, and Other. Typical examples of implant damage are stylet perforation, cut or torn insulation, bent or distorted conductors, over-retracted helixes, and conductor fracture due to overtorquing. An electrical malfunction is defined as a hardware malfunction resulting in a break in the insulation or a break in the conductor that could affect the electrical performance of the lead. A break in the insulation is defined as a breach allowing entry of body fluids, or inappropriate current flow between the conductors, or between the conductor and the body. Examples include cuts, tears, depressions, environmental stress cracking (ESC), and metal ion oxidation (MIO). A break in the conductor of a lead is defined as the loss of continuity in the metallic components that could interrupt the current flow or voltage. Examples include fractured conductors and defective crimps.

Leads damaged after explant or damaged due to failure to heed warnings or contraindications in the labeling are not considered device malfunctions.

A lead subject to a safety advisory is not considered to have malfunctioned unless it has been returned to Medtronic CRDM and found, through analysis, to actually have performed outside the performance limits established by Medtronic.

For leads designed for either ventricular or atrial use, the numbers listed in the Returned Product Analysis tables include both.

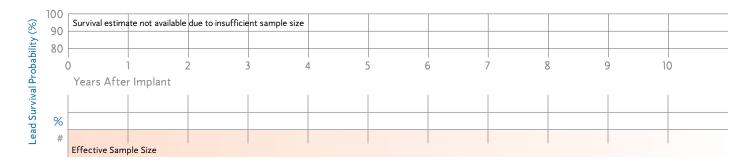

The numbers of malfunctions listed in the Returned Product Analysis tables are the actual numbers confirmed in the returned product analysis from the United States. The numbers of complications listed in the complications tables are the actual numbers observed in the SLS centers around the world.

Estimated Number of Implanted and Active Leads in the United States

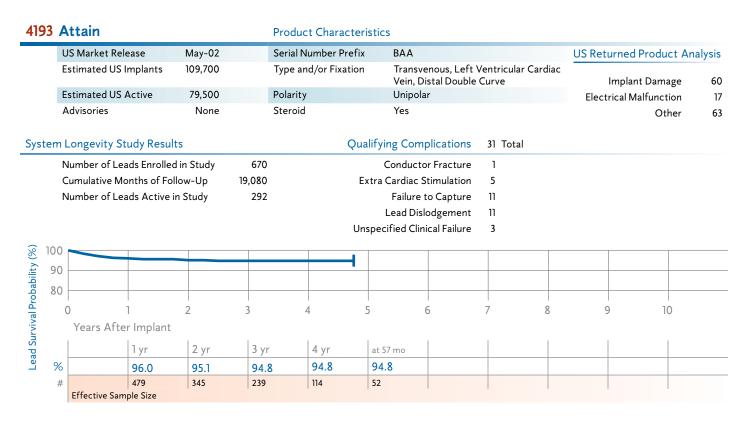
In addition to providing the number of leads enrolled in the SLS, this report also provides estimates for the number of leads implanted in the United States and the number remaining active in the United States. The number of US implants is estimated based on the total number of leads sold in the United States. The number of active implants is estimated using the total number of leads sold and projections for normal patient mortality, elective replacement, and lead failure. The number of implanted leads and active leads is adjusted for underreporting of patient mortality, elective replacement, and lead failure.

Some lead models do not have a survival curve presented in this report. These lead models do not have a survival curve because they have insufficient sample size in the System Longevity Study. Returned Product Analysis results for these models are included here for reference and comparison.

Left-Heart Leads



2188 Attain


Product Characteristics

US Market Release	Aug-01	Serial Number Prefix	LEB	US Returned Product Ana	alysis
Estimated US Implants	2,800	Type and/or Fixation	Transvenous, Coronary Sinus/ Cardiac Vein, Canted	Implant Damage	1
stimated US Active	1,400	Polarity	Bipolar	Electrical Malfunction	1
Advisories	None	Steroid	No	Other	0

System Longevity Study Results		Qualifying Complications	1 Total	
Number of Leads Enrolled in Study	14	Extra Cardiac Stimulation	1	
Cumulative Months of Follow-Up	374			
Number of Leads Active in Study	3			

Left-Heart Leads continued

4194 Attain

Product Characteristics

US Market Release	Aug-04	Serial Number Prefix	LFG	US Returned Product An	alysis
Estimated US Implants	67,800	Type and/or Fixation	Transvenous, Left Ventricular Cardiac Vein, Distal Double Curve	Implant Damage	70
Estimated US Active	57,900	Polarity	Bipolar	Electrical Malfunction	2
Advisories	None	Steroid	Yes	Other	6

Syste	em	Longevity St	udy Results				Qualify	ving Compl	ications	5 Tota	ıl			
	I	Number of Lea	ads Enrolled ir	า Study	364		Failure to	Capture	1					
	(Cumulative Mo	onths of Follo	w-Up	6,459		Lead Dislodgement		4	4				
	Number of Leads Active in Study		Study	274										
<u> </u>	00													
у (%	90			•										
billit	80													
oba														
Pre		0	1	2	3	4	5	6		7	8	9	10	
Lead Survival Probability (%) -		Years Afte	r Implant											
Sur			1 yr	2 yr	at 30 mo									
ead	%		99.3	97.5	97.5									
_	#		237	88	46									
		Effective Sam	ple Size											

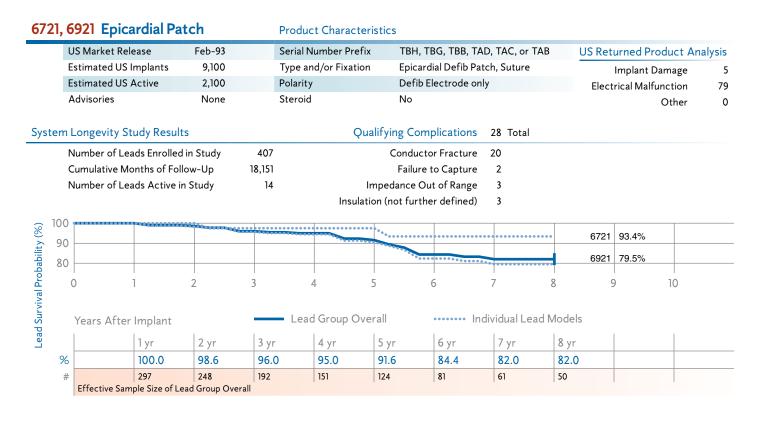
Left-Heart Leads continued

Lead Survival Summary (95% Confidence Interval)

		elease		Study		Cumulative Months of Follow-Up in Study	Device	Survival	Probabili	ty (%)						
		t Relea	olled	Leads Active in Study	Qualifying Complications		Years After Implant									
Model Number	Family	US Market Release	Leads Enrolled				l yr	2 yr	3 yr	4 yr	5 yr	6 yr	7 yr	8 yr	9 yr	10 yr
2187	Attain	Aug-01	133	49	1	5,441	99.1 +0.8/-5.3	99.1 +0.8/-5.3	99.1 +0.8/-5.3	99.1 +0.8/-5.3 at 45 mo						
2188	Attain	Aug-01	14	3	1	374	Survival e	stimate no	t available (due to insu	fficient sar	nple size				
4193	Attain	May-02	670	292	31	19,080	96.0 +1.3/-2.0	95.1 +1.5/-2.2	94.8 +1.6/-2.3	94.8 +1.6/-2.3	94.8 +1.6/-2.3 at 57 mo					
4194	Attain	Aug-04	364	274	5	6,459	99.3 +0.5/-2.1	97.5 +1.5/-3.7	97.5 +1.5/-3.7 at 30 mo							
													S	ource: Sys	stem Long	gevity Study

Data as of January 31, 2008

US Returned Product Analysis Summary


Model Number	Family	US Market Release	Estimated US Implants	Estimated US Active	Implant Damage	Electrical Malfunction	Other
2187	Attain	Aug-01	17,200	10,200	7	0	16
2188	Attain	Aug-01	2,800	1,400	1	1	0
4193	Attain	May-02	109,700	79,500	60	17	63
4194	Attain	Aug-04	67,800	57,900	70	2	6

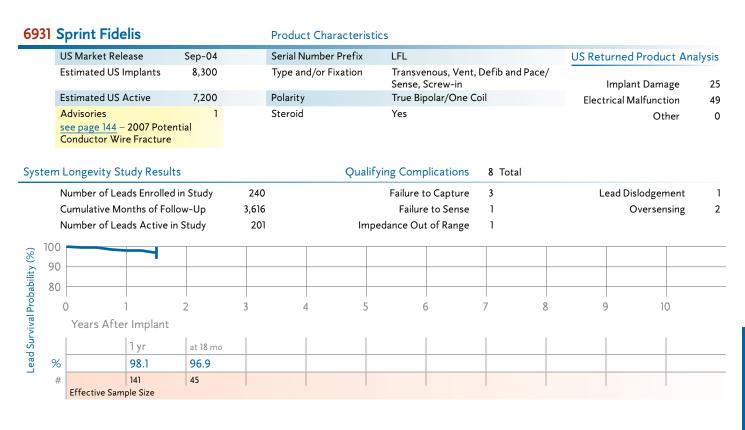
Source: Returned Product Analysis Data as of January 31, 2008

Reference Chart

Model Number	Family	Туре	Insulation	Conductor Material	Tip Electrode	Connector Type
2187	Attain	Transvenous Cardiac Vein Preformed Body	Polyurethane (55D)	MP35N	Platinized Platinum	IS-1 UNI
2188	Attain	Transvenous Cardiac Vein Preformed Body	Polyurethane (55D)	MP35N	Platinized Platinum	IS-1 BI
4193	Attain	Transvenous Cardiac Vein Preformed Body	Polyurethane (55D)	MP35N	Platinized Platinum	IS-1 UNI
4194	Attain	Transvenous Cardiac Vein Preformed Body	Polyurethane (55D)/ Silicone (4719)	MP35N	Platinum Alloy	IS-1 BI

Defibrillation Leads

6930 Sprint Fidelis


Product Characteristics

US Market Release	Sep-04	Serial Number Prefix	LFK	US Returned Product Ana	alysis
Estimated US Implants	400	Type and/or Fixation	Transvenous, Vent, Defib and Pace/ Sense, Tines	Implant Damage	0
Estimated US Active	300	Polarity	True Bipolar/One Coil	Electrical Malfunction	2
Advisories	1	Steroid	Yes	Other	0
see page 144 – 2007 Pote Conductor Wire Fracture					

Suctor	Longevity	Study	Doculto
System	Longevity	Juuy	Nesuits

Qualifying Complications 0 Total

			ads Enrolled in onths of Follov	-	4 35							
-		lumber of Lea	ads Active in S	itudy	4							
<u>%</u>	90	Survival estim	ate not available	due to insufficie	nt sample size							
>	80											
roda	()	1 2	2	3 4	4	5 (5 7	7 8	3)]	C
Vair		Years Afte	r Implant									
ININC												
	%											
Ľ	#											
		Effective Sam	ple Size									

6932 Sprint

Product Characteristics

						-						
ι	US Market Release	Aug-96		Serial Number	Prefix	ТСА			ι	IS Returned Pro	duct An	alysis
I	Estimated US Implant	s 15,300		Type and/or F	ixation	Transven Sense, Ti		Defib and Pao	ce/	Implant Da	mage	1
E	Estimated US Active	6,200		Polarity		True Bipo	olar/One Co	bil		Electrical Malfur	nction	3
	Advisories	None		Steroid		Yes				(Other	
stem	Longevity Study Re	sults			Qualifyi	ng Compl	ications	8 Total				
I	Number of Leads Enro	olled in Study	410		Extra	Cardiac Sti	mulation	1				
(Cumulative Months of	Follow-Up	20,051			Failure to	Capture	2				
I	Cumulative Months of Follow-Up Number of Leads Active in Study		81			Failure	to Sense	2				
						Ove	ersensing	3				
100												
90 80 %												
80												
80					_							
	0 1	2	3	4	5	6		7	8	9	10	
	Years After Impla	ant .										
	l yr	2 yr	3 yr	4 yr	5 y	r	6 yr	7 yr	8 yr	at 102 mo		
%	99.4	98.4	98.4	4 98.4	97.	7	97.7	97.7	96.6	96.6		
#		251	218	177	145		119	101	66	52		
	Effective Sample Size											

	US Marl Estimat				Dec-93					Prefix			BU, or T enous (ofib		03				t Analys
_	Estimat		•	.5	5,400			Polarity		ixation			fib Coi		vCD	end				•	Damag	-
	Advisor		Active		None			Steroid						-				E	lectric	al Mal		
	Advisor	les			None	2	2	sterola			Г	No									Oth	er
em	Longe	vity St	udy Re	esults						Qua	alifying	; Com	plicatio	ons	24 T	otal						
I	Numbei	r of Lea	ads Enr	olled in	Study		966				Co	nducto	or Fract	ure	15				Lea	d Dislo	odgem	ent
(Cumula	tive Mo	onths o	f Follov	v-Up	47	7,305				F	ailure t	to Capt	ure	1			Unsp	ecified	d Clinic	ial Fail	ure
		<i>c</i> .																				
l l	Cumulative Months of Follow-Up					47			lr	npedar	ice Ou	t of Ra	nge	2								
I	Numbei	r of Lea	ads Act	ive in S	Study		47		I	lr nsulatio	-			-	2 2							
00	Number									nsulatio	on (not	furthe	er defin 6933	ed) 92.7%	2							
						900000		*******			on (not	furthe	er defin 6933 6963	ed) 92.7% 93.6%	2							
00						900000				nsulatio	on (not	furthe	er defin 6933	ed) 92.7%	2							
00 90 80										nsulatio	on (not	furthe	er defin 6933 6963	ed) 92.7% 93.6%	2							
00 90 80	0		2	3 2		5 6		7 8	3	nsulatio	0 1	furthe	er defin 6933 6963 6937 2 1	ed) 92.7% 93.6% 91.4%	2	15	16	17	18	19	20	21
00 90 80	0		2	3 2				7 8	3	nsulatio	0 1	furthe	er defin 6933 6963	ed) 92.7% 93.6% 91.4%	2	15 I Leac			18	19	20	21
00 90 80	0		2	3 2				7 8	3	nsulatio	on (not	furthe	er defin 6933 6963 6937 2 1	ed) 92.7% 93.6% 91.4%	2				18	19	20	21
00 90 80	0 Years	1 2 After	2 Impla	}	1000000 5	5 6	5 7	7 § • Leac	3 g d Grou	nsulation p Ove 9 yr	on (not	furthe	er defin 6933 6963 6937 2 1	ed) 92.7% 93.6% 91.4%	2				18	19	20	21

6936, 6966 Transvene

Product Characteristics

	US Market Release	Dec-93	Seri	al Number Prefi	ix TBA	or TAP		US R	turned Produ	ict Analysis
	Estimated US Implants	4,300	Туре	e and/or Fixatio	n Sub	cutaneous Dei	ib Patch, Sut		Implant Dam	· · ·
	Estimated US Active	900	Pola			ib Electrode O	nly	Ele	ctrical Malfunct	0
	Advisories	None	Ster	roid	No				Ot	her
ten	n Longevity Study Resi	ılts		Qı	ualifying Co	omplications	20 Total			
	Number of Leads Enroll	ed in Study	384		Condu	ictor Fracture	10			
	Cumulative Months of F		17.618		Failu	re to Capture	2			
	Cumulative Months of I	0110w-0p	17,010		гани	re to Capture	2			
	Number of Leads Active		7	Insula		ther defined)	6			
					tion (not fur					
100	Number of Leads Active	in Study		U	tion (not fur Inspecified (ther defined)	6			
100	Number of Leads Active				tion (not fur Inspecified (ther defined)	6		9 92.4%	
9(Number of Leads Active	in Study		U	tion (not fur Inspecified (ther defined)	6			
	Number of Leads Active	in Study		U	tion (not fur Inspecified (ther defined)	6	693		
9(Number of Leads Active	in Study		U	tion (not fur Inspecified (ther defined)	6			0
9(Number of Leads Active	in Study	7		tion (not fur Inspecified (ther defined) Clinical Failure	6	699	9 82.7%	0
9(Number of Leads Active	in Study	7	U	tion (not fur Inspecified (5 rerall	ther defined) Clinical Failure	6 2	699	9 82.7%	0
9(Number of Leads Active	in Study	7	U 4 ead Group Ov	tion (not fur Inspecified (ther defined) Clinical Failure	6 2 7 dividual Lea	8 ad Models	9 82.7%	0

	US Market Rele	ease	Jul-97		Serial Number Pre	efix TCE	3		US	S Returne	d Product An	alysis
	Estimated US I	mplants	18,100		Type and/or Fixat		nsvenous, Vent, e/Sense, Tines	, Defib and	_		int Damage	3.
	Estimated US /	Active	7,900		Polarity	Inte	grated Bipolar/	'Two Coils		-	Malfunction	37
	Advisories		None		Steroid	Yes					Other	5
ten	n Longevity St	udy Result	ts		C	Qualifying Co	omplications	7 Total				
	Number of Lea	ads Enrollec	d in Study	352		Condu	uctor Fracture	1				
	1			14,944		Fa	ailure to Sense	1				
	Cumulative Months of Follow-Up Number of Leads Active in Study			63		Lead	Dislodgement	1				
							Oversensing	3				
						Unspecified	Clinical Failure	1				
10	0											
9	0								•			
8	0											
	0	1	2	3	4	5	6	7	8	9	10	
	Years Afte	r Implant										
		1	2 yr	3 yr	4 yr	5 yr	6 yr	7 yr	at 93 mc			
		1 yr										
9	%	98.9	98.9	97.8	97.2	96.3	96.3	96.3	96.3			

943	Sprint				Product C	Characteris	tics						
	US Market Rele	ase	Oct-97		Serial Nurr	ber Prefix	TCE			US	Returned Pr	oduct An	alysis
	Estimated US In	nplants	21,300		Type and/o	or Fixation		svenous, Vent /Sense, Screw			Implant [Damage	50
	Estimated US A	ctive	9,400		Polarity		True	Bipolar/One C	Coil	E	Electrical Malf	unction	65
	Advisories		None		Steroid		Yes					Other	2
ster	n Longevity Study Results					Quali	fying Co	mplications	62 Total				
	Number of Lead	in Study	1,311			Conduc	tor Fracture	9		Lead Dislo	dgement		
	Number of Leads Enrolled in Study Cumulative Months of Follow-Up			62,114			Failur	e to Capture	7		Ove	ersensing	32
	Cumulative Months of Follow-Up Number of Leads Active in Study			507			Fail	ure to Sense	6	Unsp	pecified Clinic	al Failure	1
						Imp	oedance (Out of Range	3				
						Insulatior	ı (not furt	her defined)	1				
10	0												
9	0												
10 9 8	0												
	0 1		2	3	4	5		6	7	8	9	10	
	Years After	Implant											
		l yr	2 yr	3 yr	4	yr !	ō yr	6 yr	7 yr	8 yr	at 102 mo		
9	%	98.8	98.1	97.0) 90	6.1 9	94.3	92.9	92.1	91.6	91.6		
	#	1,074	936	794	59	7	145	304	165	89	55		
		1074	936	794	50	7	145	304	165	89	55		

5944	Sprint Quattro		Pro	duct Charact	teristics						
	US Market Release	Dec-00	Seri	ial Number Pre	efix TD	C			US Returned	Product An	alysis
	Estimated US Implants	29,200	Тур	e and/or Fixati		ansvenous, Vent, ce/Sense, Tines	Defib and		Implar	nt Damage	24
	Estimated US Active	18,400	Pola	arity	Trı	ue Bipolar/Two C	oils		Electrical M	alfunction	32
	Advisories	None	Ster	roid	Ye	s				Other	8
ysten	1 Longevity Study Res	ults		¢	Qualifying C	Complications	3 Total				
	Number of Leads Enrol	led in Study	171			Oversensing	2				
	Cumulative Months of I	ollow-Up	6,688		Unspecified	Clinical Failure	1				
	Number of Leads Activ	e in Study	64								
10					_						
× 9											
	0 1	2	3	4	5	6	7	8	9	10	
I Vai L	Years After Implar	-	5	7	5	0	2	0	2	10	
Lead Survival Probability (%)	l yr	2 yr	3 yr	4 yr	5 yr						
ead %	6 100.0	100.0	98.9	97.5	95.8						
-	# 128	103	82	60	49						
	Effective Sample Size										

	US Market F	Poloaso	Sep-97		Serial Numbe	r Profix	TDA		110	Returned Pro	duct An	olycic
	Estimated L		44,000		Type and/or F		Transvenous, Ver	at Defib and	03	Returned Pro		alysis
	LStimateu C		44,000		Type and/or T	ixation	Pace/Sense, Scre	,		Implant Da	amage	198
	Estimated L	JS Active	20,800		Polarity		Integrated Bipola	r/Two Coils	E	lectrical Malfu	nction	95
	Advisories		None		Steroid		Yes				Other	1
sten	n Longevity	Study Result	s			Qualifyi	ng Complications	5 27 Total				
	Number of I	Leads Enrolled	l in Study	1,158		(Conductor Fracture	e 2	Im	pedance Out o	f Range	5
	Cumulative	Months of Fol	low-Up	52,625		Extra	Cardiac Stimulatior	1 I		Over	sensing	13
	Number of	Leads Active in	n Study	283			Failure to Capture	e 1	Unsp	pecified Clinica	l Failure	
							Failure to Sense	e 4				
10												
9	0											
8	0											
	0	1	2	3	4	5	6	7	8	9	10	
8 9 8	Years Af	fter Implant										
		1 yr	2 yr	3 yr	4 yr	5 y	r 6 yr	7 yr	8 yr	at 102 mo		
	%	99.6	99.1	98.	8 98.1	97.0	95.8	95.8	95.0	95.0		
9												

6947 Sprint Quattro Secure Product Characteristics

Pace/S Pace/S Estimated US Active 99,500 Polarity True Bi Advisories None Steroid Yes stem Longevity Study Results Qualifying Com Number of Leads Enrolled in Study 1,367 Conductor	ious, Vent, Defib and		nalysis
Advisories None Steroid Yes stem Longevity Study Results Qualifying Com Number of Leads Enrolled in Study 1,367 Conductor Cumulative Months of Follow-Up 48,899 Failur Number of Leads Active in Study 694 Impedance Ou Insulation (not further 100	nse, Screw-in	Implant Damage	23
stem Longevity Study Results Qualifying Com Number of Leads Enrolled in Study 1,367 Conductor Cumulative Months of Follow-Up 48,899 Failur Number of Leads Active in Study 694 Impedance Ou Insulation (not further 100 100	olar/Two Coils Ele	ectrical Malfunction	9
Number of Leads Enrolled in Study 1,367 Cumulative Months of Follow-Up 48,899 Number of Leads Active in Study 694 Impedance Ou Insulation (not further 0 1 2 3 4 5 Years After Implant		Other	1
Cumulative Months of Follow-Up 48,899 Failur Number of Leads Active in Study 694 Impedance Ou Insulation (not furthe 90 80 0 1 2 3 4 5 Years After Implant	lications 18 Total		
Number of Leads Active in Study 694 Impedance Ou Insulation (not further 90 80 0 1 2 3 4 5 Years After Implant	Fracture 3	Lead Dislodgement	
Insulation (not furthe 100 90 80 0 1 2 3 4 5 Years After Implant	to Sense 1	Oversensing	
100 90 80 0 1 2 3 4 5 Years After Implant	of Range 1 Unspe	cified Clinical Failure	
90 80 0 1 2 3 4 5 Years After Implant	defined) 1		
90 80 0 1 2 3 4 5 Years After Implant 1yr 2yr 3yr 4yr 5yr			
80 1 2 3 4 5 0 1 2 3 4 5 Years After Implant 1 1 1 yr 1			
Years After Implant			
	7 8	9 10	
l yr 2 yr 3 yr 4 yr 5 yr			
	at 69 mo		
% 99.3 99.1 98.7 98.2 97.7	97.7		
# 1,076 889 720 415 177			

L	JS Market Release	Sep-04	Serial Number Pre	fix LFH		US Returned Product An	alysi
E	stimated US Implants	10,700	Type and/or Fixati	on Transvenous, Vent Sense, Tines	Defib and Pace/	Implant Damage	
E	stimated US Active	9,200	Polarity	True Bipolar/Two C	oils	Electrical Malfunction	1
s	Advisories <u>ee page 144</u> – 2007 Pote Conductor Wire Fracture		Steroid	Yes		Other	
em l	Longevity Study Resul	ts	Ç	Jualifying Complications	0 Total		
C	Jumber of Leads Enrolled Cumulative Months of Fol Jumber of Leads Active i	llow-Up	29 486 27				
C	Cumulative Months of Fol Jumber of Leads Active i	llow-Up in Study	486 27				
C N	Cumulative Months of Fo	llow-Up in Study	486 27				
C N 100	Cumulative Months of Fol Jumber of Leads Active i	llow-Up in Study	486 27				
0 N 100 90 80	Cumulative Months of Fol Jumber of Leads Active i	llow-Up in Study	486 27	5 6	7 8	9 10	
0 N 100 90 80	Cumulative Months of Fol Jumber of Leads Active i Survival estimate not availa	llow-Up n Study	486 27 ficient sample size	5 6	7 8	9 10	
0 N 100 90 80	Survival estimate not availa	llow-Up n Study	486 27 ficient sample size	5 6	7 8	9 10	
0 N 100 90 80	Survival estimate not availa	llow-Up n Study	486 27 ficient sample size	5 6	7 8	9 10	

6949 Sprint Fidelis

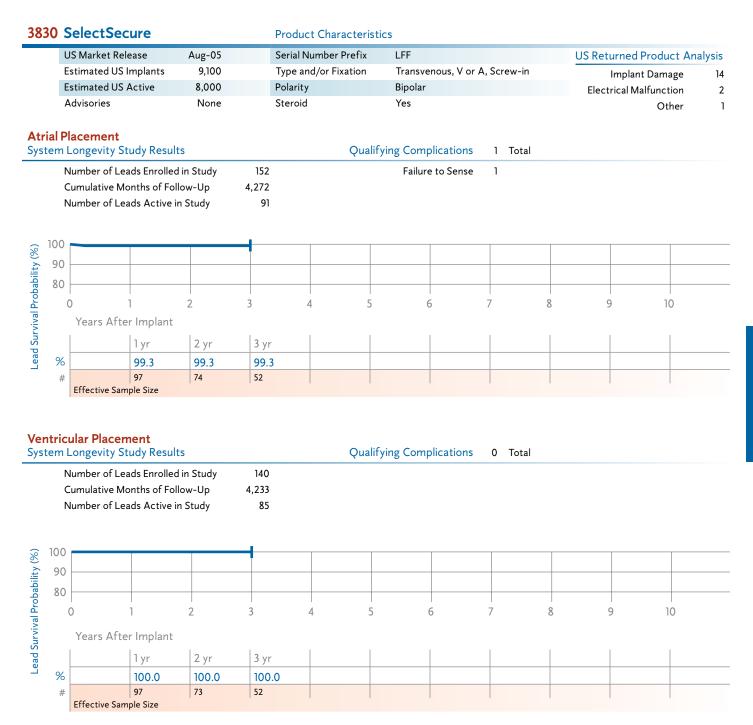
Product Characteristics

ι	JS Market Release	Sep-04	Se	rial Number Prefix	LFJ		US Returned Product Ar	nalysis
E	Estimated US Implants	188,200	Ту	pe and/or Fixation	Transvenous, Vent, Sense, Screw-in	, Defib and Pace/	Implant Damage	448
E	stimated US Active	157,900	Pc	larity	True Bipolar/Two C	Coils	Electrical Malfunction	702
ŀ	Advisories	1	St	eroid	Yes		Other	4
	<mark>see page 144 –</mark> 2007 Po Conductor Wire Fractu							
stem	Longevity Study Res	ults		Qual	ifying Complications	14 Total		
٦	Number of Leads Enrol	led in Study	735		Conductor Fracture	1	Lead Dislodgement	
C	Cumulative Months of F	Follow-Up	13,839		Failure to Capture	2	Oversensing	5
٦	Number of Leads Activ	e in Study	607		Failure to Sense	1		
				Insulation	n (not further defined)	1		
100			-					
90								
80								
1	0 1	2	3	4 5	6	7 8	9 10	
80 %	Years After Implar	nt						
	1 yr	2 yr	3 yr					
%	98.9	97.9	96.7					

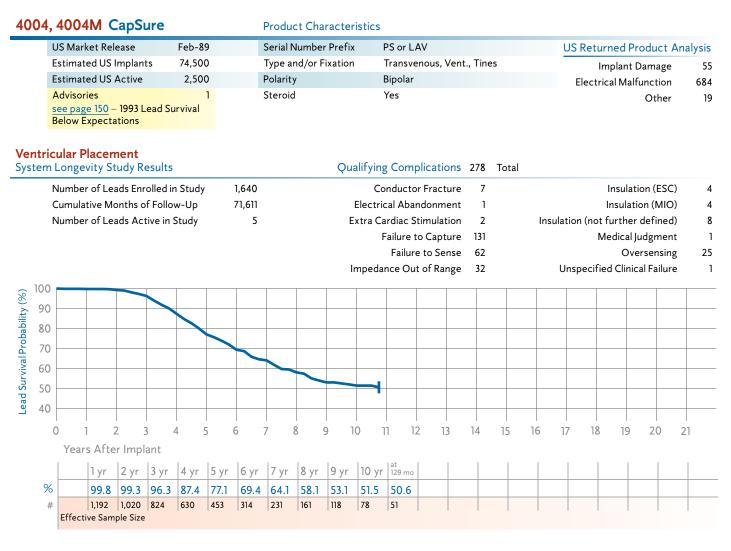
	US Market Release	Jun-01		Serial Numbe	r Prefix	TCR			US Returned	Product An	alysi
	Estimated US Implants	2,500		Type and/or I	ixation	Subcutaneous De	fib Coil, Sutu	re	Impla	nt Damage	
I	Estimated US Active	2,000		Polarity		One Defib Coil				/alfunction	
	Advisories	None		Steroid		No				Other	
tem	Longevity Study Result	ts			Qualify	ving Complications	0 Total				
	Number of Leads Enrolled	l in Study	12								
	Cumulative Months of Fol	low-Up	292								
	Number of Leads Active in	n Study	12								
100	Survival estimate not availa	ble due to insuffic	ient sa	mple size							
90			Jient Su								
80											
	0 1	2	3	4	5	6	7	8	9	10	
	Years After Implant										
									1		
%											

Lead Survival Summary (95% Confidence Interval)

		ease	-	n Study		onths of itudy	Device	Survival	Probabili	ty (%)						
el ber	~	US Market Release	Leads Enrolled	Leads Active in Study	Qualifying Complications	Cumulative Months of Follow-Up in Study		After Imp								
Model Number	Family	NSM	Lead	Lead	Quali	Cumu Follo	1 yr	2 yr	3 yr	4 yr	5 yr	6 yr	7 yr	8 yr	10 yr	12 yr
6721, 6921	Epicardial Patch	Feb-93	407	14	28	18,151	100.0	98.6 +0.9/-2.3	96.0 +1.9/-3.3	95.0 +2.1/-3.8	91.6 +3.2/-4.9	84.4 +4.9/-7.0	82.0 +5.6/-7.6	82.0 +5.6/-7.6		
6930	Sprint Fidelis	Sep-04	4	4	-	35	Survival e	stimate no	t available i	ue to insu	fficient san	nple size				
	Advisories: s Fracture	ee page 14	<u>4</u> - 2007	⁷ Potentia	al Condu	ictor Wire										
69 31	Sprint Fidelis	Sep-04	240	201	8	3,616	98.1 +1.2/-3.2	96.9 +1.2/-4.9 at 18 mo								
	Advisories: s Fracture	ee page 14	<u>4</u> - 2007	' Potentia	al Condu	ictor Wire										
6932	Sprint	Aug-96	410	81	8	20,051	99.4 +0.4/-1.8	98.4 +0.9/-2.3	98.4 +0.9/-2.3	98.4 +0.9/-2.3	97.7 +1.3/-2.8	97.7 +1.3/-2.8	97.7 +1.3/-2.8	96.6 +2.0/-4.6	96.6 +2.0/-4.6 at 102 mo	
6933, 6937, 6937A, 6963	SVC/CS	Dec-93	966	47	24	47,305	99.6 +0.3/-0.8	99.2 +0.4/-1.0	99.2 +0.4/-1.0	98.6 +0.7/-1.4	97.0 +1.2/-2.0	96.4 +1.4/-2.2	95.2 +1.8/-2.8	94.6 +2.0/-3.1	92.8 +2.8/-4.6	92.8 +2.8/-4.6 at 141 mo
6936, 6966	Transvene	Dec-93	1,349	49	146	67,001	99.2 +0.4/-0.7	98.4 +0.6/-1.0	97.0 +0.9/-1.3	96.0 +1.1/-1.6	92.7 +1.7/-2.3	87.3 +2.5/-3.0	79.5 +3.4/-4.0	75.4 +3.9/-4.4	65.4 +5.1/-5.8	62.1 +5.7/-6.4
6939, 6999	Sub-Q Patch	Dec-93	384	7	20	17,618	99.0 +0.7/-1.9	98.7 +0.8/-2.3	98.2 +1.0/-2.6	98.2 +1.0/-2.6	94.1 +2.7/-4.7	91.1 +3.6/-5.7	87.7 +4.7/-7.1	84.5 +5.8/-8.6		
6942	Sprint	Jul-97	352	63	7	14,944	98.9 +0.8/-2.2	98.9 +0.8/-2.2	97.8 +1.3/-3.1	97.2 +1.5/-3.6	96.3 +2.0/-4.1	96.3 +2.0/-4.1	96.3 +2.0/-4.1	96.3 +2.0/-4.1 at 93 mo		
6943	Sprint	Oct-97	1,311	507	62	62,114	98.8 +0.5/-0.8	98.1 +0.6/-1.0	97.0 +0.8/-1.3	96.1 +1.1/-1.4	94.3 +1.4/-2.0	92.9 +1.7/-2.3	92.1 +2.0/-2.5	91.6 +2.1/-2.9	91.6 +2.1/-2.9 at 102 mo	
6944	Sprint Quattro	Dec-00	171	64	3	6,688	100.0	100.0	98.9 +0.9/-6.8	97.5 +1.9/-7.2	95.8 +2.8/-8.6					
6945	Sprint	Sep-97	1,158	283	27	52,625	99.6 +0.2/-0.7	99.1 +0.5/-0.9	98.8 +0.6/-1.0	98.1 +0.8/-1.2	97.0 +1.1/-1.8	95.8 +1.5/-2.2	95.8 +1.5/-2.2	95.0 +1.9/-3.2	95.0 +1.9/-3.2 at 102 mo	
6947	Sprint Quattro Secure	Nov-01	1,367	694	18	48,899	99.3 +0.3/-0.7	99.1 +0.4/-0.8	98.7 +0.5/-0.9	98.2 +0.7/-1.2	97.7 +1.0/-1.6	97.7 +1.0/-1.6 at 69 mo				
6948	Sprint Fidelis	Sep-04	29	27	0	486	Survival es	timate not	available d	ue to insuf	ficient sam	ple size				
	Advisories: s Fracture	ee page 14	<u>4</u> - 2007	Potentia	al Condu	ictor Wire										
6949	Sprint Fidelis	Sep-04	735	607	14	13,839	98.9 +0.6/-1.2	97.9 +1.0/-1.7	96.7 +1.6/-3.1							
	Advisories: s Fracture	ee page 14	<u>4</u> - 2007	Potentia	al Condu	ictor Wire										
6996	Sub-Q Lead	Jun-01	12	12	0	292	Survival es	timate not	available d	ue to insuf	ficient sam	ple size				


US Returned Product Analysis Summary

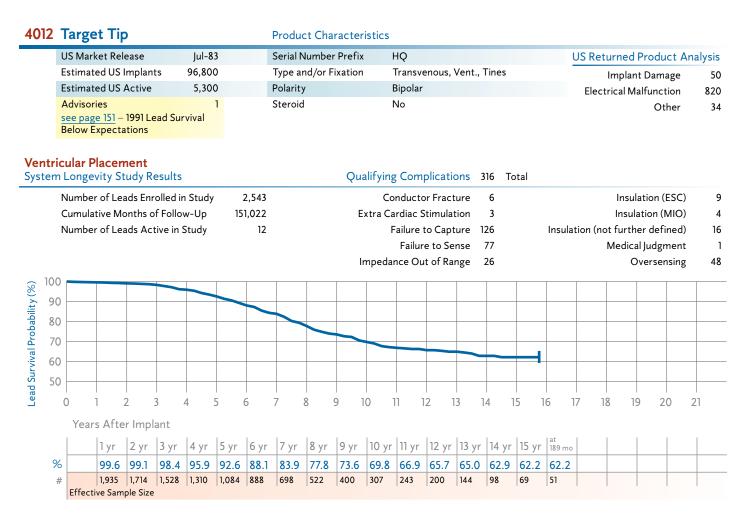
Model Number	Family	US Market Release	Estimated US Implants	Estimated US Active	Implant Damage	Electrical Malfunction	Other
6721, 6921	Epicardial Patch	Feb-93	9,100	2,100	5	79	0
6930	Sprint Fidelis	Sep-04	400	300	0	2	0
6931	Sprint Fidelis	Sep-04	8,300	7,200	25	49	0
6932	Sprint	Aug-96	15,300	6,200	16	37	7
6933, 6937, 6937A, 6963	SVC/CS	Dec-93	17,500	5,400	31	195	13
6936, 6966	Transvene	Dec-93	24,600	5,600	90	458	19
6939, 6999	Sub-Q Patch	Dec-93	4,300	900	4	33	1
6942	Sprint	Jul-97	18,100	7,900	31	37	5
6943	Sprint	Oct-97	21,300	9,400	50	65	8
6944	Sprint Quattro	Dec-00	29,200	18,400	24	32	8
6945	Sprint	Sep-97	44,000	20,800	198	95	11
6947	Sprint Quattro Secure	Nov-01	142,400	99,500	237	92	12
6948	Sprint Fidelis	Sep-04	10,700	9,200	9	10	4
6949	Sprint Fidelis	Sep-04	188,200	157,900	448	702	41
6996	Sub-Q Lead	Jun-01	2,500	2,000	0	2	0


Reference Chart

Model			Pin Con	figuration	Lead Body	Insulation,	
Number	Family	Туре	Pace/ Sense	High Voltage	Diameter	Lead Body	Fixation, Steroid
6721	Epicardial Patch	Epi Patch	-	DF-1	S, M, L	Silicone, Single Lumen	Suture
6921	Epicardial Patch	Epi Patch	_	6.5 mm	S, M, L	Silicone, Single Lumen	Suture
6930	Sprint Fidelis	Endo RV True Bipolar Sensing	IS-1	DF-1	6.6 Fr	Silicone with Polyurethane Overlay, Multilumen	Passive, Steroid
6931	Sprint Fidelis	Endo RV True Bipolar Sensing	IS-1	DF-1	6.6 Fr	Silicone with Polyurethane Overlay, Multilumen	Active, Steroid
6932	Sprint	Endo RV True Bipolar Sensing	IS-1	DF-1	7.8 Fr	Silicone, Multilumen	Passive, Steroid
6933	SVC/CS	Endo SVC/CS Coil	-	DF-1	7 Fr	Silicone, Single Lumen	Passive
6934S	Transvene	Endo RV True Bipolar Sensing	IS-1	DF-1	12 Fr	Silicone, Coaxial	Passive, Steroid
6936	Transvene	Endo RV True Bipolar Sensing	IS-1	DF-1	10 Fr	Polyurethane, Coaxial	Active
6937	SVC/CS	Endo SVC Coil	-	DF-1	5.5 Fr	Silicone, Single Lumen	Passive
6937A	SVC/CS	Endo SVC Coil	-	DF-1	7.5 Fr	Silicone with Polyurethane Overlay, Single Lumen	Passive
6939	Sub-Q Patch	SQ Patch	-	DF-1	One Size	Silicone, Single Lumen	Suture
6942	Sprint	Endo RV/SVC Integrated Bipolar Sensing	IS-1	2 DF-1	7.8 Fr	Silicone, Multilumen	Passive, Steroid
6943	Sprint	Endo RV True Bipolar Sensing	IS-1	DF-1	7.8 Fr	Silicone, Multilumen	Active, Steroid
6944	Sprint Quattro	Endo RV/SVC True Bipolar Sensing	IS-1	2 DF-1	8.2 Fr	Silicone with Polyurethane Overlay, Multilumen	Passive, Steroid
6945	Sprint	Endo RV/SVC Integrated Bipolar Sensing	IS-1	2 DF-1	7.8 Fr	Silicone, Multilumen	Active, Steroid
6947	Sprint Quattro Secure	Endo RV/SVC True Bipolar Sensing	IS-1	2 DF-1	8.2 Fr	Silicone with Polyurethane Overlay, Multilumen	Active, Steroid
6948	Sprint Fidelis	Endo RV/SVC True Bipolar Sensing	IS-1	2 DF-1	6.6 Fr	Silicone with Polyurethane Overlay, Multilumen	Passive, Steroid
6949	Sprint Fidelis	Endo RV/SVC True Bipolar Sensing	IS-1	2 DF-1	6.6 Fr	Silicone with Polyurethane Overlay, Multilumen	Active, Steroid
6963	SVC/CS	Endo SVC/CS Coil	-	6.5 mm	7 Fr	Silicone, Single Lumen	Passive
6966	Transvene	Endo RV True Bipolar Sensing	3.2 mm L.P.	6.5 mm	10 Fr	Polyurethane, Coaxial	Active
6996	Sub-Q Lead	SQ Coil	-	DF-1	7.5 Fr	Silicone, Single Lumen	Passive
6999	Sub-Q Patch	SQ Patch	_	6.5 mm	One Size	Silicone, Single Lumen	Suture

Pacing Leads

		ket Rel	0000		Jul-8	6		Serial N	lumba	Drofin		H or L/	۸v				110	Detu	a a d Du	م مار رو خ	Analis
																	05			oduct	
		ted US		ts	40,00			Type ar	•	ixation			enous, Ve	ent., Lin	es				•	Damage	
		ted US .	Active		6,70			Polarity				Jnipola	r				E	lectric	al Malf	unctior	1
4	Adviso	ries			Non	e		Steroid			Ň	Yes								Other	
	cular I	Placen	aant																		
		vity St		esults						Qua	alifying	g Com	plication	is 12	Total						
	Numbe	r of Lea	ads Enr	olled ir	n Study		711				Co	nducto	or Fractur	re 1					Failure	to Sens	e
,	Cumula	ative Mo	onths o	f Follo	w-Up	4	45,711			E	xtra Ca	rdiac S	timulatio	n 2					Ove	ersensir	ıg
ļ	Numbe	r of Lea	ads Act	tive in S	Study		159				F	ailure	to Captur	re 6							0
100																					
90																					
90																					
80			2 3	3	4	5 (5	7 8	3	9 1	0 1	1 1	2 13	14	15	16	17	18	19	20	21
	0	1 2																			
	-	1 2 rs Afte	r Impl	ant																	
	-	1 2 rs Afte 1yr		ant 3 yr	4 yr	5 yr	6 yr	7 yr	8 yr	9 yr	10 yr	11 yr	at 138 mo								
	Yea	1		1	4 yr 99.1	5 yr 99. 1	6 yr 98.8	7 yr 98.5	8 yr 97.7	9 yr 97.7	10 yr 97.7	11 yr 97.7	at 138 mo 96.2								


4011 Target Tip

Product Characteristics

US	Market Release	Nov-82	Serial Number Prefix	IB	US Returned Product Ana	alysis
Est	timated US Implants	64,000	Type and/or Fixation	Transvenous, Vent., Tines	Implant Damage	29
Est	timated US Active	6,900	Polarity	Unipolar	Electrical Malfunction	142
Ad	dvisories	None	Steroid	No	Other	5

Ventricular Placement

Ν	lumbei	r of Lea	ids Enr	olled ir	n Study		851				Co	nducto	or Fract	ure	1		Insula	tion (n	ot fur	ther c	lefined)
С	umula	tive Mo r of Lea	onths o	f Follov	w-Up		409 4			E			timulat to Capt		4 9					Over	sensin	g
100 90							-				- -					4						
80 ()	1 :	2	3	4	5 (6	7	8	9 1	0	1	2 1	3 1	4 1	5 1	6 1	7	18	19	20	21
	Year	s Afte	r Impla	ant	1	1				1	1		1			1	Lat		1	I		1
		1 yr	2 yr	3 yr	4 yr	5 yr	6 yr	7 yr	8 yr	9 yr	10 yr	11 yr	12 yr	13 yr	14 yr	15 yr	183 mo					
		00.4	99.2	99.1	98.8	97.6	96.4	96.0	96.0	96.0	95.0	93.6	92.8	91.9	91.9	91.9	91.9					
%		99.4	99.Z	99.1	20.0	97.0	70.4	20.0	20.0	20.0	23.0	23.0	22.0	101.0	22	22	21.2					

4023 CapSure SP

Product Characteristics

Caps	sure :	52					Produ	ct Cha	racter	istics										
JS Mar	ket Rel	ease		Aug-9	1	:	Serial N	Numbe	r Prefix		LAK					US	Retur	ned Pr	oduct	Analysis
Estimat	ted US I	Implan	ts	43,70	0		Type a	nd/or F	ixation		Transv	enous, Ve	nt., Tin	es			Im	plant [Damage	e 41
Estimat	ted US /	Active		14,20	0	1	Polarity	у			Unipola	ar				E	Electric	al Malf	unctior	n 19
Advisor	ries			Non	e	:	Steroic	ł			Yes								Other	r (
Longe Numbe Cumula	evity St er of Lea ative Mo	ads Enronths o	olled ir	w-Up		1,158 2,408 398			E	xtra Ca I	ardiac S Failure	Stimulatio to Captur	n 1 e 15	Total		sulatio	•			
) Vear	1 2 rs Afte			4 !	5 (5	7	8	9 1	0 1	י ו וו	2 13	14	15	16	17	18	19	20	21
	1			L .		6	-			10		at				I		1	I	
	99.9	99.3	98.8	98.6	98.6	98.2	97.0	96.6	96.6	95.8	94.3	94.3								
	886	765	682	604	519	391	270	187	123	71	59	51								
	JS Mar Estimat Estimat Advisor Sular F Longe Numbe Cumula Numbe	JS Market Rel Estimated US Estimated US Advisories Cular Placen Longevity St Number of Lea Number of	JS Market Release Estimated US Implan Estimated US Active Advisories Cular Placement Longevity Study R Number of Leads Enr Cumulative Months of Number of Leads Active Number of Leads	JS Market Release Estimated US Implants Estimated US Active Advisories Cular Placement Longevity Study Results Number of Leads Enrolled in Cumulative Months of Follor Number of Leads Active in S 0 1 2 3 Years After Implant 1 yr 2 yr 3 yr	JS Market Release Aug-9 Estimated US Implants 43,700 Estimated US Active 14,200 Advisories Non Cular Placement Longevity Study Results Number of Leads Enrolled in Study Cumulative Months of Follow-Up Number of Leads Active in Study 0 1 2 3 4 Years After Implant 1 yr 2 yr 3 yr 4 yr	US Market Release Aug-91 Estimated US Implants 43,700 Estimated US Active 14,200 Advisories None Cular Placement Longevity Study Results Number of Leads Enrolled in Study Cumulative Months of Follow-Up 62 Number of Leads Active in Study Cumulative Months of Follow-Up 62 Number of Leads Active in Study D 1 2 3 4 5 0 Years After Implant 1 yr 2 yr 3 yr 4 yr 5 yr	US Market Release Aug-91 Estimated US Implants 43,700 Estimated US Active 14,200 Advisories None Estimated	US Market Release Aug-91 Serial N Estimated US Implants 43,700 Type a Estimated US Active 14,200 Polarity Advisories None Steroid Cular Placement Longevity Study Results Number of Leads Enrolled in Study 1,158 Cumulative Months of Follow-Up 62,408 Number of Leads Active in Study 398	US Market Release Aug-91 Serial Number Estimated US Implants 43,700 Type and/or F Estimated US Active 14,200 Polarity Advisories None Steroid Cular Placement Longevity Study Results Number of Leads Enrolled in Study 1,158 Cumulative Months of Follow-Up 62,408 Number of Leads Active in Study 398 O 1 2 3 4 5 6 7 8 Years After Implant 1 yr 2 yr 3 yr 4 yr 5 yr 6 yr 7 yr 8 yr	JS Market Release Aug-91 Serial Number Prefix Estimated US Implants 43,700 Type and/or Fixation Estimated US Active 14,200 Polarity Advisories None Steroid Studar Placement Current of Leads Enrolled in Study 1,158 E Cumulative Months of Follow-Up 62,408 Implant Implant O 1 2 3 4 5 6 7 8 9 1 Years After Implant 1yr 2 yr 3 yr 4 yr 5 yr 6 yr 7 yr 8 yr 9 yr	JS Market Release Aug-91 Serial Number Prefix Estimated US Implants 43,700 Type and/or Fixation Estimated US Active 14,200 Polarity Advisories None Steroid Studar Placement Longevity Study Results Qualifying Number of Leads Enrolled in Study 1,158 Extra Ca Cumulative Months of Follow-Up 62,408 Impeda Number of Leads Active in Study 398 Impeda 0 1 2 3 4 5 6 7 8 9 10 Years After Implant 1 1 yr 3 yr 4 yr 5 yr 6 yr 7 yr 8 yr 9 yr 10 yr	JS Market Release Aug-91 Serial Number Prefix LAK Estimated US Implants 43,700 Type and/or Fixation Transverent Estimated US Active 14,200 Polarity Unipola Advisories None Steroid Yes Stimated US Active 14,200 Polarity Unipola Advisories None Steroid Yes Standard Placement Longevity Study Results Qualifying Com Number of Leads Enrolled in Study 1,158 Extra Cardiac S Cumulative Months of Follow-Up 62,408 Failure Number of Leads Active in Study 398 Impedance Out O 1 2 3 4 5 6 7 8 9 10 1 O 1 2 3 4 5 6 7 8 9 10 1 Years After Implant 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <	JS Market Release Aug-91 Serial Number Prefix LAK Estimated US Implants 43,700 Type and/or Fixation Transvenous, Ve Estimated US Active 14,200 Polarity Unipolar Advisories None Steroid Yes Standard US Active 14,200 Polarity Unipolar Advisories None Steroid Yes Standard US Active Study Results Qualifying Complication Number of Leads Enrolled in Study 1,158 Extra Cardiac Stimulatio Cumulative Months of Follow-Up 62,408 Failure to Captur Number of Leads Active in Study 398 Impedance Out of Rang O 1 2 3 4 5 6 7 8 9 10 11 12 13 Years After Implant 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <	JS Market Release Aug-91 Serial Number Prefix LAK Estimated US Implants 43,700 Type and/or Fixation Transvenous, Vent., Tin Estimated US Active 14,200 Polarity Unipolar Advisories None Steroid Yes ular Placement Longevity Study Results Qualifying Complications 20 Number of Leads Enrolled in Study 1,158 Extra Cardiac Stimulation 1 Cumulative Months of Follow-Up 62,408 Failure to Capture 15 Number of Leads Active in Study 398 Impedance Out of Range 1 O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Years After Implant 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <td>JS Market Release Aug-91 Serial Number Prefix LAK Estimated US Implants 43,700 Type and/or Fixation Transvenous, Vent., Tines Estimated US Active 14,200 Polarity Unipolar Advisories None Steroid Yes ular Placement Longevity Study Results Qualifying Complications 20 Number of Leads Enrolled in Study 1,158 Extra Cardiac Stimulation 1 Cumulative Months of Follow-Up 62,408 Failure to Capture 15 Number of Leads Active in Study 398 Impedance Out of Range 1 O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Years After Implant 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td> <td>JS Market Release Aug-91 Serial Number Prefix LAK Estimated US Implants 43,700 Type and/or Fixation Transvenous, Vent., Tines Estimated US Active 14,200 Polarity Unipolar Advisories None Steroid Yes Image: Study Results Qualifying Complications 20 Total Number of Leads Enrolled in Study 1,158 Extra Cardiac Stimulation 1 In Cumulative Months of Follow-Up 62,408 Failure to Capture 15 Number of Leads Active in Study 398 Impedance Out of Range 1 O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Years After Implant 1 1 1 135 mo 1 15 16</td> <td>JS Market Release Aug-91 Serial Number Prefix LAK US Estimated US Implants 43,700 Type and/or Fixation Transvenous, Vent., Tines Estimated US Active 14,200 Polarity Unipolar Implants Advisories None Steroid Yes Advisories None Steroid Yes Qualifying Complications 20 Total Number of Leads Enrolled in Study 1,158 Extra Cardiac Stimulation 1 Insulation Cumulative Months of Follow-Up 62,408 Failure to Capture 15 Number of Leads Active in Study 398 Impedance Out of Range 1 0 1 2 3 4 5 6 7 8 9 10 11 12 14 15 16 17 Years After Implant 1 1 1 1 15 16 17</td> <td>JS Market Release Aug-91 Serial Number Prefix LAK US Return Estimated US Implants 43,700 Type and/or Fixation Transvenous, Vent., Tines Im Estimated US Active 14,200 Polarity Unipolar Electric Advisories None Steroid Yes Electric ular Placement Qualifying Complications 20 Total Number of Leads Enrolled in Study 1,158 Extra Cardiac Stimulation 1 Insulation (not ff Number of Leads Active in Study 1,158 Extra Cardiac Stimulation 1 Insulation (not ff Number of Leads Active in Study 398 Impedance Out of Range 1 Impedance Out of Range 1 0 1 2 3 4 5 6 7 8 9 10 11 12 14 15 16 17 18 Years After Implant 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td> <td>JS Market Release Aug-91 Serial Number Prefix LAK US Returned Prestimated US Implants 43,700 Type and/or Fixation Transvenous, Vent., Tines Implant Delectrical Malf Estimated US Active 14,200 Polarity Unipolar Electrical Malf Advisories None Steroid Yes Electrical Malf ular Placement Qualifying Complications 20 Total Number of Leads Enrolled in Study 1,158 Extra Cardiac Stimulation 1 Insulation (not further Cumulative Months of Follow-Up 62,408 Failure to Capture 15 Lead Disloc Number of Leads Active in Study 398 Impedance Out of Range 1 Insulation (not further Cumulative Months of Follow-Up 62,408 Failure to Capture 15 Lead Disloc Number of Leads Active in Study 398 Impedance Out of Range 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <t< td=""><td>JS Market Release Aug-91 Serial Number Prefix LAK US Returned Product Estimated US Implants 43,700 Type and/or Fixation Transvenous, Vent., Tines Implant Damage Estimated US Active 14,200 Polarity Unipolar Electrical Malfunction Advisories None Steroid Yes Other ular Placement Qualifying Complications 20 Total Longevity Study Results 1,158 Extra Cardiac Stimulation 1 Insulation (not further definer Sumber of Leads Enrolled in Study 1,158 Extra Cardiac Stimulation 1 Insulation (not further definer Sumber of Leads Active in Study 398 Impedance Out of Range 1 Insulation (not further definer Number of Leads Active in Study 398 Impedance Out of Range 1 Insulation (not further definer Number of Leads Active in Study 398 Impedance Out of Range 1 Insulation (not further definer Out of 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18</td></t<></td>	JS Market Release Aug-91 Serial Number Prefix LAK Estimated US Implants 43,700 Type and/or Fixation Transvenous, Vent., Tines Estimated US Active 14,200 Polarity Unipolar Advisories None Steroid Yes ular Placement Longevity Study Results Qualifying Complications 20 Number of Leads Enrolled in Study 1,158 Extra Cardiac Stimulation 1 Cumulative Months of Follow-Up 62,408 Failure to Capture 15 Number of Leads Active in Study 398 Impedance Out of Range 1 O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Years After Implant 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	JS Market Release Aug-91 Serial Number Prefix LAK Estimated US Implants 43,700 Type and/or Fixation Transvenous, Vent., Tines Estimated US Active 14,200 Polarity Unipolar Advisories None Steroid Yes Image: Study Results Qualifying Complications 20 Total Number of Leads Enrolled in Study 1,158 Extra Cardiac Stimulation 1 In Cumulative Months of Follow-Up 62,408 Failure to Capture 15 Number of Leads Active in Study 398 Impedance Out of Range 1 O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Years After Implant 1 1 1 135 mo 1 15 16	JS Market Release Aug-91 Serial Number Prefix LAK US Estimated US Implants 43,700 Type and/or Fixation Transvenous, Vent., Tines Estimated US Active 14,200 Polarity Unipolar Implants Advisories None Steroid Yes Advisories None Steroid Yes Qualifying Complications 20 Total Number of Leads Enrolled in Study 1,158 Extra Cardiac Stimulation 1 Insulation Cumulative Months of Follow-Up 62,408 Failure to Capture 15 Number of Leads Active in Study 398 Impedance Out of Range 1 0 1 2 3 4 5 6 7 8 9 10 11 12 14 15 16 17 Years After Implant 1 1 1 1 15 16 17	JS Market Release Aug-91 Serial Number Prefix LAK US Return Estimated US Implants 43,700 Type and/or Fixation Transvenous, Vent., Tines Im Estimated US Active 14,200 Polarity Unipolar Electric Advisories None Steroid Yes Electric ular Placement Qualifying Complications 20 Total Number of Leads Enrolled in Study 1,158 Extra Cardiac Stimulation 1 Insulation (not ff Number of Leads Active in Study 1,158 Extra Cardiac Stimulation 1 Insulation (not ff Number of Leads Active in Study 398 Impedance Out of Range 1 Impedance Out of Range 1 0 1 2 3 4 5 6 7 8 9 10 11 12 14 15 16 17 18 Years After Implant 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	JS Market Release Aug-91 Serial Number Prefix LAK US Returned Prestimated US Implants 43,700 Type and/or Fixation Transvenous, Vent., Tines Implant Delectrical Malf Estimated US Active 14,200 Polarity Unipolar Electrical Malf Advisories None Steroid Yes Electrical Malf ular Placement Qualifying Complications 20 Total Number of Leads Enrolled in Study 1,158 Extra Cardiac Stimulation 1 Insulation (not further Cumulative Months of Follow-Up 62,408 Failure to Capture 15 Lead Disloc Number of Leads Active in Study 398 Impedance Out of Range 1 Insulation (not further Cumulative Months of Follow-Up 62,408 Failure to Capture 15 Lead Disloc Number of Leads Active in Study 398 Impedance Out of Range 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <t< td=""><td>JS Market Release Aug-91 Serial Number Prefix LAK US Returned Product Estimated US Implants 43,700 Type and/or Fixation Transvenous, Vent., Tines Implant Damage Estimated US Active 14,200 Polarity Unipolar Electrical Malfunction Advisories None Steroid Yes Other ular Placement Qualifying Complications 20 Total Longevity Study Results 1,158 Extra Cardiac Stimulation 1 Insulation (not further definer Sumber of Leads Enrolled in Study 1,158 Extra Cardiac Stimulation 1 Insulation (not further definer Sumber of Leads Active in Study 398 Impedance Out of Range 1 Insulation (not further definer Number of Leads Active in Study 398 Impedance Out of Range 1 Insulation (not further definer Number of Leads Active in Study 398 Impedance Out of Range 1 Insulation (not further definer Out of 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18</td></t<>	JS Market Release Aug-91 Serial Number Prefix LAK US Returned Product Estimated US Implants 43,700 Type and/or Fixation Transvenous, Vent., Tines Implant Damage Estimated US Active 14,200 Polarity Unipolar Electrical Malfunction Advisories None Steroid Yes Other ular Placement Qualifying Complications 20 Total Longevity Study Results 1,158 Extra Cardiac Stimulation 1 Insulation (not further definer Sumber of Leads Enrolled in Study 1,158 Extra Cardiac Stimulation 1 Insulation (not further definer Sumber of Leads Active in Study 398 Impedance Out of Range 1 Insulation (not further definer Number of Leads Active in Study 398 Impedance Out of Range 1 Insulation (not further definer Number of Leads Active in Study 398 Impedance Out of Range 1 Insulation (not further definer Out of 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

4024 CapSure SP

.4	CapSure SP		Product Characteristic	S		
	US Market Release	Oct-91	Serial Number Prefix	LAJ	US Returned Product An	alysis
	Estimated US Implants	229,200	Type and/or Fixation	Transvenous, Vent., Tines	Implant Damage	264
	Estimated US Active	80,700	Polarity	Bipolar	Electrical Malfunction	106
	Advisories	None	Steroid	Yes	Other	34

Ventricular Placement

System Longevity Study Results **Qualifying Complications** 3 Total Number of Leads Enrolled in Study 1,215 Failure to Capture 3 51,600 Cumulative Months of Follow-Up Number of Leads Active in Study 28 100 Lead Survival Probability (%) 90 80 2 3 4 5 6 7 8 9 10 0 1 Years After Implant 9 yr 1 yr 2 yr 3 yr 5 yr 6 yr 7 yr 8 yr 10 yr 4 yr % 99.8 99.8 99.8 99.8 99.8 99.8 99.8 99.9 99.8 99.8 244 # 871 685 556 417 324 191 138 75 50 **Effective Sample Size**

4033 CapSure Z

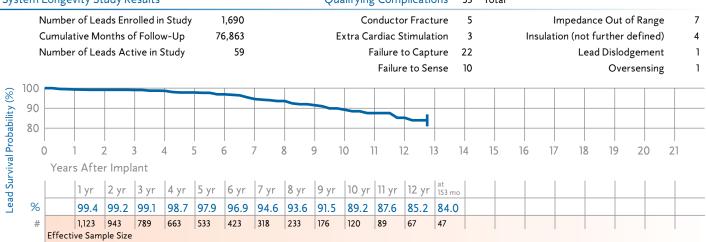
Product Characteristics

US Market Release	not US released	Serial Number Prefix	LCA	US Returned Product Analy	ysis
Estimated US Implants	n/a	Type and/or Fixation	Transvenous, Vent., Tines	Implant Damage	2
Estimated US Active	n/a	Polarity	Unipolar	Electrical Malfunction	0
Advisories	None	Steroid	Yes	Other	0

Ventricular Placement

	Number of Le	ads Enrolled	l in Study	541		Condu	uctor Fracture	1			
	Cumulative M	onths of Fol	low-Up	28,347		Failu	ire to Capture	8			
	Number of Le	ads Active i	n Study	49		Impedance	Out of Range	2			
100											
90)										
80)										
	0	1	2	3	4	5	6	7	8	9	10
	Years Afte	er Implant									
		1 yr	2 yr	3 yr	4 yr	5 yr	6 yr	7 yr	8 yr	9 yr	at 111 mo
%		99.4	99.4	98.8	98.5	98.1	97.5	97.5	96.5	95.3	95.3
#		432	385	322	252	201	159	111	78	52	50

4057, 4057M	Screw-In
-------------	----------


Pro	duct	Cha	racter	istics	
 -					

US Market Release	Aug-88	Serial Number Prefix	XQ or LAN	US Returned Product Ana	alysis
Estimated US Implants	12,100	Type and/or Fixation	Transvenous, V or A, Screw-in	Implant Damage	39
Estimated US Active	2,600	Polarity	Unipolar	Electrical Malfunction	6
Advisories	None	Steroid	No	Other	4

Ventricular Placement

/stem	Longevity St	udy Result	S		(Qualifying Co	omplications	7 Total			
1	Number of Lea	ads Enrolled	in Study	259		Condu	ictor Fracture	2		Failure t	o Sense
(Cumulative Mo	onths of Foll	ow-Up	15,266		Extra Cardia	ac Stimulation	2			
1	Number of Lea	ads Active in	l Study	13		Failu	ire to Capture	2			
100											
90 80 %											
80											
	0	1	2	3	4	5	6	7	8	9	10
	Years Afte	r Implant									
		l yr	2 yr	3 yr	4 yr	5 yr	6 yr	7 yr	8 yr	9 yr	at 114 mo
%		99.4	99.4	99.4	98.6	97.7	96.8	95.7	95.7	94.4	94.4
#		162	151	133	121	106	94	82	72	55	51
	Effective Sam	iple Size									

L	JS Marl	ket Rel	ease		Jan-8	Э	5	Serial N	lumber	Prefix		ZY or L	.AW					US F	Retu	rned	Prod	uct	Analysi
E	stimat	ed US I	mplant	ts	111,100)	-	Гуре ar	nd/or F	ixation		Transve	enous, '	V or A,	Screw	-in			Ir	nplan	t Dan	nage	38
E	stimat	ed US /	Active		24,600)	F	Polarity	/		I	Bipolar						El	ectri	cal Ma	alfund	ction	22
A	Advisor	ies			None	9	9	Steroid			I	No									0	ther	2
ial P	lacem	nent																					
em l	Longe	vity St	udy R	esults						Qua	alifying	g Com	plicatio	ons	32 To	otal							
Ν	lumbe	r of Lea	ads Enr	olled ir	l Study	2	2,364			E	xtra Ca	ardiac S	Stimula	tion	1		Insul	ation	(not	furthe	er de	fined	l)
C	umula	tive Mo	onths o	f Follov	w-Up	130),879				F	ailure	to Capt	ure	15				Lea	ad Dis	lodge	emen	it
Ν	lumbe	r of Lea	ads Act	tive in S	Study		58					Failur	e to Se	nse	7					0	verse	ensin	g
										Ir	mpeda	nce Ou	it of Ra	nge	4								
100																							
100																							
90															-1								
															-1								
90 80			2	3	4	5	6	7	8	9 1	0		2 1	3 1	4 1	5 1	6	17	18]0)	20	21
90 80	<i>•</i>		2 r Impl	5	4	5	6	7	8	9 1	0	11 1	2 1	3 1	4 1	5 1	6	17	18	19)	20	21
90 80	<i>•</i>		r Impl	ant	4	5 (-	7 ;	-								6	17	18	19)]	20	21
90 80	<i>•</i>	s Afte	r Impl 2 yr	ant 3 yr	4 yr	5 yr	6 yr	7 yr	8 yr	9 yr	10 yr	11 yr	12 yr	13 yr	14 yr	at 171 mo	6	17	18	19)	20	21
90 80 (<i>•</i>	s Afte	r Impl	ant			-	I	-								6	17	18	19)	20	21

4067 CapSureFix

7 CapSureFix		Product Characteristi	ics		
US Market Release	Jan-97	Serial Number Prefix	LCV	US Returned Product Analy	sis
Estimated US Implants	1,300	Type and/or Fixation	Transvenous, V or A, Screw-in	Implant Damage	3
Estimated US Active	500	Polarity	Unipolar	Electrical Malfunction	1
Advisories	None	Steroid	Yes	Other	1

Atrial Placement

Sys	tem	Longevity St	tudy Results			(Qualifying	g Complicatio	ns 6 T	otal			
	C	Number of Lea Cumulative Mo Number of Lea	onths of Follo	w-Up	108 6,054 42		F	ailure to Captu Oversensi					
(%)	100												
ity (9	90												
Lead Survival Probability	80												
Pro		0	1	2	3	4	5	6	7	8	9	10	
ival		Years Afte	er Implant										
Surv			1 yr	2 yr	3 yr	at 42 mo							
ead	%		97.0	97.0	97.0	97.0							
	#		85	76	65	48							
		Effective Sam	ple Size										

	US	5 Mark	et Rel	ease		Mar-9	6		Serial N	lumber	Prefix	L	CE						US	Retur	ned Pr	oduct	Ana	lysis
	Es	timate	ed US I	mplan	ts	131,70	0		Туре ан	1d/or F	ixation	-	Transve	nous, V	or A,	Scre	w-in			In	nplant [Damag	e	40
	Es	timate	ed US /	Active		54,70	0		Polarity	1		E	Bipolar							Electric	al Malf	unctio	n	8
	Ac	dvisori	es			Non	e		Steroid			Ň	Yes									Othe	r	١
		acem			1.						•	1.C ·	6	1										
en				udy R							Qua			licatior		55	Total							
					olled in			2,401						r Fractu		1					Insulat		-,	
					of Follov	•	11	7,635			E			timulatio		1				Lea	d Dislo	-		
	Nι	umber	of Lea	ads Act	tive in S	Study		631				F		o Captu		19						ersensi	0	
														e to Sens		11			Uns	pecifie	d Clinic	al Failu	ire	
											Ir	npedai	nce Out	of Rang	ge	4								
100)																							
90	$\left + \right $																_							
80																	_							
	0	1		 ; ;	∣ 3 ⊿	1 4 1	1 5 (5	7 2	8	i Ə 1(1 0 1	1 12	2 13],	4	15	16	17	18	19	20	21	
	-	Years	-	r Impl	ant	т .			,			0 1	1 12		1	T	15	10	17	10	12	20	21	
						L			-			10	at 129 mo				I		I	1			1	
0	,		1 yr	1	3 yr	4 yr	5 yr	6 yr	7 yr	8 yr	9 yr	1 .	1											
9			99.0	98.8	98.3	98.1	97.6	97.4	97.2	96.2	95.6	95.0	93.9											
	#		1,896	1,621 ple Size	1,359	1,091	828	601	415	296	199	113	49											
		incein	ic Jam	pic Size																				

Cumulative	Leads Enrolled Months of Fo Leads Active	llow-Up	1,799 84,282 527		Extra Cardia	ctor Fracture ac Stimulation re to Capture	2 2 19	Imp	pedance Out o	to Sense of Range rsensing
100										
90										-
80										
0	1	2	3	4	5	6	7	8	9	10
Years A	fter Implant									
	1 yr	2 yr	3 yr	4 yr	5 yr	6 yr	7 yr	8 yr	9 yr	10 yr
	99.3	98.8	98.8	98.4	98.0	97.7	96.9	96.4	93.6	93.6
%	33.3	20.0	20.0							

4073 CapSure Sense

Product Characteristics

US Market Release	Jun-02	Serial Number Prefix	BBF	US Returned Product Analy	sis
Estimated US Implants	500	Type and/or Fixation	Transvenous, Vent., Tines	Implant Damage	1
Estimated US Active	400	Polarity	Unipolar	Electrical Malfunction	0
Advisories	None	Steroid	Yes	Other	0

Atrial Placement

System Longevity Study Results **Qualifying Complications** 0 Total Number of Leads Enrolled in Study 1 Cumulative Months of Follow-Up 40 Number of Leads Active in Study 1 100 Lead Survival Probability (%) Survival estimate not available due to insufficient sample size 90 80 5 2 3 6 7 8 9 0 4 Years After Implant %

Effective Sample Size

Ventricular Placement System Longevity Study Results **Qualifying Complications** 0 Total Number of Leads Enrolled in Study 100 3,775 Cumulative Months of Follow-Up Number of Leads Active in Study 85 100 Lead Survival Probability (%) 90 80 2 3 4 5 6 7 8 9 0 10 1 Years After Implant 1 yr 2 yr 3 yr at 39 mo % 100.0 100.0 100.0 100.0 # 93 88 65 35 Effective Sample Size

10

4074 CapSure Sense

4	CapSure Sense		Product Characteristic	S		
	US Market Release	Jun-02	Serial Number Prefix	BBD	US Returned Product Ana	lysis
	Estimated US Implants	53,400	Type and/or Fixation	Transvenous, Vent., Tines	Implant Damage	12
	Estimated US Active	41,500	Polarity	Bipolar	Electrical Malfunction	3
	Advisories	None	Steroid	Yes	Other	1

Ventricular Placement

/stem l	_ongevity St	udy Result	S			Qualifying Co	mplications	6 To	tal			
Ν	lumber of Lea	ads Enrolled	in Study	614		Failur	e to Capture	1		Lead Dis	slodgement	2
C	Cumulative Mo	onths of Foll	ow-Up	18,331		Fail	ure to Sense	1				
Ν	lumber of Lea	ads Active in	ı Study	529		Impedance (Out of Range	2				
100												
90												
80												
() C	1	2	3	4	5	6	7	8	9	10	
	Years Afte	r Implant										
90 80 %		l yr	2 yr	3 yr	4 yr	at 54 mo						
%		99.3	99.1	99.1	99.1	99.1						
#		515	323	175	101	37						
	Effective Sam	ple Size										

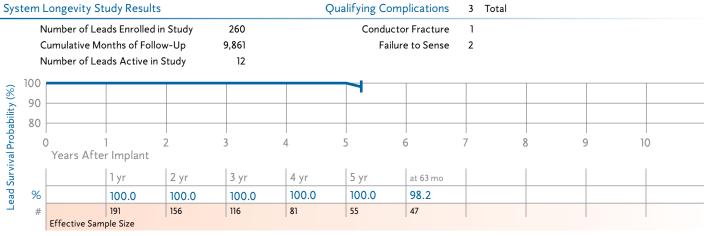
4076 CapSureFix Novus

6	CapSureFix Novu	IS	Product Characteristic	cs		
	US Market Release	Feb-04	Serial Number Prefix	BBL	US Returned Product Ana	alysis
	Estimated US Implants	144,400	Type and/or Fixation	Transvenous, V or A, Screw-in	Implant Damage	53
	Estimated US Active	122,500	Polarity	Bipolar	Electrical Malfunction	3
	Advisories	None	Steroid	Yes	Other	6

Atrial Placement

stem	Longevity St	tudy Results				Qualifying C	Complication	5 2 T	otal		
	Number of Lea Cumulative Mo Number of Lea	onths of Follo	w-Up	563 10,581 495			ure to Captur Dislodgemen				
100											
90)										
80)										
	0	1	2	3	4	5	6	7	8	9	10
	Years Afte	er Implant									
		l yr	2 yr	3 yr							
%		99.8	99.5	99.5							
#	ŧ	329	156	58							
	Effective Sam	ple Size				·					*

Ventricular Placement


stem	Longevity S	itudy Result	s		Ç	Jualifying Com	olications	2 Tota	I		
	Number of Le Cumulative M Number of Le	Ionths of Foll	ow-Up	545 1,633 480		Failure t	o Capture	2			
100											
90)										
80)										
	0	1	2	3	4	5 (5	7	8	9	10
	Years Aft	er Implant									
90 80		l yr	2 yr	3 yr	at 39 mo						
%		99.6	99.6	99.6	99.6						
#	÷	381	190	70	47						
	Effective Sar					1				1	1

4081 Target Tip

Target Tip		Product Characteristi	cs		
US Market Release	Jul-89	Serial Number Prefix	LAC	US Returned Product Analys	is
Estimated US Implants	4,100	Type and/or Fixation	Transvenous, Vent., Tines	Implant Damage	4
Estimated US Active	900	Polarity	Unipolar	Electrical Malfunction	5
Advisories	None	Steroid	No	Other	0

Ventricular Placement

System Longevity Study Results

4092	CapSure S	P Novus			Product	t Character	ristics						
	US Market Relea	ase	Sep-98		Serial Nu	umber Prefix	LEP				US Retu	Irned Produc	t Analysis
	Estimated US In	nplants	144,600		Type and	d/or Fixation	Tran	svenous, Vent.	, Tines		I	mplant Damag	ge 35
	Estimated US A	ctive	90,400		Polarity		Bipol	ar			Electr	ical Malfunctio	on 12
	Advisories		None		Steroid		Yes					Othe	er 5
	ricular Placeme n Longevity Stu					Qu	alifying Co	mplications	17 Total				
	Number of Leac Cumulative Mor	ds Enrolled in hths of Follow	v-Up	1,144 49,981			Condu xtra Cardia	ctor Fracture c Stimulation	3 1			nce Out of Rar ad Dislodgeme	0
_ 10	Cumulative Months of Follow-Up Number of Leads Active in Study		study	597			Failur	e to Capture	8				
%) <u></u>	0												
Lead Survival Probability (%)	0												
Prot	0 1		2	3	4		5	6	7	8	9	10	
/ival	Years After	Implant											
Sun		l yr	2 yr	3 yr		4 yr	5 yr	бyr	at 81 mo				
ead	%	98.9	98.8	98.7		98.4	97.9	97.9	97.9				
_		926	826	715		520	335	161	39				
	Effective Samp	le Size											

4503, 4503M CapSure

Product Characteristics

-					
US Market Release	Jul-86	Serial Number Prefix	MQ, LAY	US Returned Product Anal	lysis
Estimated US Implants	9,000	Type and/or Fixation	Transvenous, Atrial-J, Tines	Implant Damage	2
Estimated US Active	1,300	Polarity	Unipolar	Electrical Malfunction	11
Advisories	None	Steroid	Yes	Other	0

Atrial Placement

System Longevity Study Results Qualifying Complications 1 Total Number of Leads Enrolled in Study 59 Failure to Sense 1 3,206 Cumulative Months of Follow-Up Number of Leads Active in Study 6 100 Lead Survival Probability (%) Survival estimate not available due to insufficient sample size 90 80 2 3 5 6 7 8 9 10 0 4 ٦ Years After Implant % # Effective Sample Size

4504, 4504M CapSure

Product Characteristics

4, 4504M C	apsure		Pi	roduct Charac	teristics					
US Market Rele	ease	Mar-90	Se	erial Number Pro	efix QM	or LBA		US	Returned Product A	nalysis
Estimated US I	mplants	16,600	Тγ	/pe and/or Fixat	ion Trar	nsvenous, Atria	l-J, Tines		Implant Damage	5
Estimated US A	Active	1,500	Po	plarity	Bipo	olar		E	lectrical Malfunction	171
Advisories see page 149 – Below Expecta		1 Survival	St	eroid	Yes				Other	4
al Placement em Longevity St	udy Result	S		(Qualifying Co	omplications	48 Total			
Number of Lea	ads Enrolled	in Study	368		Electrical A	Abandonment	3	Imp	pedance Out of Range	9
Cumulative Mo	onths of Foll	ow-Up	19,867		Extra Cardia	ac Stimulation	1		Insulation (MIO)	1
Number of Lea	ads Active in	ı Study	1		Failu	ire to Capture	14		Lead Dislodgement	1
					Fa	ilure to Sense	16		Oversensing	3
100										
90										
80										
70									J	
60								_	1	
0	1	2	3	4	5	6	7	8	9 10	
Vears Afte	r Implant	Z	2	4	2	0	/	0	9 10	
	l yr	2 yr	3 yr	4 yr	5 yr	6 yr	7 yr	8 yr	at 105 mo	
%	100.0	100.0	99.1	98.2	90.3	82.2	73.0	69.9	66.1	
#	294	260	220	186	145	109	74	59	47	
Effective Sam	ple Size									

l	JS Market R	elease		Jul-8	3		Serial N	lumber	Prefix	P	۶F						USI	Return	ed Pro	duct A	Analys	is
E	stimated US	s Implan	ts	, 11,600	C		Type ar	nd/or F	ixation	1	Fransve	enous, A	Atrial-J	, Tines	5					amage		
_	stimated US			1,000	C		Polarity	,		E	Bipolar		·				F			inction		8
ļ	Advisories			Non	е		Steroid			١	No									Other		Ū
ial P	lacement																					
	Longevity		esults						Qua	alifying	Com	olicatio	ons	35 T	otal							
١	lumber of L	eads Enr	olled ir	n Study		600			I	Electric	al Aba	ndonm	ent	1				Ir	sulatio	n (MIO)	
C	Cumulative N	1onths o	of Follo	w-Up	39	9,765				F	ailure t	o Capt	ure	6		Insi	ulation	(not fu	irther o	defined)	
٢	lumber of L	eads Ac	tive in S	Study		6					Failur	e to Se	nse	14				Lead	Disloc	gemen	t	
									Ir	npedar	ice Ou	t of Rar	ıge	3					Ove	sensing	g	
											Insula	tion (E	SC)	2								
100																						
90																						_
80																						
		2	3	4	5 (6	7	8	9 1	0 1	1 1	2 1	3 1	4	15	16	17	18	19	20	21	
(
,																						
,	Years Aft	er Impl	ant																			
	Years Aft	er Impl	lant 3 yr	4 yr	5 yr	6 yr	7 yr	8 yr	9 yr	10 yr	11 yr	12 yr	13 yr	at 159 mc								
%	I I-	2 yr	1	4 yr 98.0	5 yr 96.7	6 yr 95.6		8 yr 91.5	9 yr 89.7	10 yr 87.5		12 yr 84.8		at 159 mc 83.6			_					_

4523 CapSure SP

Product Characteristics

US Market Release	Aug-91	Serial Number Prefix	ZE	US Returned Product Analy	sis
Estimated US Implants	12,000	Type and/or Fixation	Transvenous, Atrial-J, Tines	Implant Damage	5
Estimated US Active	3,300	Polarity	Unipolar	Electrical Malfunction	2
Advisories	None	Steroid	Yes	Other	1

Atrial Placement

	Number of Le	ads Enrolle	d in Study	121		Impedance C	ut of Range	1			
	Cumulative M			7,060		-	slodgement	2			
	Number of Le			7,000 19			Oversensing	2			
	INUMBER OF LE	aus Active	ri Study	19		,	Oversensing	I			
00						1					
90)					-					
80)										
	0	1	2	3	4	5	6	7	8	9	10
	Years Aft	er Implant									
		1 yr	2 yr	3 yr	4 yr	at 57 mo					
%	,	98.1	98.1	98.1	98.1	98.1					
	ŧ	95	81	71	58	50					

4524 CapSure SP

4	CapSure SP		Product Characteristic	S		
	US Market Release	Oct-91	Serial Number Prefix	LAR	US Returned Product Ana	alysis
	Estimated US Implants	106,900	Type and/or Fixation	Transvenous, Atrial-J, Tines	Implant Damage	47
	Estimated US Active	36,300	Polarity	Bipolar	Electrical Malfunction	23
	Advisories	None	Steroid	Yes	Other	8

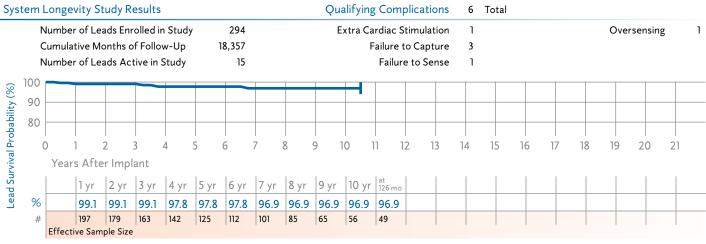
Atrial Placement

stem	Longevity St	udy Results			C	Qualifying Co	omplications	6 Total			
	Number of Lea Cumulative Mo Number of Lea	onths of Follo	w-Up	910 39,326 59		Fa	re to Capture ilure to Sense Dislodgement	3 2 1			
、100 、90 80											
00	0 Years Afte] r Implant	2	3	4	5	6	7	8	9	10
		1 yr	2 yr	3 yr	4 yr	5 yr	6 yr	7 yr	8 yr	9 yr	at 114 mo
%		99.6 681	99.3 536	99.3 426	99.0 328	99.0 253	99.0 190	99.0 139	99.0 93	99.0 58	99.0 48
π	Effective Sam	1.1.1	1330	120	520	233	150			30	140

4533 CapSure Z

Product Characteristics

US Market Release	not US released	Serial Number Prefix	LCB	US Returned Product Analy	ysis
Estimated US Implants	n/a	Type and/or Fixation	Transvenous, Atrial-J, Tines	Implant Damage	0
Estimated US Active	n/a	Polarity	Unipolar	Electrical Malfunction	0
Advisories	None	Steroid	Yes	Other	0


Atrial Placement

Numb	er of Leads Enrolle	d in Study	206		Failu	ire to Capture	1		(Oversensing
	lative Months of Fo	,	11,153			ilure to Sense	1			0
	er of Leads Active		19		Lead	Dislodgement	1			
00										
90										
80										
0	1	2	3	4	5	6	7	8	9	10
Yea	ars After Implant									
	1 yr	2 yr	3 yr	4 yr	5 yr	6 yr	at 78 mo			
%	100.0	99.4	98.8	97.9	97.9	97.9	97.9			
#	176	158	132	101	77	60	51			

4557, 4557M Screw-In

7, 4557M Screw-In		Product Characteristi	Product Characteristics					
US Market Release	Aug-88	Serial Number Prefix	VQ or LAM	US Returned Product Ana	alysis			
Estimated US Implants	22,500	Type and/or Fixation	Transvenous, Atrial-J, Screw-in	Implant Damage	53			
Estimated US Active	4,900	Polarity	Unipolar	Electrical Malfunction	14			
Advisories	None	Steroid	No	Other	4			

Atrial Placement

558	M Screw	-In		F	Product Charac	teristics						
	US Market Release Nov-94 Estimated US Implants 21,000 Estimated US Active 5,800		9	Serial Number Pr	efix LDO	2		US	Returned P	roduct Ana	alysis	
			-	Type and/or Fixation		Transvenous, Atrial-J, Screw-in			Implant Damage			
			Polarity		Bip	Bipolar		Electrical Malfunction Other			1	
Advisories None				Steroid								
	Placement											
System Longevity Study Results					Qualifying Complications 11 Total							
	Number of Leads Enrolled in Study					Electrical Abandonment		1	Impedance Out of Range			2
Cumulative Months of Follow-Up				22,131		Failu	Failure to Capture	3	Insulation (not further defined) Oversensing			I
	Number of Leads Active in Study		28		Fa	Failure to Sense		2				
1 0	0											
2) 2. 9	0									4		
Lead Survival Probability (%)	0											
0	0	1	2	3	4	5	6	7	8	9	10	
/IVal	Years Af	ter Implant										
unc		1 yr	2 yr	3 yr	4 yr	5 yr	6 yr	7 yr	8 yr	9 yr		
ead	%	99.3	99.3	99.3	99.3	99.3	97.6	96.5	96.5	91.6		
<u> </u>	#	353	296	249	191	139	96	83	64	47		

4568 CapSureFix

8	CapSureFix		Product Characteristic	S		
	US Market Release	Jan-97	Serial Number Prefix	LDD	US Returned Product Ana	alysis
	Estimated US Implants	72,800	Type and/or Fixation	Transvenous, Atrial-J, Screw-in	Implant Damage	197
	Estimated US Active	35,800	Polarity	Bipolar	Electrical Malfunction	6
	Advisories	None	Steroid	Yes	Other	4

ysten	n Longevity S	Study Results	5			Qualifying C	omplications	30 Total					
	Number of Le Cumulative M Number of Le	Ionths of Follo	ow-Up	576 21,713 223		Fa	ure to Capture ailure to Sense Dislodgement	19 2 8		Medica	Medical Judgment		
ē 10	0												
	0												
8	0												
É	0	1	2	3	4	5	6	7	8	9	10		
	Years Aft	er Implant											
		1 yr	2 yr	3 yr	4 yr	5 yr	6 yr	at 75 mo					
	6	96.3	95.8	94.5	94.1	93.1	93.1	93.1					
	#	420	364	293	202	108	62	52					
	Effective Sar	mple Size											

4574	CapSure Sense		Produ	ct Characterist	cs					
	US Market Release	Jun-02	Serial N	lumber Prefix	BBE			US Retu	rned Product An	alysis
	Estimated US Implants	34,500	Туре а	nd/or Fixation	Transvenou	s, Atrial-J, Tin	es	lı	nplant Damage	6
	Estimated US Active	26,500	Polarity	/	Bipolar				cal Malfunction	2
	Advisories	None	Steroio		Yes				Other	0
	Placement n Longevity Study Resul	ts		Qualif	ying Complica	itions 0	Total			
	Number of Leads Enrolled		6	,						
	Cumulative Months of Fo		145							
	Number of Leads Active	n Study	4							
8 10	0 Survival estimate not availa	ble due to insufficier	nt sample size							
llity	-									
bab	0 1	2 3		4 5	6	7	8	9	10	
al Pro	Years After Implant	Ζ 5		4 J	0	7	0)	10	
Lead Survival Probability (%)										
ad S	%									
Le	#									
	Effective Sample Size									

4592 CapSure SP Novus

2	CapSure SP Novus			Product Characteristics								
	US Market Release	Oct-98	5	Serial Number Prefix	LER		US Returned Product Ana	alysis				
	Estimated US Implants	73,000	-	Type and/or Fixation	Transvenous, Atrial-J, Tines		Implant Damage	12				
	Estimated US Active	44,400	F	Polarity	Bipolar		Electrical Malfunction	3				
	Advisories	None	9	Steroid	Yes		Other	0				

em	Longevity S	Study Resul	ts		(Qualifying Co	omplications	5 Total			
	Number of Lo Cumulative M Number of Lo	Ionths of Fo	llow-Up	244 10,221 93		Fa	ire to Capture ilure to Sense Dislodgement	2 1 2			
100											
90							•				
80											
	0	1	2	3	4	5	6	7	8	9	10
	Years Aft	er Implant									
		1 yr	2 yr	3 yr	4 yr	5 yr	6 yr	at 75 mo			
%		97.8	97.8	97.8	97.8	97.0	97.0	97.0			
#	-	159	141	133	117	94	62	53			
	Effective Sa	mple Size									

023,	5023M CapSur	e SP	Product Characteristics								
	US Market Release	Nov-88		Serial Number Pi	refix SX	or LAS		US	Returned Pr	oduct Ana	lysis
	Estimated US Implants	s 10,600		Type and/or Fixa	ition Tra	nsvenous, Vent	., Tines		Implant D	Damage	15
	Estimated US Active	2,800		Polarity	Uni	polar		E	lectrical Malf	unction	7
	Advisories	None		Steroid	Yes					Other	0
	cular Placement	sults			Qualifying C	omplications	14 Total				
	Number of Leads Enro	olled in Study	1,353		Cond	uctor Fracture	1	Imj	pedance Out	of Range	1
	Cumulative Months of	Follow-Up	65,821		Extra Cardi	ac Stimulation	3				
	Number of Leads Acti	ve in Study	550		Failu	ure to Capture	9				
5 100											
9(-		
8(D										
	0 1	2	3	4	5	6	7	8	9	10	
	Years After Impla	nt									
() 90 80 80 9	1 yr	2 yr	3 yr	4 yr	5 yr	6 yr	7 yr	8 yr	9 yr	at 111 m	0
9	6 99.7	99.6	99.5	99.4	99.4	99.2	97.1	97.1	97.1	97.1	
	# 1,053	920	810	637	500	351	231	133	62	47	
	Effective Sample Size										

5024	, <mark>5024</mark>	M Ca	apSu	re SF			F	roduc	t Cha	racteri	istics												
	US Mark	et Rele	ease		Mar-90)	5	Serial N	umber	Prefix	S	Y or L	AT				ι	JS Ret	urneo	d Pro	duct	Anal	ysis
	Estimate	ed US I	mplant	S	211,400)	٦	Type an	d/or Fi	ixation	Г	Transve	enous, V	/ent., T	ines				Impla	int Da	mage		723
	Estimate	ed US A	Active		69,300)	F	Polarity			B	Bipolar						Elect	rical N	Malfur	nction		106
	Advisori	es			None	2	S	Steroid			Y	'es								(Other		29
	icular Pl n Longev Number Cumulat Number	vity St of Lea	udy Re ds Enro onths of	olled in f Follov	v-Up		3,142 5,081 711				Coi ctra Ca	nducto rdiac S ailure t	olicatio r Fractu timulat co Captu	ure ion ure 2	15 To 3 2 4		Insulat	tion (no L		her d		ł)	1 5 5
% 100	0									lr	npedar		e to Ser t of Rar		2 2			I		Overs	sensin	g	1
0 it.																							
babil 8	- -																						
Prob																							
Lead Survival Probability (%)	0 1 Years	l 2 s Aftei		ant	1.	5 6		7 8		9 1		1 1:					lat		8	19	20	21	
Lead		1 yr		3 yr	4 yr	5 yr		7 yr	8 yr	9 yr			12 yr				186 mo						
- 9		99.7	99.6	99.5	99.5	99.4		99.3	99.1	98.9	98.8		98.6			98.6	98.6						
		6,123 ve Samp	5,272 ble Size	4,4/3	3,742	3,104	2,426	1,857	1,331	946	649	435	283	170	116	66	42	I	I				

6 CapSure		Product Characterist	ics		
US Market Release	Feb-88	Serial Number Prefix	RZ	US Returned Product Ana	alysis
Estimated US Implants	7,800	Type and/or Fixation	Transvenous, Vent., Tines	Implant Damage	60
Estimated US Active	1,200	Polarity	Bipolar	Electrical Malfunction	7
Advisories	None	Steroid	Yes	Other	1

	l ar Placem ongevity Stu		5		(Qualifying C	omplications	4 Total			
Cu	umber of Lea umulative Mo umber of Lea	nths of Follo	ow-Up	168 9,558 6			Abandonment ure to Capture	1 3			
00											
90 -											
80 -											
0	1		2	3	4	5	6	7	8	9	10
	Years After	Implant									
		l yr	2 yr	3 yr	4 yr	5 yr	6 yr	at 75 mo			
%		100.0	99.2	98.2	97.1	97.1	95.7	95.7			
#		128	111	96	83	70	56	52			

5033 CapSure Z

	Product Characteristic	cs		
Feb-96	Serial Number Prefix	LDK	US Returned Product Analysis	5
2,500	Type and/or Fixation	Transvenous, Vent., Tines	Implant Damage	6
1,000	Polarity	Unipolar	Electrical Malfunction	1
None	Steroid	Yes	Other	3
	2,500 1,000	Feb-96Serial Number Prefix2,500Type and/or Fixation1,000Polarity	2,500Type and/or FixationTransvenous, Vent., Tines1,000PolarityUnipolar	Feb-96Serial Number PrefixLDKUS Returned Product Analysis2,500Type and/or FixationTransvenous, Vent., TinesImplant Damage1,000PolarityUnipolarElectrical Malfunction

Ventricular Placement

em Longe	vity St	udy Re	esults						Qua	lifying	Comp	olications	24	Total						
Numbe	r of Lea	ds Enro	olled in	Study		1,901				Ca	rdiac P	erforation	1			Im	pedanc	e Out	of Ran	ge
Cumula	tive Mo	nths of	f Follov	v-Up	92	2,733				Co	nducto	r Fracture	5		Ins	sulation	ı (not f	urther	define	d)
Numbe	r of Lea	ds Act	ive in S	itudy		313				F	ailure t	o Capture	11				Lead	d Dislo	dgeme	nt
100																				
90										•										
80																				
0	 2	, 2	4	 5	1 1	1 5 7	Ι 7 ξ	3 9)](ן זיר ר	 1 13	2 13	14	15	16	17	18	19	20	21
÷	s Afte	r Impla	ant																	
	1 yr	2 yr	3 yr	4 yr	5 yr	6 yr	7 yr	8 yr	9 yr	10 yr	at 129 mo									
%	99.7	99.6	99.1	99.0	98.7	98.3	97.7	97.2	96.5	96.5	96.5									
70																				

5034 CapSure Z

Product Characteristics

US Market Release	Feb-96	Serial Number Prefix	LDF	US Returned Product Ana	lysis
Estimated US Implants	58,700	Type and/or Fixation	Transvenous, Vent., Tines	Implant Damage	85
Estimated US Active	21,900	Polarity	Bipolar	Electrical Malfunction	29
Advisories	None	Steroid	Yes	Other	11

	0		udy Re							4			olicatio		13	Total						
Ν	lumbe	r of Lea	ids Enro	olled in	Study	1	,594				Coi	nducto	r Fracti	ure	1			lm	pedanc	e Out	of Ran	ge
C	umula	tive Mo	onths of	f Follov	v-Up	80	,368				F	ailure t	o Capti	ure	9				Lead	d Dislo	dgeme	nt
Ν	lumbe	r of Lea	ıds Act	ive in S	itudy		292					Failure	e to Ser	nse	1							
100																						
90											-											
80																						
C) -	1 2	, 3	4	5	6	. 7	8	9	10) 1	1 12	2 13	ξ	14	15	16	17	18	19	20	21
		s Afte	r Impla					0			, 1		_ 10			10	10	17	10	12	20	21
		1 yr	2 yr	3 yr	4 yr	5 yr	6 yr	7 yr	8 yr	9 yr	10 vr	at 129 mo										
%				/	· ·	/									_							
		99.7	99.5	99.3	99.2	99.2	99.2	98.9	98.3	98.3		98.3			_							
#		1,269	1,052	881	704	549	447	347	235	161	99	41										

5054 CapSure Z Novus

4	CapSure Z Novus		Product Characteristics	Product Characteristics										
	US Market Release	Jun-98	Serial Number Prefix	LEH	US Returned Product Ana	lysis								
	Estimated US Implants	84,700	Type and/or Fixation	Transvenous, Vent., Tines	Implant Damage	40								
	Estimated US Active	49,700	Polarity	Bipolar	Electrical Malfunction	13								
	Advisories	None	Steroid	Yes	Other	6								

tem	Longevity S	study Resul	ts			Qualitying Co	omplications	11 Total				
I	Number of L	eads Enrolle	d in Study	1,392		Failu	ire to Capture	7		Lead Dislodge	ement	
(Cumulative N	Nonths of Fo	llow-Up	57,156		Fa	ilure to Sense	1				
I	Number of L	eads Active	in Study	534		Impedance	Out of Range	1				
100												
90								· ·				
80												
	0	1	2	3	4	5	6	7	8	9	10	
	Years Aft	er Implant										
		1 yr	2 yr	3 yr	4 yr	5 yr	6 yr	7 yr	at 90 mo			
%		99.5	99.4	99.4	99.3	99.3	98.4	98.4	98.4			
#		1,051	884	735	564	434	232	80	45			
	Effective Sa	mple Size										

5068 CapSureFix

8	CapSureFix		Product Characteristics	Product Characteristics										
	US Market Release	Jan-97	Serial Number Prefix	LDJ	US Returned Product Ana	alysis								
	Estimated US Implants	108,000	Type and/or Fixation	Transvenous, V or A, Screw-in	Implant Damage	455								
	Estimated US Active	49,800	Polarity	Bipolar	Electrical Malfunction	63								
	Advisories	None	Steroid	Yes	Other	15								

Atrial Placement

	Number of Lea	ads Enrolled ir	n Study	969		Failu	ire to Capture	2		Over	sensing
	Cumulative Mo		,	32,166			Out of Range	3		0.00	561151115
I	Number of Lea	ads Active in S	Study	90		Lead	Dislodgement	1			
100		1							_		
90											
80											
	0	1	2	3	4	5	6	7	8	9	10
	Years Afte	r Implant									
		1 yr	2 yr	3 yr	4 yr	5 yr	бyr	7 yr	8 yr	9 yr	at 114 mo
%		99.6	99.6	99.6	99.2	99.2	99.2	99.2	98.3	98.3	98.3
#		553	425	324	256	212	165	132	90	62	52

stem	Longevity S	itudy Resul	ts		Qualifying Complications								
	Number of Le Cumulative N Number of Le	lonths of Fo	llow-Up	1,360 35,786 164	Insu	Failu	uctor Fracture are to Capture rther defined)	1 3 1		Lead Dislodgement			
100									-				
90)												
80)												
	0	1	2	3	4	5	6	7	8	9	10		
90 90	Years Aft	er Implant											
		1 yr	2 yr	3 yr	4 yr	5 yr	бyr	7 yr	8 yr				
%	,	99.8	99.6	99.4	99.1	99.1	99.1	98.2	98.2				
#	ŧ	698	497	358	266	226	155	100	49				
	Effective San	mple Size											

5072 SureFix

Product Characteristics

US Market Release	Jun-98	Serial Number Prefix	LEM	US Returned Product Ana	alysis
Estimated US Implants	9,100	Type and/or Fixation	Transvenous, V or A, Screw-in	Implant Damage	26
Estimated US Active	5,000	Polarity	Bipolar	Electrical Malfunction	4
Advisories	None	Steroid	Yes	Other	1

Atrial Placement

System Longevity Study Results Qualifying Complications 2 Total Number of Leads Enrolled in Study 451 **Cardiac Perforation** 1 20,937 1 Cumulative Months of Follow-Up Failure to Capture Number of Leads Active in Study 132 100 Lead Survival Probability (%) 90 80 2 3 4 5 6 7 8 9 10 0 1 Years After Implant 2 yr 1 yr 3 yr 5 yr 6 yr 7 yr 4 yr at 90 mo % 99.7 99.4 99.4 99.4 99.4 99.4 99.4 99.7 # 339 285 238 189 155 141 85 56 Effective Sample Size

5076 CapSureFix Novus **Product Characteristics** US Market Release Aug-00 Serial Number Prefix PJN US Returned Product Analysis Estimated US Implants 911,600 Type and/or Fixation Transvenous, V or A, Screw-in Implant Damage 705 **Estimated US Active** 665,100 Polarity Bipolar **Electrical Malfunction** 163 Advisories None Steroid Yes Other 51 **Atrial Placement** System Longevity Study Results **Qualifying Complications** 15 Total Number of Leads Enrolled in Study 2,502 **Cardiac Perforation** 1 Impedance Out of Range 1 Cumulative Months of Follow-Up 81,429 **Conductor Fracture** 1 Insulation (not further defined) 1 Number of Leads Active in Study 1,226 Extra Cardiac Stimulation 2 Lead Dislodgement 4 Failure to Capture 4 Oversensing 1 100 Lead Survival Probability (%) 90 80 2 3 5 6 8 9 0 4 7 10 Years After Implant 2 yr 3 yr 4 yr 5 yr 6 yr 1 yr at 78 mo % 99.0 99.0 99.0 99.0 99.6 99.6 99.4 1,798 1,028 417 58 # 1,393 624 149 Effective Sample Size

System I	Longevity St	udy Results			(Qualifying Co	omplications	9 Total				
C	Number of Leads Enrolled in Study Cumulative Months of Follow-Up Number of Leads Active in Study			48,187 Conductor Fracture				1 1 3		Impedance	ilure to Sense Out of Range Dislodgement	1 1 2
100					-							
90							-					
80												
(0	1	2	3	4	5	6	7	8	9	10	
	Years Afte	r Implant										
		1 yr	2 yr	3 yr	4 yr	5 yr	6 yr	at 75 mo				
%		99.6	99.4	99.3	99.1	99.1	99.1	99.1				
#		1,031	808	645	395	252	89	52				
	Effective Sam	iple Size										

5092 CapSure SP Novus

2 CapSure SP Nov	us	Product Characteristic	Product Characteristics									
US Market Release	Jun-98	Serial Number Prefix	LET	US Returned Product Analysis								
Estimated US Implants	109,800	Type and/or Fixation	Transvenous, Vent., Tines	Implant Damage 47								
Estimated US Active	68,900	Polarity	Bipolar	Electrical Malfunction 20								
Advisories	None	Steroid	Yes	Other 11								

Ventricular Placement

	Number of Le	eads Enrolle	d in Study	1,171		Extra Cardia	c Stimulation	1			
	Cumulative N	Ionths of Fo	llow-Up	38,950		Failu	re to Capture	2			
	Number of Le	eads Active	in Study	257		Lead [Dislodgement	5			
00)					,		_			
90											
80)										
	0	1	2	3	4	5	6	7	8	9	10
	Years Aft	er Implant									
		1 yr	2 yr	3 yr	4 yr	5 yr	6 yr	7 yr			
%		99.6	99.5	99.3	99.0	99.0	99.0	99.0			
#		801	620	480	340	225	128	49			

5524, 5524M CapSure SP

Product Characteristics

US Market Release	Mar-90	Serial Number Prefix	XV or LAV	US Returned Product Ana	lysis
Estimated US Implants	63,800	Type and/or Fixation	Transvenous, Atrial-J, Tines	Implant Damage	66
Estimated US Active	22,300	Polarity	Bipolar	Electrical Malfunction	21
Advisories	None	Steroid	Yes	Other	7

System	Long	evity St	udy R	esults						Qua	alifying	g Com	plicatio	ons	38	Total							
		er of Lea ative Mo			,		1,440 5,419						or Fract to Capt		1 22		Ins	ulatior	•		define dgemei	•	2 4
10.0		er of Lea	ads Act	tive in S	Study		555			Ir	npeda		e to Se It of Ra		4					Ove	ersensir	ıg	4
00 ity 90																							
obabil 08																							
Lead Survival Probability (%) % % % % % % % % % % % % % % % % % %	0 Yea	1 rs Afte			4	5	6	7	8	9 1	0 1]]	2 1	3 1	4	15	16	17	18	19	20	21	
ad Sur		1 yr	2 yr	3 yr	4 yr	5 yr	6 yr	7 yr	8 yr	9 yr	10 yr	11 yr	12 yr	13 yr	at 165 m	10							
		99.8	99.8	99.5	99.4	99.3	99.2	98.9	98.4	97.9	97.5		96.8			3							
#		3,391 tive Sam	2,929 ple Size		2,111	1,754	1,366	1,025	720	519	368	228	142	71	46						I		

5534 CapSure Z

4 CapSure Z		Product Characteristi	cs		
US Market Release	Feb-96	Serial Number Prefix	LDG	US Returned Product Ana	lysis
Estimated US Implants	27,700	Type and/or Fixation	Transvenous, Atrial-J, Tines	Implant Damage	29
Estimated US Active	8,700	Polarity	Bipolar	Electrical Malfunction	6
Advisories	None	Steroid	Yes	Other	5

Total

Atrial Placement

System Longevity Study Results Qualifying Complications 6 5 Number of Leads Enrolled in Study 261 Failure to Capture Cumulative Months of Follow-Up 12,544 Impedance Out of Range 1 Number of Leads Active in Study 25

100 Lead Survival Probability (%) 90 80 2 3 4 5 6 7 8 9 10 0 1 Years After Implant 2 yr 3 yr 5 yr 1 yr 4 yr 6 yr at 78 mo % 98.3 97.8 97.8 97.1 97.1 97.1 97.1 # 204 179 153 103 68 52 48 Effective Sample Size

5554 CapSure Z Novus

Product Characteristics

US Market Release	Jun-98	Serial Number Prefix	LEJ	US Returned Product Analys	sis
Estimated US Implants	54,600	Type and/or Fixation	Transvenous, Atrial-J, Tines	Implant Damage	7
Estimated US Active	32,300	Polarity	Bipolar	Electrical Malfunction	6
Advisories	None	Steroid	Yes	Other	4

		_ongevity St	udy Results			(Qualifying Co	omplications	4 Total			
	C	Cumulative Mo	ads Enrolled in onths of Follow ads Active in S	w-Up	351 16,841 64		Impedance	ire to Capture Out of Range Dislodgement	1 1 1		Overser	nsing 1
bability (%)	90 90 80											
Lead Survival Probability (%)) Years Afte	1 r Implant 1 yr	2 2 yr	3 3 yr	4 4 yr	5 5 yr	6 6 yr	7 7 yr	8 8 yr	9 1 at 99 mo	0
Lead	%		100.0	99.1	98.6	98.1	98.1	98.1	98.1	98.1	98.1	
	#	Effective Sam	267 ple Size	202	176	167	146	100	83	61	50	

5568 CapSureFix

8 CapSureFix		Product Characterist	ics		
US Market Release	Jan-97	Serial Number Prefix	LDN	US Returned Product An	alysis
Estimated US Implants	66,500	Type and/or Fixation	Transvenous, Atrial-J, Screw-in	Implant Damage	228
Estimated US Active	44,700	Polarity	Bipolar	Electrical Malfunction	8
Advisories	None	Steroid	Yes	Other	9

em	n Longevity	Study Resul	lts		(Qualifying Co	omplications	4 Total			
	Cumulative	Leads Enrolle Months of Fo Leads Active	llow-Up	893 26,406 187		Fa	re to Capture ilure to Sense Dislodgement	2 1 1			
10(9(
8(-										
	0 Years Af	1 fter Implant	2	3	4	5	6	7	8	9	10
		l yr	2 yr	3 yr	4 yr	5 yr	б yr	7 yr	at 90 mo		
%	6	99.9	99.6	99.6	99.6	99.0	98.2	98.2	98.2		
7	#	573	380	253	168	142	99	62	47		
	Effective S	ample Size									

559 2	CapSure SP	Novus		Product Charac	teristics				
	US Market Releas	se Jun-98		Serial Number Pre	efix LEU	J		US Returned Product An	alysis
	Estimated US Im	olants 26,700		Type and/or Fixat	ion Trai	nsvenous, Atrial	I-J, Tines	Implant Damage	6
	Estimated US Ac	tive 18,200		Polarity	Bipo	olar		Electrical Malfunction	3
	Advisories	None		Steroid	Yes			Other	0
	l Placement m Longevity Stuc	ly Results		(Qualifying Co	omplications	4 Total		
	Number of Leads	Enrolled in Study	666		Failu	ire to Capture	2		
	Cumulative Mont	,	23,915			, Dislodgement	2		
	Number of Leads	Active in Study	209			-			
<i>⊗</i> 10	00					-			
ity (90								
oabil	80								
Lead Survival Probability (%)	0 1 Years After I	2 mplant	3	4	5	6	7 8	9 10	
Survi	1	yr 2 yr	3 yr	4 yr	5 yr	6 yr			
			99.2	99.2	99.2	99.2			
eac	% 9	9.7 99.2	99.2		JJ.2	JJ.2			

5594 CapSure SP Novus

4	CapSure SP Nov	us	Product Characterist	ics		
	US Market Release	Jun-01	Serial Number Prefix	LFD	US Returned Product Anal	lysis
	Estimated US Implants	10,000	Type and/or Fixation	Transvenous, Atrial-J, Tines	Implant Damage	0
	Estimated US Active	7,400	Polarity	Bipolar	Electrical Malfunction	1
	Advisories	None	Steroid	Yes	Other	0

Atrial Placement

em L	ongevity Study Result	S		Qu	alifying Com	plications	0 Total		
N	lumber of Leads Enrolled	in Study	17						
С	umulative Months of Foll	ow-Up	869						
N	lumber of Leads Active ir	n Study	11						
100 90	Survival estimate not availab	ole due to insu	fficient sample size						
80			2	4	5	6	7 8) 9 1	0
	Years After Implant								
%									

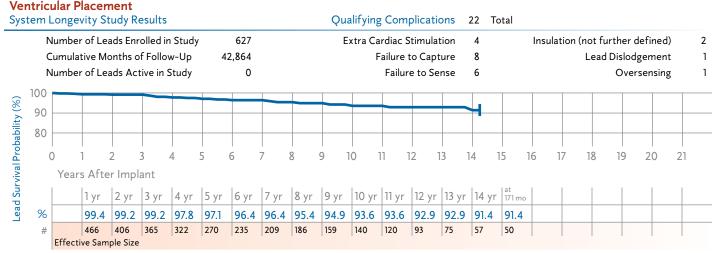
694	0 CapSureFi	x			Produc	t Characte	ristics						
	US Market Rele	ase	Oct-98		Serial N	umber Prefix	к ТСР			US R	eturned Prod	uct Ana	alysis
	Estimated US In	nplants	26,600		Type an	d/or Fixatior	n Transvo	enous, A or V	', Screw-in		Implant Dan	nage	114
	Estimated US A	ctive	12,300		Polarity		Bipolar			Ele	ectrical Malfund	tion	19
	Advisories		None		Steroid		Yes				0	ther	3
	al Placement em Longevity Stu	ıdy Results				Qu	alifying Com	plications	7 Total				
	Number of Lead	ds Enrolled i	n Study	818			Conducto	or Fracture	1		Overse	ensing	3
	Cumulative Mor	nths of Follo	w-Up	36,774			Failur	e to Sense	2				
	Number of Lead	ds Active in	Study	191			Lead Disl	odgement	1				
_∞ 1	100												
ty (9	90												
abilit	80												
roba	0 1		2	3	4		5	6	7	8	9	1 10	
	Years After	Implant	Z	2	4	ł	2	0	/	0	5	10	
Surv		lyr	2 yr	3 yr		4 yr	5 yr	бyr	7 yr	8 yr	at 102 mo		
ead	%	99.9	99.9	98.	8	98.5	98.5	98.5	98.5	98.5	98.5		
	#	598	500	400		330	277	231	194	79	46		

119 Medtronic CRDM Product Performance Report

Effective Sample Size

6957 Spectraflex

7 Spectraflex		Product Characteristi	cs		
US Market Release	Jul-79	Serial Number Prefix	VC	US Returned Product An	alysis
Estimated US Implants	29,100	Type and/or Fixation	Transvenous, V or A, Screw-in	Implant Damage	85
Estimated US Active	2,600	Polarity	Unipolar	Electrical Malfunction	39
Advisories	None	Steroid	No	Other	25


Atrial Placement

Imber of Leads Imulative Month	Enrolled in Study	673							
	ns of Follow-Up	24,255			ac Stimulation ire to Capture	1 3		Over	sensing
Imber of Leads	Active in Study	1		Fa	ilure to Sense	5			
1	2	3	4	5	6	7	8	9	10
Years After Ir	nplant								
1)	yr 2 yr	3 yr	4 yr	5 yr	6 yr	7 yr	8 yr	at 99 mo	
10	0.0 99.7	99.4	98.5	98.0	98.0	95.6	93.5	93.5	
39	9 312	249	204	170	138	97	61	52	
	1 y 10 39	100.0 99.7	Years After Implant 1 yr 2 yr 3 yr 100.0 99.7 99.4 399 312 249	Years After Implant 2 yr 3 yr 4 yr 100.0 99.7 99.4 98.5 399 312 249 204	Years After Implant 1 yr 2 yr 3 yr 4 yr 5 yr 100.0 99.7 99.4 98.5 98.0 399 312 249 204 170	Years After Implant 1 yr 2 yr 3 yr 4 yr 5 yr 6 yr 100.0 99.7 99.4 98.5 98.0 98.0 399 312 249 204 170 138	Years After Implant 1 yr 2 yr 3 yr 4 yr 5 yr 6 yr 7 yr 100.0 99.7 99.4 98.5 98.0 95.6 399 312 249 204 170 138 97	Years After Implant 1 yr 2 yr 3 yr 4 yr 5 yr 6 yr 7 yr 8 yr 100.0 99.7 99.4 98.5 98.0 98.0 95.6 93.5 399 312 249 204 170 138 97 61	Years After Implant 1 yr 2 yr 3 yr 4 yr 5 yr 6 yr 7 yr 8 yr at 99 mo 100.0 99.7 99.4 98.5 98.0 98.0 95.6 93.5 93.5 399 312 249 204 170 138 97 61 52

iystem l	_onge	vity St	udy R	esults						Qu	alifying	g Com	plicati	ons	42 To	otal						
		r of Lea tive Mo			,		1,853 6,172			F	Co xtra Ca		or Fract		14 2			Imped tion (no			0	
Ν		r of Lea			•	,	22			L		ailure	to Capt e to Se	ture	18 2		IIISula				ensing	
001 % 90																		-1				
08 00																						
		1 2 s Afte	2 r Impl	3 ant	4	5	6	7	8	9 1	10	11 1	12 1	13 1	4 1	5 1	6 1	7 1	8 1	9	20	21
с о ас		1 yr	2 yr	3 yr	4 yr	5 yr	6 yr	7 yr	8 yr	9 yr	10 yr	11 yr	12 yr	13 yr	14 yr	15 yr	16 yr	17 yr	at 207 mo			
۳ %		99.6	99.3	98.9	98.3	97.8	97.1	96.9	96.2	96.2	95.4	95.0	94.4	94.4	93.7	93.7	92.6	91.2	91.2			
#		1,224 ive Sam	998	834	709	623	515	430	341	279	227	192	159	132	108	86	67	54	51			

	US Mar		2250		Sep-80	1		Sorial N	lumba	Prefix		GG							turno d	Dradu	et Ares	l.
	Estimat				30.000									المناط	Conor			JS Rei		Produ		IY:
	Estimat		•	.5	,			Type ar	,	ixation			enous, <i>i</i>	Atriai-j	, screv	/-iri				nt Dama	0	
			Active		2,100			Polarity				Jnipola	Ir					Elec	trical M	alfunct		
	Advisor	ies			None	3	:	Steroid			r	No								Ot	her	
امات	Placen																					
	1 Longe		udv Re	esults						Oua	lifving	Com	plicatio	ons	88 To	otal						
					Church		240			4 0.0			r Fract		13							
	Numbe						2,348			г.			timulat		3		المعيام	tion (m		lation (I Ier defi		
	Cumula				•	160),328			E							insula	•				
	Numbe	r of Lea	as Act	ive in S	ituay		28				F		to Capt		48 14			L		lodgen		
													e to Se		14				C	Versen	ising	
										Ir	npedar	ice Ou	t of Rai	nge	I							
																						-
100																						
90																						
90			, 3	2	1 1		5	7 9	2 (0 1	0 1	1 1	 ว 1	2 1	1 1	5 1	6 1	7 1	12 1	a 20	0 2	1
90	0	1 2	2 3		4	5 6	5	7 8	8	91	0 1	11	 2 1	 3 1	 4 1	5 1	6 1	7 1	18 1	9 20	0 2	1
90	0	1 2 s After	- ~		4 !	5 6	5	7 8	8	9 1	0 1	11	21	3 1	4 1	5 1	6 1	7 1	18 1	9 20	0 2	1
90	0	1 2 s After 1 yr	- ~		4 ! 4 yr		5 6 yr	7 8	 8 9 8 yr	 9 1 9 yr	0 1 10 yr		 2 1 12 yr	 3 1 13 yr				 7 1 17 yr		9 20 19 yr	0 2	1
90	0 Year		r Impla	ant			1		-				12 yr					17 yr			0 2]

6961	Tenax		Product Characterist	ics		
	US Market Release	Jan-78	Serial Number Prefix	ТВ	US Returned Product An	alysis
	Estimated US Implants	44,700	Type and/or Fixation	Transvenous, Vent., Tines	Implant Damage	103
	Estimated US Active	1,000	Polarity	Unipolar	Electrical Malfunction	27
	Advisories	None	Steroid	No	Other	0
Vont	icular Placament					

	US Mark	et Releas	e	Jan-7	8		Serial N	lumber	Prefix	ι	JB					ι	JS Ret	urned	Produ	uct Ana	lysis
	Estimate	ed US Imp	lants	70,600	0		Type an	nd/or Fi	ixation	-	Transve	nous, \	/ent., 1	ines				Implar			170
	Estimate	ed US Act	ive	2,000	0		Polarity			E	Bipolar						Flect	rical M		0	84
1	Advisori	ies		Non	e		Steroid			1	No						2.000			ther	0
		lacemer							Qua	lifying	g Comj	olicatio	ons	51 To	tal						
	Number	of Leads	Enrolled i	n Study		1,483				Co	nducto	r Fract	ure	5			Imped	ance O	ut of R	ange	2
	Cumulat	tive Montł	ns of Follo	w-Up	109	9,926			E	tra Ca	rdiac S	timulat	ion	1		Insulat	tion (no	ot furth	ier def	ined)	2
	Number		.	Churdy		2				-	ailure t	· Cont		דר					slodgei	mont	
	number	^r of Leads	Active in	Sludy		3				F	allure i	o Capi	ure .	27			L	ead Dis	siougei	mem	1
	Number	of Leads	Active in	Study		3				F		e to Sei		10			L)verse		3
100		of Leads	Active in	Study		3		1	1	F		•					L		Ũ		3
100)	or Leads	Active in	Study		3				F		•							Ũ		3
100)	of Leads	Active in	Study		3				F		•							Ũ		3
100)		Active in			3						•							Ũ		3
100)	1 2	Active in		5 6	5	7 8	8	9 1			•	nse		5 1	6 1			Dverse		
100		1 2 s After Ir	3		5 6		7 8	8	9]			e to Sei	nse	10	5 1	6 1			Dverse	nsing	
100		1 2	3 nplant		5 (7 {			0 1	Failur I	e to Ser	1se 3 1.	10 4 1.			7 1	C	9 2	nsing	
100	0 Years	1 2 s After Ir 1 yr 2	3 nplant	4		6		8 yr	9 yr	0 1		e to Ser	nse	10 4 1.	5 1 15 yr 93.5		7 1		9 2	nsing	

	ls Enrolled	(but2 ni əvitəA el	lifying plications	o stinoM evitsiu Vbut2 ni qU-wo	Device S	Device Survival Probability (%) Years After Implant 	robabilit ant	y (%)		_	_			_	_	_	-
uno moo	lsuQ moJ	uno moo		Follo	l yr	2 yr	3 yr	4 yr	5 yr	6 yr	7 yr	8 yr	10 yr	12 yr	14 yr	16 yr 18	yr 20 yr
1 4,2		-	4,2	4,272	99.3 +0.6/-4.2	99.3 +0.6/-4.2	99.3 +0.6/-4.2										
0 4,233		0		33	100.0	100.0	100.0										
12 45,711		12	45,71	-	99.4 +0.4/-1.1	99.4 +0.4/-1.1	99.4 +0.4/-1.1	99.1 +0.5/-1.2	99.1 +0.5/-1.2	98.8 +0.7/-1.5	98.5 +0.8/-1.8	97.7 +1.1/-2.4	97.7 +1.1/-2.4	96.2 +2.2/-4.9 at 138 mo			
278 71,611	5 278 71,611	5 278 71,611	71,611		99.8 +0.1/-0.5	99.3 +0.4/-0.7	96.3 +1.0/-1.4	87.4 +2.1/-2.4	77.1 +2.9/-3.2	69.4 +3.4/-3.7	64.1 +3.7/-4.1	58.1 +4.2/-4.5	51.5 +4.8/-5.0	50.6 +5.0/-5.2			
Expectations 25 54,409	tat	ow Expectations 4 25 54,409	tations 54,409		99.4 01/10	99.2	99.1 20.1	98.8	97.6 812/11	96.4	96.0	96.0 1 6/-2 1	95.0		9.19	91.9 21.17	
						0.1-10.01	7.1- / 7.01	7.1-17.04								at 183 mo	
022	151,022 ations	022	022		99.6 +0.2/-0.3	99.1 +0.4/-0.5	98.4 +0.5/-0.7	95.9 +0.8/-1.1	92.6 +1.2/-1.5	88.1 +1.7/-1.9	83.9 +2.0/-2.2	77.8 +2.5/-2.7	69.8 +3.1/-3.4	65.7 +3.5/-3.7	62.9 +4.0/-4.2	62.2 +4.1/-4.4 at 189 mo	
20 62,408 +	62,408	20 62,408		σ ÷	99.9 +0.1/-0.6	99.3 +0.4/-0.9	98.8 +0.5/-1.1	98.6 +0.6/-1.1	98.6 +0.6/-1.1	98.2 +0.8/-1.4	97.0 +1.2/-2.1	96.6 +1.3/-2.3	95.8 +1.8/-3.1	94.3 +2.7/-5.1 at 135 mo			
3 51,600 99	51,600	3 51,600	51,600	66 0+	99.9 +0.1/-0.5	99.8 +0.1/-0.7	99.8 +0.1/-0.7	99.8 +0.1/-0.7	99.8 +0.1/-0.7	99.8 +0.1/-0.7	99.8 +0.1/-0.7	99.8 +0.1/-0.7	99.8 +0.1/-0.7				
11 28,347 9 +	28,347	11 28,347	28,347	σ +	99.4 +0.4/-1.4	99.4 +0.4/-1.4	98.8 +0.7/-1.7	98.5 +0.8/-1.9	98.1 +1.0/-2.2	97.5 +1.3/-2.7	97.5 +1.3/-2.7	96.5 +1.9/-3.8	95.3 +2.5/-5.2 at 111mo				
7 15,266	15,266	7 15,266	15,266	σ ÷	99.4 +0.5/-3.5	99.4 +0.5/-3.5	99.4 +0.5/-3.5	98.6 +1.1/-4.1	97.7 +1.6/-4.7	96.8 +2.0/-5.3	95.7 +2.5/-5.9	95.7 +2.5/-5.9	94.4 +3.1/-6.8 at 114mo				
32 130,879 9	130,879	32 130,879		θŤ	99.9 +0.1/-0.4	99.6 +0.2/-0.4	99.5 +0.2/-0.5	99.1 +0.4/-0.6	98.7 +0.5/-0.7	98.3 +0.6/-0.9	98.2 +0.6/-1.0	97.5 +0.8/-1.3	96.1 +1.4/-2.1	96.1 +1.4/-2.1	95.0 +2.1/-3.5	95.0 +2.1/-3.5 at 171 mo	
53 76,863 9:	76,863	53 76,863		σ ÷	99.4 +0.3/-0.7	99.2 +0.4/-0.7	99.1 +0.4/-0.8	98.7 +0.5/-1.0	97.9 +0.8/-1.2	96.9 +1.1/-1.6	94.6 +1.7/-2.3	93.6 +1.9/-2.6	89.2 +3.1/-4.2	85.2 +4.5/-6.0	84.0 +4.8/-6.7 at 153 mo		
6 6,054 97	6,054	6 6,054	6,054	97 +2	97.0 +2.0/-5.9	97.0 +2.0/-5.9	97.0 +2.0/-5.9	97.0 +2.0/-5.9 at 42 mo									
55 117,635	117,635	55 117,635	117,635	01 +	99.0 +0.4/-0.5	98.8 +0.4/-0.6	98.3 +0.5/-0.7	98.1 +0.5/-0.8	97.6 +0.6/-1.0	97.4 +0.7/-1.0	97.2 +0.8/-1.0	96.2 +1.2/-1.5	95.0 +1.6/-2.4	93.9 +2.3/-3.7 at 129 mo			
33 84,282	84,282	33 84,282			99.3 +0.3/-0.6	98.8 +0.4/-0.7	98.8 +0.4/-0.7	98.4 +0.6/-0.8	98.0 +0.7/-1.0	97.7 +0.8/-1.2	96.9 +1.0/-1.7	96.4 +1.3/-2.1	93.6 +2.7/-4.6				

Leads

			ခဒဧချခ႘	bəl	out2 ni sv	suc	o sq1uoM MontPs d	Device S	urvival I	Device Survival Probability (%)	y (%)										
	,	þer	rket F	Enrol	-			Years After Implant	ter Imp	lant		-	-						-		_
	(lims7	աբկշ	°₩S∩	speəJ		filsuQ qmoD	volloa	1 yr	2 yr	3 yr	4 yr	5 yr	6 yr	7 yr	8 yr	10 yr	12 yr	14 yr	16 yr	18 yr	20 yr
	CapSure Sense	Atrial	Jun-02	-	-	0	40	Survivalesi	imate not	Survival estimate not available due to insufficient sample size	ue to insuf	ficient sam	ple size								
	CapSure Sense	Vent	Jun-02	100	85	0	3,775	100.0	100.0	100.0	100.0 at 39 mo										
	CapSure Sense	Vent	Jun-02	614	529	9	18,331	99.3 +0.4/-1.1	99.1 +0.5/-1.3	99.1 +0.5/-1.3	99.1 +0.5/-1.3	99.1 +0.5/-1.3 at 54 mo									
	CapSureFix Novus	Atrial	Feb-04	563	495	2	10,581	99.8 +0.2/-1.1	99.5 +0.4/-1.5	99.5 +0.4/-1.5											
	CapSureFix Novus	Vent	Feb-04	545	480	2	11,633	99.6 +0.3/-1.2	99.6 +0.3/-1.2	99.6 +0.3/-1.2	99.6 +0.3/-1.2 at 39 mo										
· ·	Target Tip	Vent	Jul-89	260	13	3	9,861	100.0	100.0	100.0	100.0	100.0	98.2 +1.5/-10.5 at 63 mo								
	CapSure SP Novus	Vent	Sep-98	1,144	597	11	49,981	98.9 +0.5/-0.9	98.8 +0.5/-0.9	98.7 +0.5/-1.0	98.4 +0.6/-1.1	97.9 +0.8/-1.3	ri	97.9 +0.8/-1.3 at 81 mo							
-	CapSure	Atrial	Jul-86	59	9	-	3,206	Survival est	imate not	Survival estimate not available due to insufficient sample size	ue to insuff	ficient sam	ole size								
	CapSure	Atrial	Mar-90	368		48	67	100.0	100.0	99.1 +0.7/-2.5	98.2 +1.1/-3.0	90.3 +3.5/-5.3	82.2 +5.1/-6.8	73.0 +6.5/-8.2	69.9 +7.0/-8.7	66.1 +7.7/-9.2 **105 m0					
-		page 147	see page 142 - 1330 Leau Jurvival Delow			схрестаноль	success														
•	Target Tip	Atrial	Jul-83	600	9	35	39,765	99.6 +0.3/-1.2	99.6 +0.3/-1.2	99.1 +0.6/-1.5	98.0 +1.0/-2.0	96.7 +1.4/-2.4	95.6 +1.8/-2.8	94.7 +2.0/-3.2	91.5 +2.9/-4.3	87.5 +3.9/-5.5	84.8 +4.6/-6.3	83.6 +5.0/-6.8 at 159 mo			
-	CapSure SP	Atrial	Aug-91	121	6[4	7,060	98.1 +1.4/-5.3	98.1 +1.4/-5.3	98.1 +1.4/-5.3	98.1 +1.4/-5.3	98.1 +1.4/-5.3 at 57 mo									
-	CapSure SP	Atrial	Oct-91	016	59	Q	39,326	99.6 +0.3/-0.7	99.3 +0.4/-1.0	99.3 +0.4/-1.0	99.0 +0.6/-1.2	99.0 +0.6/-1.2	99.0 +0.6/-1.2	99.0 +0.6/-1.2	99.0 +0.6/-1.2	99.0 +0.6/-1.2 at 114 mo					
•	CapSure Z	Atrial	not US released	206	6[4	11,153	100.0	99.4 +0.5/-3.5	98.8 +0.9/-3.6	97.9 +1.4/-4.2	97.9 +1.4/-4.2	97.9 +1.4/-4.2	97.9 +1.4/-4.2 at 78 mo							
	Screw-In	Atrial	Aug-88	294	51	Q	18,357	99.1 +0.7/-2.8	99.1 +0.7/-2.8	99.1 +0.7/-2.8	97.8 +1.4/-3.6	97.8 +1.4/-3.6	97.8 +1.4/-3.6	96.9 +1.8/-4.4	96.9 +1.8/-4.4	96.9 +1.8/-4.4	96.9 +1.8/-4.4 at 126 mo				
••	Screw-In	Atrial	Nov-94	539	28	=	22,131	99.3 +0.5/-1.4	99.3 +0.5/-1.4	99.3 +0.5/-1.4	99.3 +0.5/-1.4	99.3 +0.5/-1.4	97.6 +1.6/-4.2	96.5 +2.1/-5.2	96.5 +2.1/-5.2	91.6 +4.5/-9.0 at 108 mo					

Lead Survival Summary continued

continued

		Selease	pəj	γbut2 ni ອ	suc	⊨ Nonths of Months of	Device (Survival F	Device Survival Probability (%)	ty (%)										
	þer	arket R	Enroll		ying Jicatio		Years A	ears After Implant	lant	-	-	-	_	-	-	-	-	-	_	
	աբկշ	°W SN	speəy		filsuQ qmoጋ		1 yr	2 yr	3 yr	4 yr	5 yr	6 yr	7 yr	8 yr	10 yr	12 yr	14 yr	16 yr	18 yr	20 yr
	Atrial	Jan-97	576	223	30	21,713	96.3 +1.4/-2.1	95.8 +1.5/-2.2	94.5 +1.8/-2.6	94.1 +1.9/-2.8	93.1 +2.2/-3.2	.2	93.1 +2.2/-3.2 at 75 mo							
1	Atrial	Jun-02	9	4	0	145	Survival estimate not	timate not	available d	available due to insufficient sample size	icient samp	ole size								
	Atrial	Oct-98	244	93	ъ	10,221	97.8 +1.4/-3.5	97.8 +1.4/-3.5	97.8 +1.4/-3.5	97.8 +1.4/-3.5	97.0 +1.8/-4.3	97.0 +1.8/-4.3	97.0 +1.8/-4.3 at 75 mo							
	Vent	Nov-88	1,353	550	14	65,821	99.7 +0.2/-0.5	99.6 +0.3/-0.6	99.5 +0.3/-0.6	99.4 +0.3/-0.8	99.4 +0.3/-0.8	99.2 +0.4/-1.0	97.1 +1.3/-2.5	97.1 +1.3/-2.5	97.1 +1.3/-2.5 at 111 mo					
	Vent	Mar-90	8,142	ΙΙΖ	45	425,081	99.7 +0.1/-0.2	99.6 +0.1/-0.2	99.5 +0.2/-0.2	99.5 +0.1/-0.2	99.4 +0.2/-0.2	99.3 +0.2/-0.2	99.3 +0.2/-0.3	99.1 +0.3/-0.4	98.8 +0.4/-0.6	98.6 +0.5/-0.8	98.6 +0.5/-0.8	98.6 +0.5/-0.8 at 186 mo		
	Vent	Feb-88	168	9	4	9,558	100.0	99.2 +0.7/-4.8	98.2 +1.4/-5.2	97.1 +2.0/-5.9	97.1 +2.0/-5.9	95.7 +2.7/-7.2	95.7 +2.7/-7.2 at 75 mo							
	Vent	Feb-96	1,901	313	24	92,733	99.7 +0.2/-0.4	99.6 +0.2/-0.4	99.1 +0.4/-0.7	99.0 +0.5/-0.7	98.7 +0.6/-0.9	98.3 +0.7/-1.2	97.7 +0.9/-1.4	97.2 +1.0/-1.6	96.5 +1.3/-1.9	96.5 +1.3/-1.9 at 129 mo				
	Vent	Feb-96	1,594	292	13	80,368	99.7 +0.2/-0.5	99.5 +0.3/-0.6	99.3 +0.3/-0.7	99.2 +0.4/-0.8	99.2 +0.4/-0.8	99.2 +0.4/-0.8	98.9 +0.5/-0.9	98.3 +0.8/-1.5	98.3 +0.8/-1.5	98.3 +0.8/-1.5 at 129 mo				
	Vent	Jun-98	1,392	534	=	57,156	99.5 +0.3/-0.6	99.4 +0.3/-0.6	99.4 +0.3/-0.6	99.3 +0.3/-0.8	99.3 +0.3/-0.8	98.4 +0.8/-1.6	98.4 +0.8/-1.6	98.4 +0.8/-1.6 at 90 mo						
	Atrial	Jan-97	696	06	7	32,166	99.6 +0.3/-0.9	99.6 +0.3/-0.9	99.6 +0.3/-0.9	99.2 +0.5/-1.5	99.2 +0.5/-1.5	99.2 +0.5/-1.5	99.2 +0.5/-1.5	98.3 +1.2/-3.6	98.3 +1.2/-3.6 at 114 mo					
	Vent	Jan-97	1,360	164	9	35,786	99.8 +0.1/-0.6	99.6 +0.3/-0.8	99.4 +0.4/-1.1	99.1 +0.5/-1.5	99.1 +0.5/-1.5	99.1 +0.5/-1.5	98.2 +1.2/-3.5	98.2 +1.2/-3.5						
	Atrial	Jun-98	451	132	2	20,937	99.7 +0.3/-1.5	99.7 +0.3/-1.5	99.4 +0.4/-1.9	99.4 +0.4/-1.9	99.4 +0.4/-1.9	99.4 +0.4/-1.9	99.4 +0.4/-1.9	99.4 +0.4/-1.9 at 90 mo						
	Atrial	Aug-00	2,502	1,226	15	81,429	99.6 +0.2/-0.3	99.6 +0.2/-0.4	99.4 +0.3/-0.5	99.0 +0.5/-0.7	99.0 +0.5/-0.7	99.0 +0.5/-0.7	99.0 +0.5/-0.7 at 78 mo							
	Vent	Aug-00	1,508	660	6	48,187	99.6 +0.2/-0.5	99.4 +0.3/-0.6	99.3 +0.3/-0.8	99.1 +0.4/-0.9	99.1 +0.4/-0.9	99.1 +0.4/-0.9	99.1 +0.4/-0.9 at 75 mo							
	Vent	Jun-98	1/11,1	257	∞	38,950	99.6 +0.2/-0.7	99.5 +0.3/-0.8	99.3 +0.4/-1.0	99.0 +0.6/-1.2	99.0 +0.6/-1.2	99.0 +0.6/-1.2	99.0 +0.6/-1.2							
	Atrial	Mar-90	4,440	555	38	235,419	99.8 +0.1/-0.2	99.8 +0.1/-0.3	99.5 +0.2/-0.3	99.4 +0.2/-0.4	99.3 +0.2/-0.4	99.2 +0.3/-0.4	98.9 +0.4/-0.5	98.4 +0.5/-0.8	97.5 +0.8/-1.3	96.8 +1.1/-1.7	96.8 +1.1/-1.7 at 165 mo			

Leads

continued

	-	6 yr 7 yr 8 yr 10 yr 12 yr 14 yr 16 yr 18 yr 20 yr	.3.5 97.1 +1.6/-3.5 97.1 +1.6/-3.5 .3.1 at 78 mo	-3.3 98.1 98.1 98.1 98.1 -3.3 +1.2/-3.3 +1.2/-3.3 +1.2/-3.3 at 99 mo	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1.2 99.2 +0.5/-1.2	t sample size	-1.6 98.5 98.5 98.5 98.5 98.5 -0.8/-1.6 +0.8/-1.6 +0.8/-1.6 at 102 mo	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1.2 +1.0/-1.4 +1.0/-1.5 +1.2/-1.7 +1.5/-2.2 +1.9/-2.7 +2.2/-3.2 +2.7/-4.2 +3.4/-5.4 at 207 mo	-10 46.8 96.2 95.7 93.3 92.0 91.2 90.7 87.5 86.1 41.0/-1.2 11.0/-1.3 11.5/-1.8 11.7/-2.2 12.0/-2.4 12.1/-2.8 13.4/-4.5 14.0/-5.4 at 22.8 mo	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	96.5 96.4
	-	7 yr 8 yr		98.1 +1.2/-3.3 +1.2/-3.3	98.2 +1.2/-3.6			98.5 +0.8/-1.6 +0.8/-1.6	95.6 93.5 +2.3/-4.6 +3.1/-5.9	96.9 96.2 +1.0/-1.5 +1.2/-1.7	96.2 95.7 +1.0/-1.2 +1.0/-1.3	96.4 95.4 +1.5/-2.7 +1.9/-3.1	96.4 96.2
llity (%)	-	4 yr 5 yr 6 yr	97.1 97.1 +1.6/-3.5 +1.6/-3.5	98.1 98.1 +1.2/-3.3 +1.2/-3.3	99.6 99.0 +0.3/-1.2 +0.7/-3.0	99.2 99.2 99.2 +0.5/-1.2 +0.5/-	Survival estimate not available due to insufficient sample size	98.5 +0.8/-1.6 +0.8/-1.6	98.5 98.0 +0.9/-2.5 +1.2/-2.9	98.3 97.8 +0.7/-1.0 +0.8/-1.2	97.8 97.5 +0.6/-0.8 +0.7/-1.0	97.8 97.1 +1.1/-2.0 +1.3/-2.3	96.9 96.7
Device Survival Probability (%)	Years After Implant	1 yr 2 yr 3 yr	98.3 97.8 97.8 97.8 1.3/-3.1 1.3/-3.1	100.0 99.1 98.6 +0.7/-2.5 +1.0/-2.9	99.9 99.6 99.6 +0.3/-1.2 +0.3/-1.2	99.7 99.2 99.2 +0.2/-1.1 +0.5/-1.2	Survival estimate not available	99.9 99.9 98.8 +0.1/-0.8 +0.6/-1.6	100.0 99.7 99.4 +0.3/-1.6 +0.4/-2.0	99.6 99.3 98.9 +0.2/-0.5 +0.4/-0.9	99.5 99.0 98.6 +0.4/-0.7	99.4 99.2 99.2 +0.4/-1.1 +0.5/-1.3 +0.5/-1.3	99.0 98.2 97.4
ło słtno k	fying Ioitsoile	ilisuQ qmoJ umuJ	25 6 12,544	64 4 16,841	187 4 26,406	209 4 23,915	11 0 869	191 7 36,774	1 10 24,255	22 42 96,172	28 88 160,328	0 22 42,864	3 51 109,926
	arket Ro arket Ro		Atrial Feb-96 261	Atrial Jun-98 351	Atrial Jan-97 893	Atrial Jun-98 666	Atrial Jun-01 17	Atrial Oct-98 818	Atrial Jul-79 673	Vent Jul-79 1,853	Atrial Sep-80 2,348	Vent Jan-78 627	Vent Jan-78 1,483
		çlims7	CapSure Z At	CapSure Z Atr Novus	CapSureFix Atr	CapSure SP Atr Novus	CapSure SP Atr Novus	CapSureFix Atr	Spectraflex Atr	Spectraflex Ver	Spectraflex Atr	Tenax Ve	Tenax Ver
		əboM	5534	5554	5568	5592	5594	6940	6957	6957	6957]	6961	6962

Lead Survival Summary continued

US Returned Product Analysis Summary

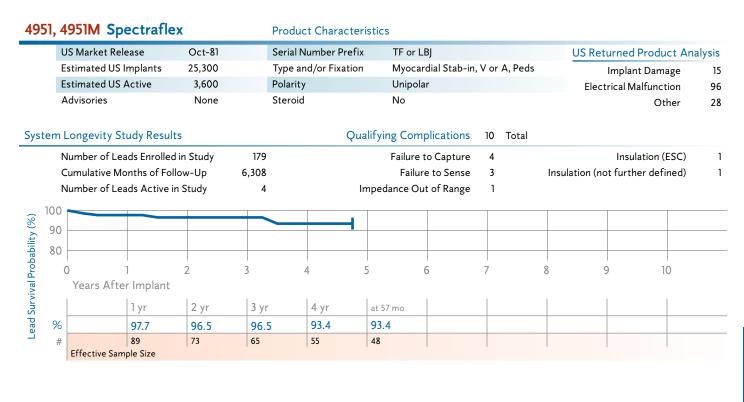
US Market Release	r Family	Estimated US Implants	Estimated US Active	Implant Damage	Electrical Malfunction	Other
Aug-05	SelectSe	9,100	8,000	14	2	1
Jul-86	1003M CapSure	40,000	6,700	24	58	2
Feb-89	4004M CapSure	74,500	2,500	55	684	19
Nov-82	Target Ti	64,000	6,900	29	142	5
Jul-83	Target Ti	96,800	5,300	50	820	34
Aug-91	CapSure	43,700	14,200	47	19	6
Oct-91	CapSure	229,200	80,700	264	106	34
not US released	CapSure	N/A	N/A	2	0	0
Aug-88	057M Screw-in	12,100	2,600	39	6	4
Jan-89	1058M Screw-in	111,100	24,600	388	228	23
Jan-97	CapSure	1,300	500	3	1	1
Mar-96	CapSurel	131,700	54,700	406	83	11
Jun-02	CapSure	500	400	1	0	0
Jun-02	CapSure	53,400	41,500	12	3	1
rus Feb-04	CapSurel	144,400	122,500	53	3	6
Jul-89	Target Ti	4,100	900	4	5	0
us Sep-98	CapSure	144,600	90,400	35	12	5
Jul-86	503M CapSure	9,000	1,300	2	11	0
Mar-90	I504M CapSure	16,600	1,500	5	171	4
Jul-83	Target Ti	11,600	1,000	4	83	8
Aug-91	CapSure	12,000	3,300	5	2	1
Oct-91	CapSure	106,900	36,300	47	23	8
not US released	CapSure		N/A	0	0	0
Aug-88	557M Screw-in	22,500	4,900	53	14	4
Nov-94	Screw-in	21,000	5,800	111	11	1
Jan-97	CapSurel	72,800	35,800	197	6	4
Jun-02	CapSure	34,500	26,500	6	2	0
,	CapSure	73,000	44,400	12	3	0
Nov-88	023M CapSure	10,600	2,800	15	7	0
Mar-90		211,400	69.300	723	, 106	29
Feb-88	024M CapSure	7,800	1,200	60	7	1
Feb-86	CapSure	2,500	1,200	6	1	3
Feb-96	CapSure	58,700	21,900	85	29	11
	CapSure	84,700	49,700	40	13	6
	CapSure					
Jan-97	CapSurel	108,000	49,800	455	63	15
Jun-98	SureFix	9,100	5,000	26	4	1
	CapSurel	911,600	665,100	705	163	51
	CapSure	109,800	68,900	47	20	11
Mar-90	524M CapSure	63,800	22,300	66	21	7
Feb-96	CapSure	27,700	8,700	29	6	5
	CapSure	54,600	32,300	7	6	4
Jan-97						9
	CapSure CapSure	Jan-97	Jan-97 66,500	Jan-97 66,500 44,700	Jan-97 66,500 44,700 228	Jan-97 66,500 44,700 228 8

continued

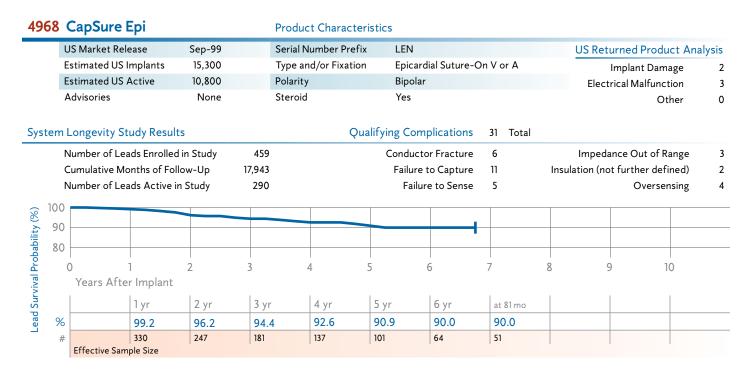
US Returned Product Analysis Summary continued

Model Number	Family	US Market Release	Estimated US Implants	Estimated US Active	Implant Damage	Electrical Malfunction	Other
5594	CapSure SP Novus	Jun-01	10,000	7,400	0	1	0
6940	CapSureFix	Oct-98	26,600	12,300	114	19	3
6957	Spectraflex	Jul-79	29,100	2,600	85	39	25
6957J	Spectraflex	Sep-80	30,000	2,100	74	28	30
6961	Tenax	Jan-78	44,700	1,000	103	27	0
6962	Tenax	Jan-78	70,600	2,000	170	84	0

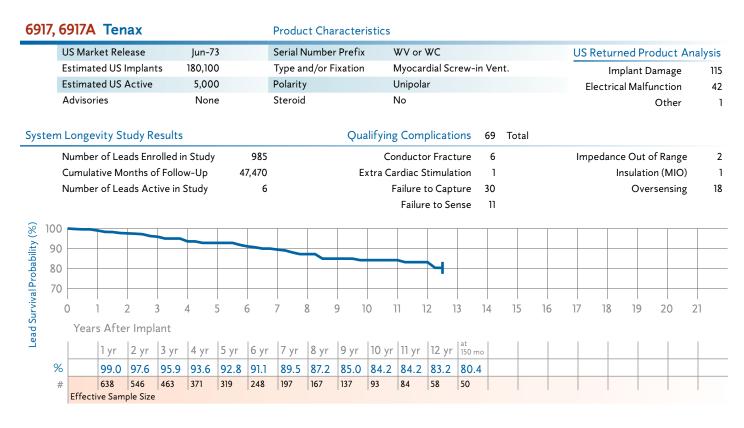
Reference Chart


3830 4003, 4003M 4004, 4004M 4011 4012 4023	SelectSecure CapSure CapSure Target Tip	Transvenous V or A Screw-In Transvenous Ventricular Tines	Polyurethane/ Silicone (55D,4719) Polyurethane	MP35N 5 Filars/ Cable	1.8 mm Helix/Steroid	IS-1BI
4004, 4004M 4011 4012	CapSure	Ventricular Tines	Polyurethane			
4011 4012		T	(80A)	MP35N 4 Filars	Porous/Steroid	5 mm (4003) IS-1 UNI (4003M)
4012	Target Tip	Transvenous Ventricular Tines	Polyurethane (80A)	MP35N 6/4 Filars	Porous/Steroid	3.2 mm Low Profile (4004 IS-1 BI (4004M)
		Transvenous Ventricular Tines	Polyurethane (80A)	MP35N 4 Filars	Target Tip Concentric Grooves	5 mm
4023	Target Tip	Transvenous Ventricular Tines	Polyurethane (80A)	MP35N 6/4 Filars	Target Tip Concentric Grooves	3.2 mm Low Profile
	CapSure SP	Transvenous Ventricular Tines	Polyurethane (55D)	MP35N 4 Filars	Porous Platinized/ Steroid	IS-1 UNI
4024	CapSure SP	Transvenous Ventricular Tines	Polyurethane (55D)	MP35N 4/5 Filars	Porous Platinized/ Steroid	IS-1BI
4033	CapSure Z	Transvenous Ventricular Tines	Polyurethane (55D)	MP35N 2 Filars	CapSure Z Platinized/Steroid	IS-1 UNI
4057, 4057M	Screw-In	Transvenous V or A Screw-In	Polyurethane (80A)	MP35N 1 Filar	2.0 mm Helix	5 mm (4057) IS-1 UNI (4057M)
4058, 4058M	Screw-In	Transvenous V or A Screw-In	Polyurethane (80A/55D)	MP35N 4/1 Filars	2.0 mm Helix	3.2 mm Low Profile (4058 IS-1 BI (4058M)
4067	CapSureFix	Transvenous V or A Screw-In	Polyurethane (80A)	MP35N 3 Filars	1.8 mm Helix/Steroid	IS-1 UNI
4068	CapSureFix	Transvenous V or A Screw-In	Polyurethane (80A/55D)	MP35N 4/3 Filars	1.8 mm Helix/Steroid	IS-1BI
4073	CapSure Sense	Transvenous Ventricular Tines	Polyurethane (55D)	MP35N 5 Filars	TiN Coated Platinum Iridium/Steroid	IS-1 UNI
4074	CapSure Sense	Transvenous Ventricular Tines	Polyurethane/ Silicone (55D, 4719)	MP35N 5/5 Filars	TiN Coated Platinum Iridium/ Steroid	IS-1 BI
4076	CapSureFix Novus	Transvenous V or A Screw-In	Polyurethane/ Silicone (55D, 4719)	MP35N 4/6 Filars	TiN Coated Platinum Alloy/Steroid	IS-1BI
4081	Target Tip	Transvenous Ventricular Tines	Polyurethane (80A)	MP35N 4 Filars	Target Tip Concentric Grooves	IS-1 UNI w/Removable 5 mm Sleeve
4092	CapSure SP Novus	Transvenous Ventricular Tines	Polyurethane/ Silicone (55D/4719)	MP35N 6/4 Filars	Porous Platinized/ Steroid	IS-1BI
4503, 4503M	CapSure	Transvenous Atrial-J Tines	Polyurethane (80A)	MP35N 4 Filars	Porous/Steroid	5 mm (4503) IS-1 UNI (4503M)
4504, 4504M	CapSure	Transvenous Atrial-J Tines	Polyurethane (80A)	MP35N 3/4 Filars	Porous/Steroid	3.2 mm Low Profile (4504 IS-1 BI (4504M)
4512	Target Tip	Transvenous Atrial-J Tines	Polyurethane (80A)	MP35N 2/4 Filars	Target Tip Concentric Grooves	3.2 mm Low Profile
4523	CapSure SP	Transvenous Atrial-J Tines	Polyurethane (55D)	MP35N 2 Filars	Porous Platinized/ Steroid	IS-1 UNI
4524	CapSure SP	Transvenous Atrial-J Tines	Polyurethane (55D)	MP35N 4/5 Filars	Porous Platinized/ Steroid	IS-1BI
4533	CapSure Z	Transvenous Atrial-J Tines	Polyurethane (55D)	MP35N 2 Filars	CapSure Z Platinized/Steroid	IS-1 UNI
4557, 4557M	Screw-In	Transvenous Atrial-J Screw-In	Polyurethane (80A)	MP35N 1 Filar	1.5 mm Helix	5 mm (4557) IS-1 UNI (4557M)
4558M	Screw-In	Transvenous Atrial-J Screw-In	Polyurethane (80A/55D)	MP35N 6/3 Filars	1.8 mm Helix/Steroid	IS-1BI
4568	CapSureFix	Transvenous Atrial-J Screw-In	Polyurethane (80A/55D)	MP35N 6/3 Filars	1.8 mm Helix/Steroid	IS-1BI
4574	CapSure Sense	Transvenous Atrial -J Tines	Polyurethane/ Silicone (55D,4719)	MP35N 5/5 Filars	TiN Coated Platinum Iridium	IS-1BI
4592	CapSure SP Novus	Transvenous Atrial-J Tines	Polyurethane/ Silicone (55D/4719)	MP35N 6/3 Filars	Porous Platinized/ Steroid	IS-1BI
5023, 5023M	CapSure SP	Transvenous Ventricular Tines	Silicone	MP35N 4 Filars	Porous Platinized/ Steroid	5 mm (5023) IS-1 UNI (5023M)

continued


Reference Chart continued

Model Number	Family	Туре	Insulation	Conductor Material	Tip Electrode	Connector Type
5024, 5024M	CapSure SP	Transvenous Ventricular Tines	Silicone	MP35N 4/5 Filars	Porous Platinized/ Steroid	3.2 mm Low Profile (5024 IS-1 BI (5024M)
5026	CapSure	Transvenous Ventricular Tines	Silicone	MP35N 6/4 Filars	Porous Platinized/ Steroid	3.2 mm Low Profile
5033	CapSure Z	Transvenous Ventricular Tines	Silicone	MP35N 4 Filars	CapSure Z Platinized/Steroid	IS-1 UNI
5034	CapSure Z	Transvenous Ventricular Tines	Silicone	MP35N 4/5 Filars	CapSure Z Platinized/Steroid	IS-1 BI
5054	CapSure Z Novus	Transvenous Ventricular Tines	Silicone (4719)	MP35N 5/5 Filars	CapSure Z Porous/Platinized/ Steroid	IS-1BI
5068	CapSureFix	Transvenous V or A Screw-In	Silicone	MP35N 4/3 Filars	1.8 mm Helix/Steroid	IS-1 BI
5072	SureFix	Transvenous V or A Screw-In	Silicone	MP35N 4/5 Filars	1.8 mm Helix/Steroid	IS-1 BI
5076	CapSureFix Novus	Transvenous V or A Screw-In	Silicone (4719)	MP35N 4/6 Filars	Porous Platinized/ Steroid	IS-1 BI
5092	CapSure SP Novus	Transvenous Ventricular Tines	Silicone (4719)	MP35N 5/5 Filars	Porous Platinized/ Steroid	IS-1 BI
5524, 5524M	CapSure SP	Transvenous Atrial-J Tines	Silicone	MP35N 6/5 Filars	Porous Platinized/ Steroid	3.2 mm Low Profile (5524 IS-1 BI (5524M)
5534	CapSure Z	Transvenous Atrial-J Tines	Silicone	MP35N 4/5 Filars	CapSure Z Platinized/Steroid	IS-1 BI
5554	CapSure Z Novus	Transvenous Atrial-J Tines	Silicone (4719)	MP35N 6/5 Filars	CapSure Z Porous Platinized/ Steroid	IS-1BI
5568	CapSureFix	Transvenous Atrial-J Screw-In	Silicone	MP35N 6/3 Filars	1.8 mm Helix/Steroid	IS-1 BI
5592	CapSure SP Novus	Transvenous Atrial-J Tines	Silicone (4719)	MP35N 6/5 Filars	Porous Platinized/ Steroid	IS-1 BI
5594	CapSure SP Novus	Transvenous Atrial-J Tines	Silicone (4719)	MP35N 6/5 Filars	Platinized Platinum/ Steroid	IS-1 BI
6940	CapSureFix	Transvenous A or V Screw-In	Silicone	MP35N 3/6 Filars	Platinum Alloy	IS-1 BI
6957	Spectraflex	Transvenous V or A Screw-In	Polyurethane (80A)	MP35N 1 Filar	2.0 mm Helix	5 mm
6957J	Spectraflex	Transvenous Atrial-J Screw-In	Polyurethane (80A)	MP35N 1 Filar	1.5 mm Helix	5 mm
6961	Tenax	Transvenous Ventricular Tines	Silicone	MP35N 3 Filars	Ring Tip	5 mm
6962	Tenax	Transvenous Ventricular Tines	Silicone	MP35N 4 Filars	Ring Tip	5 mm Bifurcated


Epi/Myocardial Pacing Leads

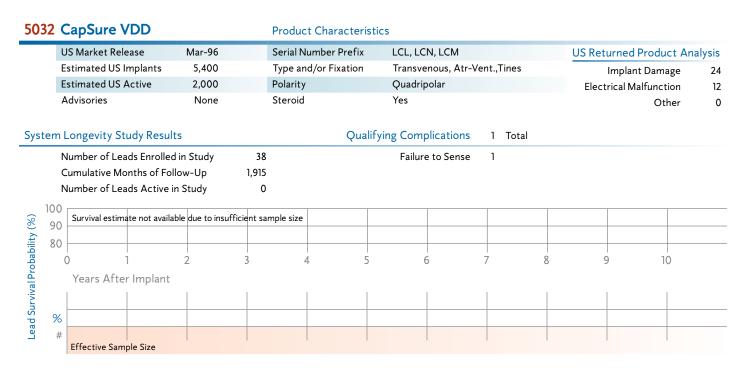
65 CapSure Epi		Pro	duct Characteri	stics						
US Market Release	Sep-96	Seri	al Number Prefix	LBT			US Re	turned	Product An	alysi
Estimated US Implants	s 19,300	Тур	e and/or Fixation	Epicardial Suture-O	n V o	r A		Implar	nt Damage	
Estimated US Active	10,600	Pola	rity	Unipolar			Elec	ctrical M	alfunction	8
Advisories	None	Ster	roid	Yes					Other	
stem Longevity Study Re	sults		Qua	lifying Complications	8	Total				
Number of Leads Enro	lled in Study	172		Conductor Fracture	3			C	Oversensing	
Cumulative Months of	Follow-Up	4,148		Failure to Capture	2					
Number of Leads Acti	ve in Study	10		Failure to Sense	1					
100										
90										
80										
	2	3	4 5	5 6	7	8		9	10	
0 1	—			, ₀						
0 1 Years After Impla	—									
÷ .	—	3 yr	at 39 mo							
Years After Impla	int	3 yr 95.8								

5071 **Product Characteristics US Market Release** Dec-92 Serial Number Prefix LAQ **US Returned Product Analysis Estimated US Implants** 36,200 Type and/or Fixation Myocardial Screw-in Vent. Implant Damage 24 Estimated US Active 21.700 Polarity Unipolar **Electrical Malfunction** 4 Advisories None Steroid No 1 Other System Longevity Study Results Qualifying Complications 10 Total Number of Leads Enrolled in Study 214 Failure to Capture 8 Cumulative Months of Follow-Up 6,482 Oversensing 2 Number of Leads Active in Study 31 100 Lead Survival Probability (%) 90 80 2 3 4 5 6 8 9 10 0 7 Years After Implant 2 yr 3 yr 1 yr 4 yr at 57 mo % 92.0 92.0 96.7 94.8 92.0 109 77 49 # 64 60 Effective Sample Size

Lead Survival Summary (95% Confidence Interval)

				٨þ		ło												
		ခၭၓခ႞ခ	pa	nt2 ni s	su	kpniS Nonthy	Device S	urvival P	Device Survival Probability (%)	v (%)								
		rket R	Enrollo		ying Ving	l əvits ni qU-	Years Af	Years After Implant	ant									
ləboM dmu N	γlims٦	₽M SU	speəl		ilisu9 Compl	lumu⊃ wollo٦	1 yr	2 yr	3 yr	4 yr	5 yr	6 yr	7 yr	8 yr	10 yr	12 yr	14 yr	16 yr
4951, 4951M	Spectraflex	Oct-81	179	4	0[6,308	97.7 +1.6/-4.8	96.5 +2.2/-5.8	96.5 +2.2/-5.8	93.4 +3.7/-8.1	93.4 +3.7/-8.1 at 57 mo							
4965	CapSure Epi	Sep-96	172	0	∞	4,184	98.6 +1.1/-4.0	97.3 +1.9/-5.9	95.8 +2.7/-7.4	95.8 +2.7/-7.4 at 39 mo								
4968	CapSure Epi	Sep-99	459	290	31 1	17,943	99.2 +0.6/-1.6	96.2 +1.6/-2.9	94.4 +2.2/-3.5	92.6 +2.7/-4.2	90.9 +3.3/-4.9	90.0 +3.6/-5.3	90.0 +3.6/-5.3 at 81 mo					
5071	(no brand name) Dec-92	Dec-92	214	31	0[6,482	96.7 +1.9/-4.5	94.8 +2.7/-5.6	92.0 +3.9/-7.5	92.0 +3.9/-7.5	92.0 +3.9/-7.5 at 57 mo							
6917, 6917A	Tenax	Jun-73	985	9	69 4	47,470	99.0 +0.5/-1.0	97.6 +0.9/-1.5	95.9 +1.3/-2.0	93.6 +1.8/-2.5	92.8 +2.0/-2.6	91.1 +2.3/-3.1	89.5 +2.7/-3.4	87.2 +3.1/-4.1	84.2 +3.9/-4.8	83.2 +4.2/-5.3	80.4 +5.2/-6.8 at 150 mo	

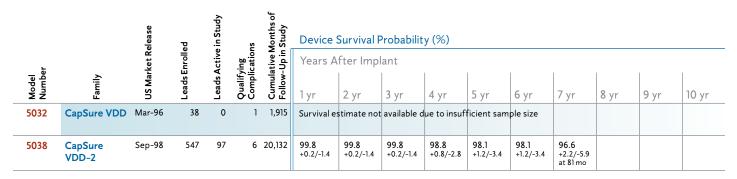
US Returned Product Analysis Summary


Model Number	Family	US Market Release	Estimated US Implants	Estimated US Active	Implant Damage	Electrical Malfunction	Other
4951, 4951M	Spectraflex	Oct-81	25,300	3,600	15	96	28
4965	CapSure Epi	Sep-96	19,300	10,600	8	81	2
4968	CapSure Epi	Sep-99	15,300	10,800	2	3	0
5071	(no brand name)	Dec-92	36,200	21,700	24	4	1
6917, 6917A	Tenax	Jun-73	180,100	5,000	115	42	1

Source: Returned Product Analysis Data as of January 31, 2008

Reference Chart

Model Number	Family	Туре	Insulation	Conductor Material	Tip Electrode	Connector Type
4951, 4951M	Spectraflex	Myocardial Stab-In V or A/Peds	Polyurethane (80A)	MP35N 4 Filars	Barb	5 mm (4951) IS-1 UNI (4951M)
4965	CapSure Epi	Epicardial Suture-On V or A	Silicone	MP35N 5 Filars	Porous Platinized/ Steroid	IS-1 UNI
4968	CapSure Epi	Epicardial Suture V or A	Silicone	MP35N 5 Filars	Porous Platinized/ Steroid	IS-1 B1
5069	(no brand name)	Myocardial Screw-In	Silicone	MP35N Multifilars	3-Turn Helix	IS-1 UNI
5071	(no brand name)	Myocardial Screw-In Ventricular	Silicone	MP35N Multifilars	2-Turn Helix	IS-1 UNI
6917	Tenax	Myocardial Screw-In Ventricular	Silicone	Pt Ir Tinsel Wire	3-Turn Helix	5 mm
6917A	Tenax	Myocardial Screw-In Ventricular	Silicone	Pt Ir Tinsel Wire	2-Turn Helix	5 mm


VDD Single Pass Pacing Leads

	US Market Release	Sep-98		Serial Number Pret	ix LEE	LEG, or LEF			US Returned I	Product Ana	alvsi
	Estimated US Implants	7,700		Type and/or Fixation	on Trar	isvenous, Atr-V	ent.,Tines			Damage	
	Estimated US Active	4,300		Polarity	Qua	dripolar			Electrical Ma	0	
	Advisories	None		Steroid	Yes					Other	
ster	n Longevity Study Resu	ılts		Q	ualifying Co	omplications	6 Total				
	Number of Leads Enrolle	ed in Study	547		Condu	ctor Fracture	3				
	Cumulative Months of Fo	ollow-Up	20,132		Failu	re to Capture	1				
	Number of Leads Active	in Study	97		Fa	ilure to Sense	2				
10	0										
a	0					-		_			
								_			
8	0									1	
8	0 1	2	3	4	5	6	7	8	9	10	
8		_	3	4	5	6	7	8	9	10	
8	0 1	_	 3 3 yr		5 5	6 6	7 at 81 mo	8	9	10	
8	0 1 Years After Implant	t ,		4 yr	-	-	7 at 81 mo 96.6	8	9	10	

VDD Single Pass Pacing Leads continued

Lead Survival Summary (95% Confidence Interval)

Source: System Longevity Study Data as of January 31, 2008

US Returned Product Analysis Summary

Model Number	Family	US Market Release	Estimated US Implants	Estimated US Active	Implant Damage	Electrical Malfunction	Other
5032	CapSure VDD	Mar-96	5,400	2,100	24	12	0
5038	CapSure VDD-2	Sep-98	7,600	4,400	6	3	1

Source: Returned Product Analysis Data as of January 31, 2008

Reference Chart

Model Number	Family	Туре	Insulation	Conductor Material	Tip Electrode	Connector Type
5032	CapSure VDD	Transvenous V and A Tines	Silicone	MP35N 5/6/1 Filars	Porous Platinized/ Steroid	Atr. IS-1 BI, Vent. IS-1 BI
5038	CapSure VDD-2	Transvenous Ventricular Tines	Silicone	MP35N	Porous Platinized/ Steroid	Atr. IS-1 BI, Vent. IS-1 BI

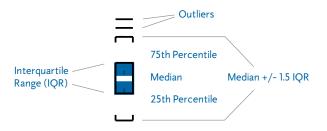
ICD and CRT-D Charge Time Performance

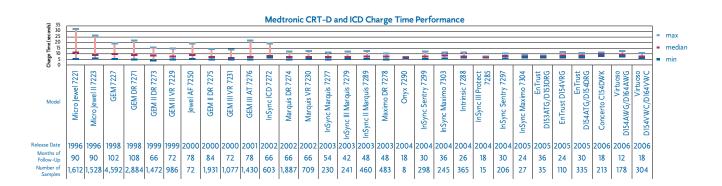
Medtronic continues its commitment to providing updated information on charge time performance.

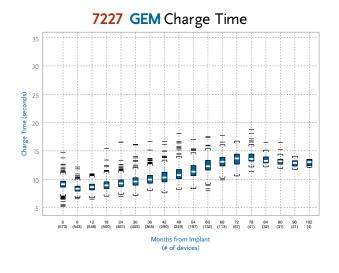
Introduction

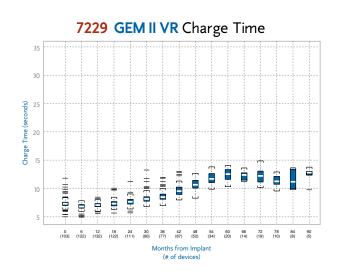
Information on charge time performance of Medtronic is presented in this section of the CRDM Product Performance Report. Medtronic implemented the collection of charge time data on July 1, 1999. The data are collected via our ongoing active clinical study of long-term system performance called the System Longevity Study. The study protocol requests device data be routinely taken and sent to Medtronic at no more than six-month intervals.

In our analysis performed for this report, only charge times resulting from full energy charges are considered. To ensure consistent reporting across devices, the charge time reported at implant represents the last charge time available from date of implant. When more than one charge time is available in a six-month interval, a conservative approach has been adopted whereby only the maximum charge in each 6-month interval is reported. As charge time is directly proportional to the time elapsed since the last capacitor reformation, charges occurring within 15 days of a previous charge are excluded. This precludes the reporting of overly optimistic results.

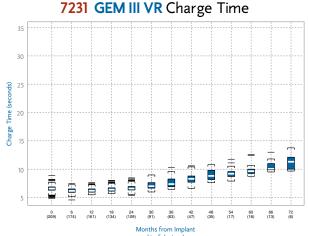

Data from over 20,000 devices contribute to the charge time data in this report. By tracking and reporting this charge time data, Medtronic is able to ascertain the actual performance of its charging circuitry. The insight gained through this information is applied to Medtronic's ongoing efforts to provide charge times that are short and consistent over the life of the product.

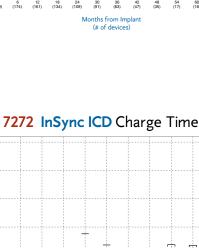

Data Presentation

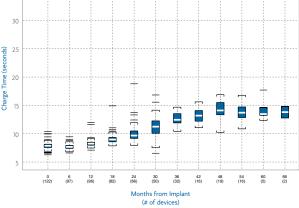

Charge time data for ICD and CRT-D models are presented using boxplots at 6-month intervals. The shaded box on the plots represents the middle half of the data – the Interquartile Range (IQR). The white line in the middle of each box is the median charge time. The top of the box representing the IQR is the 75th percentile (i.e., 75% of all charge times fall below this line), whereas the bottom of the box represents the 25th percentile. The brackets around the box represent the variance in charge times (analogous to a confidence interval), and are calculated as a function of the median and IQR. Individual values falling outside the brackets are labeled as outliers.

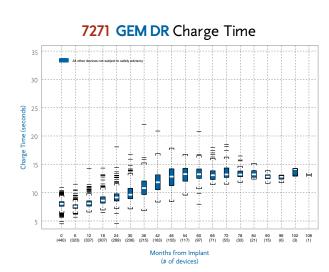

Results

As shown in the graph below, the performance of Medtronic ICD and CRT-D devices has improved. This graph shows the overall maximums, minimums, and medians for Medtronic ICD and CRT-D products, beginning with the 7221 Micro Jewel. A progression toward shorter mean charge times and less variation has occurred between 1996 and 2002. Models released after 2002 have limited experience, but appear to be continuing this performance.

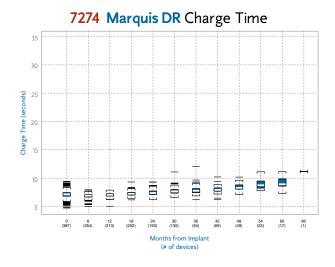


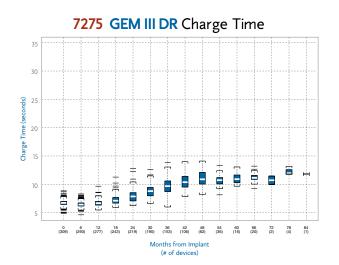


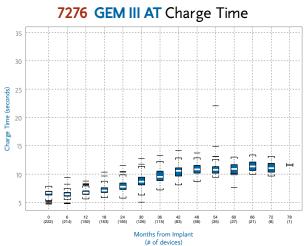

7230 Marquis VR Charge Time 35 30 25 Charge Time (seconds) 20 15 +++ 10 Þ Ė ÷. 0
(183) 6 (130) 12 (119) 18 (72) 24 (64) 30 (41) 36 (33) 42 (27) 48 (26) 54 (10) 60 (3) 66 (1) Months from Implant (# of devices)

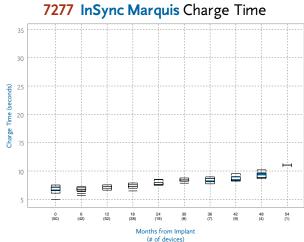


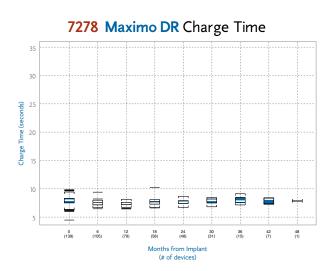
35

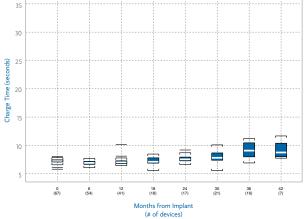

(spug

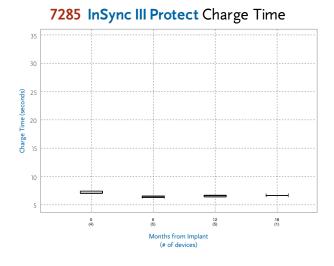







Source: System Longevity Study Data as of January 31, 2008





7289 InSync II Marquis Charge Time

靑

36 (31)

30 (40) 42 (13) 48 (1)

35

30

25

20

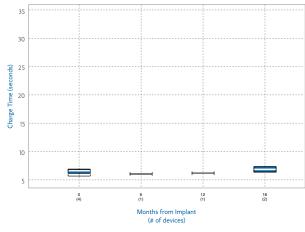
15

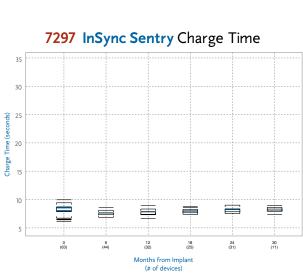
10

0 (115) E

12 (68) 18 (64) 24 (39)

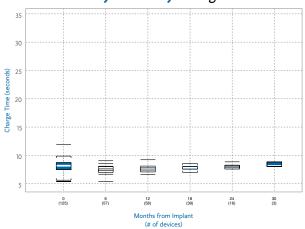
Months from Implant

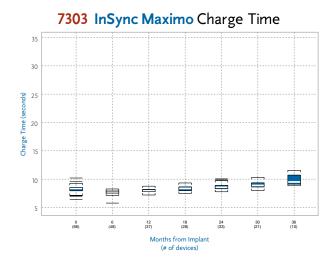

(# of devices)

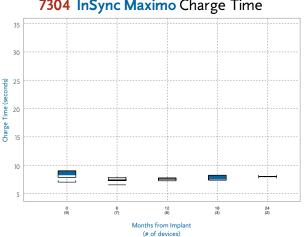

6 (89)

Charge Time (seconds)

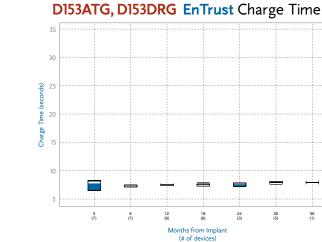
35 30 (spu 25 Time (secc 20 Charge 1 10 0 (133) 6 (67) 12 (59) 18 (42) 24 (36) 30 (21) 36 (7) Months from Implant (# of devices)

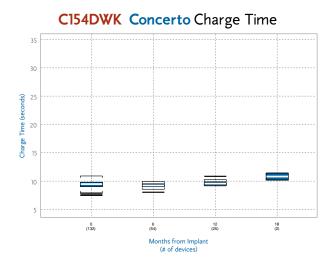

7290 Onyx Charge Time

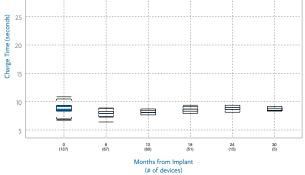



30 30 25 20 20

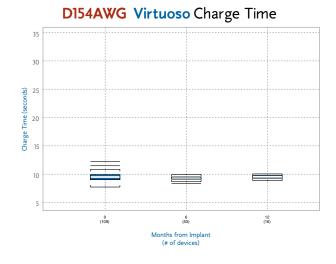
7299 InSync Sentry Charge Time




7288 Intrinsic Charge Time



D154ATG, D154DRG EnTrust Charge Time



142 Medtronic CRDM Product Performance Report

D154VRC EnTrust Charge Time 31 30 (spug) 25 Time (sec Charge ' 10 24 (2) 0 (56) 6 (24) 12 (24) 18 (4) Months from Implant (# of devices)

36 (1)

Source: System Longevity Study Data as of January 31, 2008

D154VWC Virtuoso Charge Time 35 30 (spu 25 Charge Time (seco 20 15 10 . Ė -÷ ÷ 12 (30) 36 (8) 42 (1) 0 (120) 6 (72) 18 (28) 24 (26) 30 (19) Months from Implant (# of devices)

Advisories

6930, 6931, 6948, 6949 Sprint Fidelis Defibrillation Leads Original Date of Advisory: October 2007

Potential Conductor Wire Fracture

Product

All Models 6930, 6931, 6948, and 6949 Implantable Defibrillation Leads.

Advisory

There are two primary locations where chronic conductor fractures have occurred on Sprint Fidelis leads: 1) the distal portion of the lead, affecting the anode (ring electrode) and 2) near the anchoring sleeve tie-down, predominantly affecting the cathode (helix tip electrode), and occasionally the high voltage conductor. These two locations account for 90% of the chronic fractures identified in Returned Product Analysis (RPA). The remaining 10% of chronic fractures occurred in the DF-1 connector leg and the proximal portion of the RV coil. High voltage conductor fractures could result in the inability to deliver defibrillation therapy. Anode or cathode conductor fractures (at either location) may present clinically as increased impedance, oversensing, increased interval counts, multiple inappropriate shocks, and/or loss of pacing output.

Patient Management Recommendations

Medtronic recommends you consider the following as part of routine follow-up for each patient.

- To reduce the risk of inappropriate detection and therapy due to oversensing, program VF detection for initial Number of Intervals to Detect (NID) to nominal settings (18/24) or longer at physician discretion and Redetect NID to nominal settings (12/16).
- Turn ON Patient Alert for RV Pacing, RV Defibrillation, and SVC Defibrillation impedance. For Concerto and Virtuoso devices enrolled on the Medtronic CareLink Network, turn ON the Medtronic CareAlert Notifications for these same parameters.
- To optimize effectiveness of the lead impedance alert:
 - Review V Pacing Lead Performance Trend to determine typical chronic impedance value for the patient (typical values for Fidelis leads should be 350-1,000 ohms).
 - Program lead impedance alert threshold for RV Pacing to 1,000 ohms, if the typical chronic impedance for the patient is ≤ 700 ohms, or

- Program lead impedance alert threshold for RV Pacing to 1,500 ohms, if the typical chronic impedance for the patient is > 700 ohms.
- Program lead impedance alert threshold for RV Defibrillation and SVC Defibrillation to 100 ohms.

Status Update

Sprint Fidelis lead performance continues to be in line with the information provided in the October 2007 initial advisory communication. After consideration of updated performance information, as well as ongoing reviews by our Independent Physician Quality Panel, **patient management recommendations remain unchanged**.

- The risk of prophylactic intervention appears to be greater than the risk of serious injury resulting from lead fracture even for pacemaker dependent patients, except in select individual patient circumstances as determined by the physician.
- When a lead fracture is suspected or confirmed, we strongly recommend prompt patient attention. Patients should contact their physician without delay if they experience unexpected shocks.
- Implementation of our patient management recommendations is expected to provide two days advance notice prior to inappropriate therapy to 49% of the patients with lead fractures. The remainder will receive less than two days advance notice or no notice. This percentage may vary by implanted device.

Out of the initial implant population of 204,000 in the United States, approximately 167,000 remain implanted. According to System Longevity Study results, lead survival is estimated to be 96.7% at 36 months.

As part of our commitment to keep you informed about Sprint Fidelis lead performance, starting in August 2008, Medtronic will publish the quarterly System Longevity Study's all-cause survival curve for the 6949 lead model at <u>www.medtronic.com/fidelis</u>. Updates will also continue to be provided in this Product Performance Report. Additional information about the Sprint Fidelis lead is available at <u>www.medtronic.com/fidelis</u>. Sigma Implantable Pulse Generators Original Date of Advisory: November 2005

Potential Separation of Interconnect Wires

Product

A specific subset of Sigma series pacemakers may fail due to separation of interconnect wires from the hybrid circuit. Specific model and serial numbers of affected devices are available online at http://SigmaSNList.medtronic.com.

Advisory

This subset of Sigma series pacemakers that may fail due to separation of interconnect wires from the hybrid circuit may present clinically as loss of rate response, premature battery depletion, intermittent or total loss of telemetry, or no output.

Separation of redundant interconnect wires has been observed on hybrid terminal blocks. Device failure occurs only where both interconnect wires separate from a hybrid terminal block. In October 2005, testing and analysis identified the root cause of these failures and the affected population. Hybrid circuits used in this subset of devices were cleaned during manufacturing with a particular cleaning solvent that could potentially reduce the strength of the interconnect wire bond over time.

Our modeling predicts a failure rate from 0.17% to 0.30% over the remaining lifetime of these pacemakers. No provocative testing can predict which devices may fail.

Patient Management Recommendations

To assist physicians in their patient care and after discussion with physician consultants, Medtronic offers the following recommendations:

- Medtronic does not recommend replacement of these devices prior to normal elective replacement (ERI), based on the low probability of occurrence of a serious event in this population.
- Continue routine follow-up in accordance with standard practice.
- Advise patients to seek attention immediately if they experience return of symptoms (e.g., syncope or light-headedness).
- Determine whether device replacement is warranted on a case-by-case basis based upon consultation with patients, review of the individual

patient's medical history, and consideration of the relative risks of an invasive procedure.

Status Update

The Sigma Family device performance related to the interconnect wires separation mechanism continues to be within Medtronic's engineering projections. As of January 31, 2008, 139 devices out of approximately 40,000 devices worldwide have been confirmed as having experienced interconnect wire separation. Thirty-eight (38) of these devices were returned from the United States. There have been no confirmed serious injuries or deaths due to this issue.

Ninety-three (93) of the 139 devices (0.22%) were returned with information indicating a problem with the patient's pacing system prior to explant. The remaining 46 devices (0.11%) were returned with no information indicating a potential malfunction while implanted or with insufficient information to determine the state of the device at explant. Lacking definite information indicating proper operation until explant, these devices are conservatively categorized as having experienced interconnect wire separation while implanted.

Implant duration for the 139 devices confirmed as having experienced interconnect wire separation has ranged between 17 and 68 months, with an average of 50 months.

Out of the initial advisory population of 40,000 worldwide, approximately 19,200 remain implanted. Approximately 4,500 of these are in the United States.

The Patient Management Recommendations set forth in the advisory remain unchanged.

7274 Marquis DR 7230 Marquis VR 7232 Maximo VR 7277 InSync Marquis 7289 InSync II Marquis 7279 InSync III Marquis 7285 InSync III Protect

Original Date of Advisory: February 2005

Potential Premature Battery Depletion Due to Battery Short

Product

The specific subset of Marquis family ICD and CRT-D devices having batteries manufactured prior to December 2003 is affected. Devices manufactured with batteries produced after December 2003 are not affected. Specific model and serial numbers of affected devices are available online at http://MarquisSNList.medtronic.com.

Advisory

Medtronic Marquis family of ICD and CRT-D devices having batteries manufactured prior to December 2003 may experience rapid battery depletion due to a specific internal battery short mechanism. Battery design changes were implemented in December 2003 that eliminate the possibility of this internal shorting mechanism.

Highly accelerated bench testing indicated the rate of this shorting mechanism may increase as the battery is depleted. As of February 2005, the rate of shorting was approximately 1 in 10,000 (0.01%); bench test data indicated the rate may increase to between 0.2% and 1.5% over the second half of device life.

No provocative testing can predict which of these devices will experience this issue. Once a short occurs, battery depletion can take place within a few hours to a few days. After depletion the device ceases to function. It is also possible that as the battery depletes quickly, patients may experience temporary warmth in the area surrounding the ICD.

Patient Management Recommendations

We recommend you consider the following patient management options:

- Conduct quarterly (i.e., every three months) follow-up procedures.
- Inform patients that should they experience warmth in the area surrounding the ICD to seek follow-up care promptly.
- Program Low Battery Voltage ERI Patient Alert to "On-High." This will result in an audible, alternating tone in the limited circumstances where a battery depletes slowly over a number of days. Data indicates most shorts will occur rapidly and will not be detected by this feature.

 Provide a hand-held magnet to patients to check device status and program the Low Battery Voltage ERI Patient Alert to "On-High." Device operation may be monitored periodically (e.g., daily) by patients placing the magnet over the device for 1-2 seconds. If the device is functional, a steady tone will sound for approximately 20 seconds. If no tone is heard, followup care should be sought promptly.

Status Update

The Marquis Family device performance related to the battery shorting mechanism continues to be within Medtronic's engineering projections. As of January 31, 2008, 93 Marquis Family devices have been confirmed as having this internal battery shorting mechanism. Fiftytwo (52) of these devices were returned from the United States. There have been no confirmed serious injuries or deaths due to this issue.

Of the 93 returns, 33 have been identified by patients reporting warmth in the ICD pocket, 37 by a regularly scheduled follow-up or during a nondevice related hospital visit, 12 by hand-held magnet test or CareLink attempt, 7 by return of bradycardia symptoms, and 4 by the Patient Alert sounding.

Implant duration for the 93 devices ranged between 11 to 53 months, with an average of 34 months.

Consistent with Medtronic projections, the observed rate of shorting is higher in the second half of device life than in the first half of device life. Of the devices that have exhibited shorting in the last half of device life, 46% occurred in the last quarter of device life and 30% in the last 10% of device life.

Out of the initial advisory population of 87,000 worldwide, approximately 29,900 remain implanted. Approximately 26,300 of these are in the United States.

The Patient Management Recommendations set forth in the advisory remain unchanged.

Warranty

All Marquis devices are subject to a Limited Warranty. Devices returned to Medtronic and determined to be malfunctioning will be replaced or credited in accordance with the warranty terms. In addition, for devices subject to the Marquis advisory, should a physician decide to replace a device for a patient who is pacemaker dependent or who receives frequent VT/VF therapy, Medtronic will, upon receipt of a written statement from the physician setting forth the basis for early replacement of the device, provide a replacement device at no cost. Kappa 600, 700 Dual Chamber (D, DR, and VDD) IPGs

Original Date of Advisory: March 15, 2002

Potential Fractured Power Supply Wires

Product

A specific subset of Kappa 700/600 Dual Chamber (D, DR, and VDD) Implantable Pulse Generators have been identified by serial numbers. Hospitals and Physicians were notified. Specific model and serial numbers of affected devices are available by calling US Technical Services at 1 (800) 505-4636.

Advisory

As of March 15, 2002, Medtronic observed 53 related failures (0.02%) in over 255,000 Kappa 700/600 Dual Chamber (D, DR, and VDD) Series devices sold worldwide. Medtronic voluntarily communicated this information to physicians because these failures had been observed in patients having submuscular implants.

These devices have presented with an electrical reset, intermittent output, or no output. Our investigation identified the root cause as fractured wires supplying power to the pacemaker. This has been directly correlated to submuscular placement of these devices. Submuscular implant locations (e.g., subpectoral, abdominal, etc.) can result in additional stress and repetitive flexing on the implanted device causing excessive fatigue on these wires. Of the estimated 4,000 devices implanted submuscular, approximately 200 (5%) may experience this failure. These stresses on the implanted device are unique to submuscular implant sites and do not exist with subcutaneous implants.

Patient Management Recommendations

While there is no provocative testing or time dependency that will predict which submuscular placed device will fail, certain electrical resets may be an indicator that a wire fracture has occurred. Normal electrical resets can occur as a result of electrosurgical procedures such as cautery and ablation or from defibrillation therapy. If none of the normal causes of electrical reset can be confirmed, or if a device serial number presents as "000000" following an electrical reset, this may be an indicator of a wire fracture.

For patients who have submuscular implants of devices within the designated serial number range and who are pacemaker dependent with no underlying rhythm, replacement of the device should be considered. Medtronic will provide the replacement device free-of-charge under the terms of its warranty program if a device is replaced in these patients.

For patients having subcutaneous implants, no change to your current patient care and follow-up is advised.

Status

Device performance related to this advisory continues to be within Medtronic's engineering projections. Patient management recommendations remain unchanged. As of January 31, 2008, 286 out of approximately 180,000 (0.16% incidence) Kappa family devices worldwide have been confirmed as having fractured power supply wires. One hundred forty-four (144) of these devices were returned from the United States. Out of the initial implant population of 121,000 in the United States, approximately 41,000 remain implanted.

Advisories continued

7227Cx GEM 7229Cx GEM II VR Original Date of Advisory: October 15, 1999

Potential Circuit Overload

Product

Model 7227Cx and Model 7229Cx Implantable Cardioverter Defibrillators supplied before October 15, 1999, with serial numbers ending in an "H." For example, PIPxxxxxH or PJJxxxxxH, where x is a variable numeric, may be affected. Specific model and serial numbers of affected devices are available by calling US Technical Services at 1 (800) 723-4636.

IMPORTANT REMINDER:

Medtronic strongly advises physicians who have patients under their care affected by this issue to reprogram the Patient Alert feature "ON" without delay.

Advisory

Manufacturing error in a small percentage of devices may cause circuit overload when AX ≥ B High Voltage energy is delivered via an integrated bipolar lead. GEM Model 7227Cx and GEM II VR Model 7229Cx devices with dedicated bipolar sensing leads are not affected by this issue. Devices affected may not be able to subsequently charge to full energy and experience "charge circuit timeout."

Patient Management Recommendations

- Assessment of all patients with the potentially affected devices implanted **AND** an integrated bipolar ICD lead such as the 6942 and 6945 should take place without delay.
- Reprogram polarity pathway to B ≥ AX for all cardioversion and defibrillation therapies.
- Confirm correct device function:
 - Perform a full energy charging sequence.
 - If "charge circuit timeout" is observed, contact your Medtronic representative.
 - If device charges normally, it has not been damaged and will function appropriately with polarity programmed $B \ge AX$.

Recent studies have demonstrated that DFTs are similar or lower in a $B \ge AX$ polarity pathway when compared to $AX \ge B$.

Devices implanted with functional dedicated bipolar leads such as the 6932, 6934S, 6936, 6943, and 6966 are not affected.

Status

Device performance related to this advisory continues to be within Medtronic's engineering projections. Patient management recommendations remain unchanged. Out of the initial implant population of 10,000 in the United States, approximately 2,000 remain implanted. The devices affected by this advisory are nearing the end of their expected battery longevity.

4504, 4504M CapSure Atrial Lead 4582 Target Tip Atrial Lead Original Date of Advisory: October 4, 1996

Lead Survival Below Expectations

Product

All Models 4504, 4504M, and 4582 Implantable Pacing Leads

Advisory

Lead survival probability is below expectations and is primarily associated with insulation degradation due to Metal Ion Oxidation (MIO).

Patient Management Recommendations

- Follow patients in accordance with Medicare Guidelines.
- Avoid the use of the AAI or AOO mode.
- During patient evaluation, give careful attention to lead performance such as:
 - Review patient ECG for indications of transient sensing and/or capture abnormalities.
 - Monitor in clinic for impedance less than
 250 ohms or a decrease of more than 30% from
 implant values (or an established baseline using
 telemetry) which would suggest lead failure.
- Consider the use of unipolar if the pulse generator has this capability.
- At the time of pacemaker system revision (e.g., normal pulse generator or ventricular lead revision), carefully evaluate lead integrity and patient status before choosing to reuse.

Status

Patient management recommendations remain unchanged. Laboratory analysis trends and engineering conclusions remain unchanged. Out of the initial implant population of 16,600 in the United States, approximately 1,500 remain implanted. According to System Longevity Study results, lead survival is estimated to be 66.1% at 8 years, 9 months.

4004, 4004M CapSure Ventricular Lead 4082 Target Tip Ventricular Lead

Original Date of Advisory: October 8, 1993

Lead Survival Below Expectations

Product

All Models 4004/4004M and 4082 Implantable Pacing Leads

Advisory

Lead survival probability is below expectations due primarily to polyurethane insulation failure (MIO) and conductor fracture (associated with "subclavian crush").

Patient Management Recommendations

- Increase, as appropriate, the frequency of patient evaluation through in-clinic visits supplemented with transtelephonic and/or ambulatory monitoring; for example, consistent with Guideline I under Medicare Pacemaker Monitoring Guidelines (50-1 Cardiac Pacemaker Evaluation Services).
- During patient evaluations, give careful attention to lead performance such as:
 - Reviewing patient ECGs carefully for indications of transient sensing and/or capture abnormalities.
 - Monitoring in-clinic for impedances less than 300 ohms or a decrease of more than 30% from implant values (or an established baseline using telemetry) which would suggest lead failure.
 - Eliciting and thoroughly investigating any patient complaints suggestive of lead failure.

- Consider whether prophylactic replacement would be appropriate, especially in patients at high risk, such as pacemaker dependent patients.
- Carefully evaluate lead integrity when performing routine pulse generator replacements. Replace lead if
 - insulation breaches are observed.
 - lead impedance is less than 300 ohms or has decreased by more than 30% from implant values.
 - impedance or voltage threshold measurements vary significantly when multiple readings are taken.
 - if the risk of continued use outweighs the risk associated with implanting a new lead.
- As always, individual circumstances and medical judgment dictate patient care and frequency of follow-up.
- Consider lead replacement during normal pulse generator change-out. Carefully evaluate lead integrity and patient status before choosing to reuse.

Status

Patient management recommendations remain unchanged. Laboratory analysis trends and engineering conclusions remain unchanged. Out of the initial implant population of 77,000 in the United States, approximately 2,900 remain implanted. According to System Longevity Study results, lead survival is 50.6% at 10 years, 9 months.

Advisories continued

4012 Target Tip Ventricular Lead

Original Date of Advisory: September 26, 1991

Lead Survival Below Expectations

Product

All Model 4012 Implantable Pacing Leads

Advisory

Lead survival probability beyond 5 years is below expectations due primarily to polyurethane insulation failure (due to ESC and/or MIO) and conductor fracture (associated with "subclavian crush").

Patient Management Recommendations

Consider increasing frequency of monitoring (e.g., from quarterly to bimonthly or monthly). Consider the following activities as part of normal follow-up procedures:

- Monitor for significant changes in impedance which could be an indication of impending failure (pulse generator must have impedance telemetry capabilities).
- Review patient ECGs carefully for indications of transient sensing and/or capture abnormalities. This can be done using transtelephonic or in-clinic monitoring and/or using ambulatory monitoring.
- Elicit any patient complaints suggestive of lead failure and investigate thoroughly lead integrity/ performance characteristics following reports of patient complaints or symptoms using the above techniques.

- Consider whether prophylactic replacement would be appropriate in patients at high risk, such as pacemaker dependent patients.
- Evaluate carefully the integrity of the lead during routine pulse generator replacement before choosing to reuse. Specifically, Medtronic recommends placement of a new lead if:
 - insulation breaches are observed.
 - lead impedance is less than 300 ohms or has decreased by more than 30% from implant values.
 - electrical properties such as impedance and threshold vary significantly when multiple readings are taken.

As always, medical judgment must be used to establish the appropriate schedule and course of care for every individual, particularly pacemaker dependent or other patients at higher risk.

Status

Patient management recommendations remain unchanged. Laboratory analysis trends and engineering conclusions remain unchanged. Out of the initial implant population of 96,800 in the United States, approximately 5,300 remain implanted. The System Longevity Study results show 62.2% lead survival at 15 years, 9 months.

Advisories continued

Minix, Minix ST, Micro Minix IPGs

Original Date of Advisory: May 6, 1991

Potential Delayed Restoration of Permanent Settings

Product

All Models of the Minix, Minix ST, and Micro Minix families of Implantable Pulse Generators

Advisory

Possibility of delayed restoration of permanent pacing mode and parameters, after the magnet or programming head is removed under certain conditions.

Patient Management Recommendations

To eliminate any potential risk associated with temporary programming, depress the INTERROGATE KEY and verify successful interrogation before moving the programming head away from the pulse generator. The delay condition can also be terminated by repositioning the programming head and depressing the EMERGENCY VVI key.

Status

Device performance related to this advisory continues to be within Medtronic's engineering projections. Patient management recommendations remain unchanged. Out of the initial implant population of 65,000 in the United States, approximately 4,000 remain implanted. The devices affected by this advisory are nearing the end of their expected longevity.

Performance Notes

Ensuring the Accuracy of Battery Longevity Estimates

Purpose of this Information

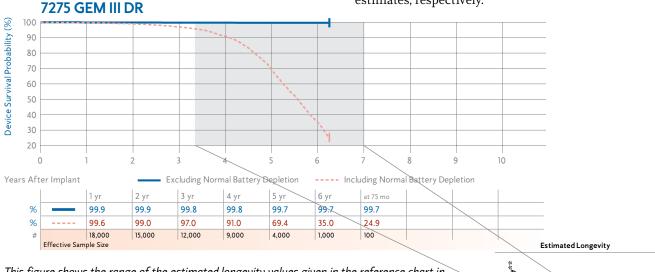
This article is intended to help the clinician understand how Medtronic estimates CRT-D, ICD, and IPG device longevity and Medtronic's performance against these estimates.

Device Longevity and Battery Depletion

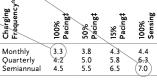
The device service life ends when the usable battery capacity is depleted. The time to battery depletion depends on three factors:

- the amount of electrical energy expended in providing therapy to the patient
- the amount of energy consumed by the electronic circuitry to perform the functions of the device (e.g., operating the microprocessor, telemetry, memory, and charging component)
- the energy capacity of the battery

Medtronic has developed a statistical model for device longevity that accounts for each of these factors, and has validated the model with real time clinical performance. During the development of its products, Medtronic engineers characterize device longevity using this model. Testing begins during development and continues after market release to ensure the accuracy of device longevity estimates.


Using Survival Curves to Assess Longevity

The survival curves in the Product Performance Report represent the composite experience of thousands of devices over a wide range of programming options and patient use conditions. While the curves are useful for understanding the overall performance of a population of devices, they cannot be used to accurately predict the longevity of a specific device in a specific patient. To get a longevity prediction for a specific device, the longevity model must be used. The model is available by contacting Medtronic's Technical Services Department.


Because the survival curves are an aggregate result, the Reference pages in the Product Performance Report include several longevity estimates for a range of use conditions. These longevity estimates, originally published in the device Technical Manual, are mean values calculated for the parameters given. This range of longevity estimates can be compared to the survival curve including normal battery depletion to assess the overall clinical performance of a device model against the original longevity estimates.

If most of a device model's population is being used at nominal parameters and conditions, the time at which the survival curve including normal battery depletion equals 50% should approximate the midpoint in the range of longevity estimates.

If devices tend to be used at conditions that consume more or less energy than nominal, then the time at which the survival curve equals 50% should tend toward the lower or higher end of the range of longevity estimates, respectively.

This figure shows the range of the estimated longevity values given in the reference chart in relation to the survival curve for the Model 7275 ICD. The range of longevity is representative of a typical range of use values, not the absolute minimum or maximum longevities possible. In this example, the survival curve including normal battery depletion is approaching 50% at approximately the mid-point of the range of longevity values.

153 Medtronic CRDM Product Performance Report

Information as of January 31, 2008 Performance Notes

Interactions between Cardiac Pacing and Ventricular Arrhythmia Initiation.

Purpose of this Information

This article is intended to provide information for consideration when programming pacemaker operation in ICDs and pacemakers.

Background

Right ventricular pacing has been associated with increased risk of appropriate therapy for ventricular tachycardia (VT) and ventricular fibrillation (VF) in ICD patients.¹ Abrupt changes in ventricular cycle lengths (short-long-short, S-L-S) may precede initiation of VT/VF in some instances. S-L-S sequences may be permitted in all forms of cardiac pacing. The pause lengths depend upon pacing mode and lower rate programming.²⁻⁴ Because pauses may be associated with VT/VF initiation, pause suppression algorithms have been developed in ICDs. Although pause suppression may have utility in specific patients with repolarization abnormalities and pause dependent VT, it has not been shown to reduce arrhythmia incidence in the general ICD population.⁵ Conversely, S-L-S sequences may occur with ventricular pacing in a variety of ways, including atrial tracking of premature atrial contractions (PACs) or by terminating pauses with ventricular paced beats.6 In some patients, the ectopic depolarization pattern of a ventricular paced beat may be pro-arrhythmic, independent of pause timing. These observations have further enforced the desire to reduce unnecessary ventricular pacing.

Clinical Trial Observations

Medtronic-sponsored clinical trials were retrospectively analyzed to further understand pause-mediated (i.e., S-L-S) scenarios prior to VT/VF. S-L-S onset scenarios were observed in a minority of patients in all pacing modes. Pacemaker interactions prior to VT/VF are dependent on patient conditions, as well as the technical aspects of pacing operation (i.e., pacing mode, lower rate and AV interval). Because a very low frequency of ventricular pacing is observed during Managed Ventricular Pacing (MVP)⁷⁻⁹ or VVI 40 pacing modes,¹⁰ the long interval tended to terminate with a ventricular sense. In DDD mode, the long interval tended to be terminated by a ventricular pace. Long intervals of > 1000 ms prior to VT/VF were rare in MVP mode. In these analyses, only an association between cardiac pacing and VT/VF initiation can be observed, causality cannot be established. The ongoing MVP (Managed Ventricular Pacing vs. VVI 40 Pacing) Trial, a 2-year, 1000-patient prospective, randomized trial in ICD patients may offer more insight into the frequency of VT/VF across pacing modes.11

Pacemaker Patients

In pacemaker patients, ventricular pacing has been associated with higher incidence of AT/AF and heart failure hospitalization.^{12,13} MVP provides atrial rate support while dramatically reducing ventricular pacing in patients with sinus node dysfunction and transient AV block.⁹ However, as stated in Medtronic reference manuals, depending upon the patient's intrinsic rhythm and conduction, MVP may allow ventricular cycle variation and occasional pauses of up to twice the lower rate. DDD pacing with long AV intervals may reduce ventricular pacing and may decrease the potential length of pauses compared to MVP. However, DDD with long AV interval programming does not appear to be as effective as AAI-based pacing modes at reducing ventricular pacing,^{13,14} may lead to endless loop tachycardia,^{14,15} and does not completely eliminate pauses. Also, in DDD mode, a higher programmed lower rate or activation of rate response can lead to an increase in AV conduction times and a higher percentage of ventricular pacing. The potential benefits of reducing ventricular pacing must be weighed against the potential for longer ventricular pauses. Therefore, careful consideration should be given to pacemaker mode and lower rate programming, particularly in the setting of frequent AV block and repolarization abnormalities due to congenital Long QT, electrolyte imbalances, and some medications which prolong QT.

Conclusion

Pacemaker operation may interact with VT/VF initiation in a variety of ways. The patient's heart failure status, arrhythmia substrate, medications, and the relative importance of maintaining ventricular synchrony vs. ensuring ventricular rate support must be weighed when choosing optimal hardware (ICD vs. pacemaker) and pacemaker programming (pacing mode, lower rate, etc.).

References

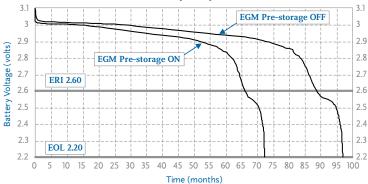
- ¹ Steinberg JS, Fischer A, Wang P, et al. The clinical implications of cumulative right ventricular pacing in the Multicenter Automatic Defibrillator Trial II. *J Cardiovasc Electrophysiol*. April 2005;16(4):359-365.
- ² Pinski SL, Eguia LE, Trohman RG. What is the minimal pacing rate that prevents Torsades de Pointes? Insights from patients with permanent pacemakers. *PACE*. November 2002; 25(11):1612–1615.
- ³ Goldman DS, Levine PA. Pacemaker-mediated polymorphic ventricular tachycardia. PACE. October 1998; 21(10):1993–1995.
- ⁴ Gray CJ, Basta M, Sapp JL, Parkash R, Gardner MJ. Inappropriate application of managed ventricular pacing in a patient with Brugada syndrome leading to polymorphic ventricular tachycardia, ventricular fibrillation and implantable cardioverter debrillator shocks. *Heart Rhythm*. 2006, Abstract PI-89.
- ⁵ Friedman PA, Jalal S, Kaufman S, et al. Effects of a rate smoothing algorithm for prevention of ventricular arrhythmias: results of the Ventricular Arrhythmia Suppression Trial (VAST). *Heart Rhythm.* May 2006;3(5):573-580.
- ⁶ Himmrich E, Przibille O, Zellerhoff C, et al. Proarrhythmic effect of pacemaker stimulation in patients with implanted cardioverter-defibrillators. *Circulation*. July 15, 2003:108(2):192-197.
- ⁷ Sweeney MO, Ellenbogen KA, Casavant D, et al. Multicenter, prospective, randomized trial of a new atrial-based Managed Ventricular Pacing Mode (MVP) in dual chamber ICDs. J Cardiovasc Electrophysiol. 2005:16:1-7.
- ⁸ Sweeney MO, Shea JB, Fox V, et al. Randomized pilot study of a new atrial-based minimal ventricular pacing mode in dual-chamber implantable cardioverter-defibrillators. *Heart Rhythm.* July 2004;1(2):160-167.
- ⁹ Gillis AM, Purerfellner H, Israel CW, et al. Reducing unnecessary right ventricular pacing with the managed ventricular pacing mode in patients with sinus node disease and AV block. PACE. July 2006; 29(7):697–705.
- ¹⁰ The DAVID Trial Investigators. Dual-chamber pacing or ventricular backup pacing in patients with an implantable defibrillator: the Dual Chamber and VVI Implantable Defibrillator (DAVID) Trial. JAMA. December 25, 2002;288(24):3115-3123.
- ¹¹ Sweeney MO, Ellenbogen KA, Whellan D, et al. The Managed Ventricular Pacing vs. VVI 40 Pacing (MVP) Trial: Clinical Background, Rationale, Design and Implementation. J Cardiovasc Electrophysiol. 2006 (In Press).
- ¹² Sweeney MO, Hellkamp AS, Ellenbogen KA, et al. Adverse effect of ventricular pacing on heart failure and atrial fibrillation among patients with normal baseline QRS duration in a clinical trial of pacemaker therapy for sinus node dysfunction. *Circulation*. June 17, 2003;107(23):2932-2937.
- ¹³ Nielsen JC, Kristensen L, Andersen HR, et al. A randomized comparison of atrial and dualchamber pacing in 177 consecutive patients with sick sinus syndrome: echocardiographic and clinical outcome. J Am Coll Cardiol. August 20, 2003;42(4):614-623.
- ¹⁴ Nielsen JC, Pedersen AK, Mortensen PT, Andersen HR. Programming a fixed long atrioventricular delay is not effective in preventing ventricular pacing in patients with sick sinus syndrome. *Europace*. April 1999; 1(2):113–120.
- ¹⁵ Dennis MJ, Sparks PB. Pacemaker mediated tachycardia as a complication of the autointrinsic conduction search function. PACE. June 2004;27(6 Pt 1):824-826.

AT500 Pacing System Follow-Up Protocol

Purpose of this Information

This article is intended to provide clinical guidance regarding follow-up practice and patient management when the AT500 battery voltage approaches the Elective Replacement Indicator (ERI) level of 2.6 volts.

Background


Many AT500 pacing systems are now reaching their ERI voltage level (2.6 volts). This is expected since the battery used has an approximate longevity of 5-6 years under normal conditions (100% DDD pacing, 3 volts, 0.4 ms).

Technical Services has received reports of battery voltage levels below End-of-Life (EOL of 2.2 volts) where EGM prestorage is programmed ON, or higher outputs and/or pacing rates are necessary. It is important for physicians and allied professionals to understand battery depletion characteristics between ERI and EOL so that they, in turn, can understand how this affects management of follow-up visits for the AT500 as this device nears the end of its expected longevity.

AT500 Battery and Longevity Information

In contrast to other IPGs, the AT500 does not change its mode, stimulation rate, or any other parameter when the battery voltage drops below the ERI level of 2.6 volts (with or without magnet applied). The Threshold Margin Test (TMT) is also not available.

Therefore, it is not possible to perform trans-telephonic assessment of AT500 battery status. This must be done during an in-clinic follow-up session. A warning will be displayed on the Quick Look screen at the beginning of a programmer (follow-up) session when the ERI battery level

AT500 Battery Depletion Curve

occurs. The measured battery voltage will also appear on the programmer display and on printouts.

Battery depletion curves at **common parameter settings** are shown in Figure 1, with special focus on device longevity when programming EGM pre-storage ON or OFF.

Medtronic's review of ongoing AT500 battery life test data matches our original longevity modeling and so meets our expectations. However, when using longer durations between follow-up periods (> 3 months), clinicians should consider the following in setting their remaining longevity expectations.

- Enabling the "EGM Pre-storage On" capability will increase current and reduce device longevity by approximately 9 days for each month pre-storage is ON.
- Longevity decreases with an increase in pacing rate, an increase in pacing amplitude or pulse width, a decrease in pacing impedance, a higher ratio of paced to sensed events, or extended use of the Atrial Preference Pacing, EGM pre-storage, or Holter Telemetry features.

Recommendations

Follow-up frequency should always be accelerated as devices reach ERI voltage levels to ensure device explant/ replacement occurs prior to End-of-Life voltage levels. With the wide variety of follow-up schedules being used, Medtronic recommends a 3-month follow-up frequency for the AT500 pacing systems. This is particularly important for patients in whom EGM pre-storage is programmed ON, or higher outputs and/or pacing rates are necessary.

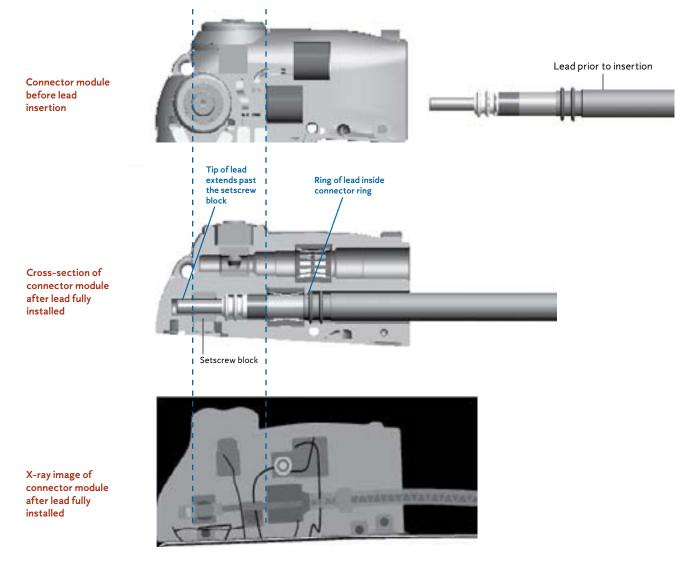
Figure 1

AT500 battery depletion curve for common parameter settings of DDDR, LR 70 ppm, UR 120 ppm, 100% pacing, Atrial – 2 V, 0.4 ms, 600 ohms, Ventricle – 2 V, 0.6 ms, 900 ohms, and EGM Pre-storage ON versus OFF.

Insertion of the Lead into the Device

The implantable system consists of a pulse generator and at least 1 lead. The system operation depends on proper electrical and mechanical operation. With the advent of internationally recognized connector standards the challenge of ensuring proper mechanical fit between the lead and device connectors has been simplified, although the international connector standard does not address all aspects of the procedure for connecting a lead to the device.

If the lead connector is not fully installed, oversensing may result as described in the connector problems section of the technical article, "Clinical Management of High Voltage Lead System Oversensing."


Performing the following steps can be used for each lead connection during the implant procedure.

 Insert the torque wrench into the appropriate setscrew. For easier lead insertion, insert the lead closest to the device first.

- **2** Look down the connector port to verify that the port is not obstructed. If the port is obstructed, retract the setscrew to clear the bore. Take care not to disengage the setscrew from the connector block.
- **3** Push the lead into the connector port until the lead pin is clearly visible beyond the setscrew block.
- **4** Hold the lead in position while tightening the setscrew until the torque wrench clicks.
- 5 Tug gently on the lead to confirm a secure fit.

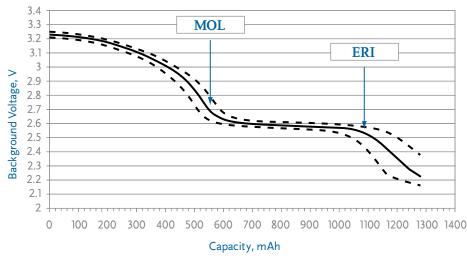
Current publications may provide additional information on implant procedures used by others, e.g., radiographic evaluation of the terminal pin beyond the terminal post.¹

¹ Pickett RA III, Saavedra P, Ali MF, Darbar D, Rottman JN. Implantable cardioverter-defibrillator malfunction due to mechanical failure of the header connection. *J Cardiovasc Electrophysiol.* September 2004;15(9):1095-1099.

GEM II DR/VR and GEM III DR/VR/AT ICD Battery Discharge Behavior

Medtronic manufactures and utilizes a unique Lithium/Silver Vanadium Oxide battery in the GEM II/III family of ICDs. This battery has a distinctive voltage discharge with two regions of constant voltage at 3.2 volts and 2.6 volts.

The battery discharge curve (see curve below) is characterized by a significant decrease in the battery voltage approaching Middle-of-Life (MOL), followed by a plateau (MOL to ERI) where the battery voltage remains around 2.6 volts. The transition to the plateau could be easily misinterpreted as the battery rapidly approaches ERI, which occurs at 2.55 volts, when the battery may in fact have several years remaining until ERI.


It is important to understand that this battery voltage decrease in the GEM II/III family of ICDs is a normal

characteristic of the battery function in these devices and should not create a need for additional follow-up or monitoring.

As a general rule of thumb, the longevity from implant to MOL = MOL to ERI.

The design of the battery in subsequently released models has been modified to present a more linear battery discharge curve.

If you are concerned about early ERI in your patient's device, you can utilize the battery trend measurements stored in the save-to-disk file, which can be accessed and interpreted through the Medtronic Technical Services at 1 (800) 723-4636.

GEM II/III Battery Discharge Curve

General Follow-Up and Replacement of ICD Leads

Implanted leads operate in the challenging biochemical environment of the human body and the body's response to foreign objects. Implanted leads are also subject to mechanical stresses associated with heart motion, body motion, and patient anatomy.

In this environment, pacemaker and defibrillation leads cannot be expected to last forever. Unlike implantable cardioverter defibrillators (ICDs), a lead's longevity cannot be predicted nor are there simple indicators that a lead is approaching the end of its service life. The determination that a lead may be approaching end of service life requires follow-up of the chronically implanted lead and thorough evaluation of lead integrity at ICD replacement.

Follow-Up of Chronically Implanted Leads

The frequency of follow-up for ICD patients will depend on a number of factors including the patient's medical condition, ICD system implant time, hospital/clinic follow-up practice, and Medicare guidelines. In all cases, it is important to assess the functionality of the ICD system and the integrity. For newly implanted leads, it is beneficial to establish a baseline of chronic performance parameters once the lead has stabilized, generally within 6 to 12 months after implant. These performance parameters should include pacing and sensing thresholds and impedance. During routine patient follow-up, these procedures can be used to evaluate lead integrity.

- Measure pacing and sensing threshold and compare to the chronic baseline. Significant increases or decreases may be indicative of lead failure, dislodgement, perforation, exit block, etc.
- Measure pacing impedance where possible and compare to the chronic baseline. Decreases of 30% or more or pacing impedances below 200-250 ohms may be indicative of insulation failure. Sudden and significant increases in pacing impedance may be indicative of conductor fracture.
- High voltage lead circuit impedance should be between 10-75 ohms at system implant. Chronic measurements below 10 and above 200 ohms may be indicative of high voltage lead circuit failure.
- Carefully review ECGs or the non-sustained detection log on Medtronic ICDs for indications of pacing and/or sensing abnormalities such as oversensing, undersensing, and loss of capture.
- Elicit and investigate any patient complaints/symptoms which may be suggestive of potential lead failure.

Where routine follow-up indicates, additional tools should be used to further evaluate performance. Tools include radiographic data, ICD electrograms, ICD Patient Alert and performance information from the System Longevity Study (SLS).

The final decision on the functional integrity and continued use of an implanted lead must be a matter of medical judgment based on these factors as well as specific patient conditions.

General Criteria for Lead Replacement

The evaluation of a chronically implanted lead is an important part of the decision to continue to use the lead with a new ICD. However, these results alone do not necessarily predict the future integrity of that lead. With the expected longevity of today's ICDs varying between approximately 5 and 10 years, a physician replacing a device should consider a number of factors, including those listed below.

Factors which should be considered in a decision to replace or continue to use include:

- Pacing and sensing thresholds should be evaluated for the potential to maintain acceptable levels.
- Pacing impedance should be measured. Bear in mind that pacing impedance below 250 ohms results in excessive battery current drain, which may seriously compromise ICD longevity, regardless of lead integrity.
- The physical appearance of the lead should be examined for insulation cracks, breaches, or other indications of lead wear or degradation.
- Medtronic System Longevity Study data should be referenced. Actuarial survival of the lead and the observed lead failure mechanisms are specific factors to consider. Use of a new lead should be considered if failure mechanisms suggest an increased time dependency as suggested in the shape of performance curve for the specific lead model.
- Current publications may provide additional information on the clinical management of leads.¹⁻³ Ultimately, the decision to replace an implanted lead involves medical judgment.
- ¹ Hauser RG, Cannom D, Hayes DL, et al. Long-term structural failure of coaxial polyurethane implantable cardioverter defibrillator leads. *PACE*. June 2002;25(6):879-882.
- ² Ellenbogen KA, Wood MA, Shepard RK, et al. Detection and management of an implantable cardioverter defibrillator lead failure: incidence and clinical implications. *J Am Coll Cardiol.* January 1, 2003;41(1):73-80.
- ³ Hauser RG, Kallinen LM, Almquist AK, Gornick CC, Katsiyiannis WT. Early Failure of a Small Diameter High Voltage Implantable Cardioverter Defibrillator Lead, Heart Rhythm (2007), doi:10.1016/ j.hrthm.2007.03.041

Clinical Management of High Voltage Lead System Oversensing

Appropriate sensing by an ICD system refers to the sensing of cardiac events that may or may not require therapy delivery. ICD systems must sense relatively large QRS complexes while avoiding sensing of smaller T-waves, yet continue to sense often small variable amplitude ventricular fibrillation. Thus, ICD systems attempt to dynamically adjust sensing of electrical events, and discriminate between them based on detection algorithms and programmed settings.

Inappropriate sensing can occur when an ICD system classifies events of non-cardiac origin as QRS/VF events, or senses and counts T- and far field P-waves as ventricular depolarizations. This is often referred to as "oversensing," and may result in delivery of inappropriate high voltage therapies. This is due, in part, to the desire to err on the side of delivering lifesaving high voltage therapy rather than withholding it. Thus, an ICD system which is experiencing oversensing issues will continue to deliver therapeutic shocks as required, but may also subject the patient to unnecessary shocks.

Oversensing can be difficult to manage, in that the precipitating cause of the oversensing can be problematic to isolate. Oversensing can be caused by many factors, including myopotentials/far field sensing, electromagnetic interference, T-wave sensing, connector issues, incomplete or complete conductor fractures, and insulation breaches. While the individual physician must exercise medical judgment in determination of appropriate clinical management of ICD systems, the chart below may assist in the process of causal factor differentiation and possible intervention.

Phenomenon	Causal Factors	Characteristics	Management/Comments
Myopotentials/ Far Field Sensing	Diaphragmatic muscle potentials in breathing, wide tip-ring (coil on integrated bipolar leads) spacing.	Nonphysiological sensed event on EGM, which may confuse detection potentially resulting in false positive shocks.	Check R-waves for deterioration. Reprogram sensitivity. Try repositioning lead. Consider change-out to true bipolar lead, or if true bipolar lead in use, one with closer tip-ring spacing than current lead.
EMI (Electro-Magnetic Interference)	Arc welders, electrical generators, store walk-through security scanners, poorly insulated electrical equipment.	Multiple and consecutive short intervals (< 140 ms) independent of underlying sinus beats. Associated with proximity to the EMI source.	Avoid EMI areas. True bipolar leads less susceptible.
T-wave Sensing	Drugs, ischemic tissue, exercise, long QT syndrome, electrolyte imbalance.	Sense markers seen on EGM related to T-wave. False positive detection.	Check for R-wave deterioration and characteristics. If R-wave > 3.0 mV, reprogram sensitivity. If R-wave < 3.0 mV, reposition/replace lead. Address causal factor (e.g., drugs lif appropriate/medically viable]).
Connector Problems	Loose setscrew, cross-threaded setscrew, incomplete lead insertion into header.	This is an acute phenomenon seen within 6 months of implant (usually sooner).	Requires invasive check of connections. May be reproducible with pocket manipulation.
Incomplete Conductor Fracture	One or more filars of a multifilar conductor fracturing while leaving enough filars intact to provide a conduction circuit.	Characterized by chaotic oversensing related to motion of the fracture site.	Check EGMs and x-rays. Manipulate lead at suspected fracture site if possible as a provocative test. If confirmed, replace lead.
Lead Insulation Breach	Cuts, tears, metal ion oxidization, abrasion, cold flow, environmental stress cracking.	Characterized by cyclical and/or erratic, intermittent, spontaneous oversensing; often post-pace or post-shock can cause false positives.	Replace lead. If acute, usually secondary to implant damage/replacement damage. If late, material characteristic.
Oversensing during interrogation with programming head (not wireless telemetry) with complete lead fracture	Interrogation with a programming head in combination with complete lead fracture that creates an open circuit can induce noise on the sensing circuitry inside the ICD can.	Nonphysiologic sensed event on EGM. If detection is enabled during interrogation, oversensing may result in inappropriate therapy.	Quickly remove the programming head. CANCEL the interrupted interrogation and manually load the software for the specific device model. Reposition the programmer head over the device and immediately select SUSPEND. Device will resume detection when programming head is removed, or when RESUME is selected. Replace lead.

Technical Services is available at all times to advise clinicians in the troubleshooting and management of Medtronic products. For assistance in the United States, please call 1 (800) 723-4636. In other countries, please contact your local Medtronic representative.

Tests and Observations for Clinical Assessment of Chronic Pacing Leads

Test/Observation	Possible Insulation Failure	Possible Conductor Failure	Possible Other System Failure	Effect on Test/ Observation
Pacing Impedance (Telemetered or Measured Invasively)	Sudden and Significant Decrease	Sudden and Significant Increase	Dislodgement. Perforation. Electrolyte Imbalance. Improper IPG/Lead Connection	. Increase or Decrease . Increase or Decrease
Pacing Thresholds (Telemetered/Programmed or Measured Invasively)	Sudden and Significant Increase Especially in Bipolar System	Sudden and Significant Increase	Dislodgement Exit Block Infarct at Electrode Site Perforation Improper IPG/Lead Connection	.Increase .Increase .Increase
Electrograms (Telemetered or Measured Invasively)	Sudden and Significant Decrease in Amplitudes and/or Slew Rates for P- and/or R-Waves	Sudden and Significant Decrease or Disappearance of Amplitudes and/or Slew Rates for P- and/or R- Waves	Dislodgement. Perforation Infarct at Electrode Site. Electrolyte Imbalance Improper IPG/Lead Connection	Decrease Decrease Decrease
Waveform Analysis (Oscillographs of Pacer Artifact from ECG Electrodes)	Sudden Increase in Ratios of Leading-Edge Voltages to Trailing-Edge Voltages (i.e., over 25% increase)	Intermittent or No Pacer Artifacts (Even in Asynchronous Mode)	Improper IPG/Lead Connection	Intermittent or No Pacer Artifacts (Even in Asynchronous Mode)
Radiographs (Post-Implant, Recent, Current)	Not Discernible	Visual Observation of Conductor/Connector/ Electrode Fracture (Sometimes Discernible)	Dislodgement or Perforation. Improper IPG/Lead Connection.	Sometimes Discernible
Visual Inspection (Invasive)	Insulation Breach and/or Degradation, or Ligature Cut-Through	Not Easily Discernible	Connector Defect or Connector Pulled Apart. Improper IPG/ Lead Connection.	Sometimes Discernible
Pectoral Muscle Stimulation	Sudden Onset Especially in Bipolar System		Connector Defect in Bipolar or Unipolar. Hypersensitivity to Unipolar Pulse Generator Can. Anti-Stim Coating or Protection Deficient.	
Phrenic Nerve/ Diaphragmatic Stimulation	Sudden Onset in Bipolar or Unipolar Systems		Perforation or Displacement of Atrial Lead (Phrenic Nerve)	
Pacemaker ECG Stimulus Artifact Size and Morphology Change (May Not Be Possible with Digital ECG)	Sudden Onset and Significant Change, Especially in Bipolar System (Increase in Size)	Sudden Changes, Usually a Decrease in Size	Perforation or Dislodgement. Connector Defect. Improper IPG/Lead Connection.	Sometimes Discernible
Oversensing (Intermittent or Continuous)	Sudden Onset, Especially in Bipolar Systems		Physical Contact between the Electrode(s) on the Lead and that of Another Lead. Inappropriate IPG Parameter Setting. Improper IPG/Lead Connection.	Sometimes Discernible
Undersensing (Intermittent or Continuous)	Sudden Onset in Either Unipolar or Bipolar Systems	Sudden Onset in Either Unipolar or Bipolar Systems	Dislodgement or Perforation. Infarct at Electrode Site. Electrolyte Imbalance. Inappropriate IPG Parameter Setting. Improper IPG/Lead Connection.	Sometimes Discernible
Loss of Capture	See "Pacing Thresholds" Above	See "Pacing Thresholds" Above	See "Pacing Thresholds" Above	

Index

By Model Number

2187 77,79 2188 77,79 3830 91, 123, 127, 129 4003 92, 123, 127, 129 4003M 92, 123, 127, 129 4004 93, 123, 127, 129, 150 4004M 93, 123, 127, 129, 150 4011 93, 123, 127, 129 4012 94, 123, 127, 129, 151 4023 94, 123, 127, 129 4024 95, 123, 127, 129 4033 95, 123, 127, 129 4057 96, 123, 127, 129 4057M 96, 123, 127, 129 4058 97, 123, 127, 129 4058M 97, 123, 127, 129 4067 98, 123, 127, 129 4068 99, 123, 127, 129 4073 100, 124, 127, 129 4074 101, 124, 127, 129 4076 102, 124, 127, 129 4081 103, 124, 127, 129 4082 150 4092 103, 124, 127, 129 4193 78,79 4194 78,79 4503 104, 124, 127, 129 4503M 104, 124, 127, 129 4504 104, 124, 127, 129, 149 4504M 104, 124, 127, 129, 149 4512 105, 124, 127, 129 4523 105, 124, 127, 129 4524 106, 124, 127, 129 4533 106, 124, 127, 129 4557 107, 124, 127, 129 4557M 107, 124, 127, 129 4558M 107, 124, 127, 129 4568 108, 125, 127, 129 4574 108, 125, 127, 129 4582 149 4592 109, 125, 127, 129 4951 131, 134, 135 4951M 131, 134, 135 4965 131.134.135 4968 132, 134, 135 5023 109, 125, 127, 129 5023M 109, 125, 127, 129 5024 110, 125, 127, 130 5024M 110, 125, 127, 130 5026 110, 125, 127, 130 5032 136, 137 5033 111, 125, 127, 130 5034 111, 125, 127, 130 5038 136, 137 5054 112, 125, 127, 130 5068 113, 125, 127, 130 5069 135 5071 132, 134, 135 5072 114, 125, 127, 130 5076 115, 125, 127, 130 5092 116, 125, 127, 130 5524 116, 125, 127, 130 5524M 116, 125, 127, 130 5534 117, 126, 127, 130 5554 117, 126, 127, 130 5568 118, 126, 127, 130 5592 118, 126, 127, 130 5594 119, 126, 128, 130 6721 80, 88, 89, 90 6917 133, 134, 135 6917A 133, 134, 135 6921 80, 88, 89, 90

6930 80, 88, 89, 90, 144 6931 81, 88, 89, 90, 144 6932 81, 88, 89, 90, 148 6933 82, 88, 89, 90 6934S 90,148 6936 82, 88, 89, 90, 148 6937 82, 88, 89, 90 6937A 82, 88, 89, 90 6939 83, 88, 89, 90 6940 119, 126, 128, 130 6942 83, 88, 89, 90, 148 6943 84, 88, 89, 90, 148 6944 84, 88, 89, 90 6945 85, 88, 89, 90, 148 6947 85, 88, 89, 90 6948 86, 88, 89, 90 6949 86, 88, 89, 90 6957 120, 126, 128, 130 6957J 121, 126, 128, 130 6961 121, 126, 128, 130 6962 122, 126, 128, 130 6963 82, 88, 89, 90 6966 82, 88, 89, 90 6996 87, 88, 89, 90, 148 6999 83, 88, 89, 90 7088 51, 67, 72 7089 51, 67, 72 7107 51, 67, 72 7108 51, 67, 72 7223 33 7227 21, 30, 33, 139, 148 7229 21, 30, 33, 139, 148 7230 22, 30, 33, 139, 146 7231 22, 30, 33, 139 7232 23, 30, 33, 146 7253 38, 63, 71 7271 23, 30, 33, 139 7272 13, 18, 20, 33, 139 7274 24, 30, 33, 140, 146 7275 24, 31, 33, 140, 153 7276 25, 31, 33, 140 $7277 \ 13, 18, 20, 33, 140, 146$ 7278 25, 31, 33, 140, 146 7279 140, 146 7285 141, 146 7287 33 7288 26, 31, 33, 141 7289 14, 18, 20, 141, 146 7290 26, 31, 33, 141 7295 20 7297 14, 18, 20, 141 7299 15, 18, 20, 141 7303 15, 18, 20, 142 7304 16, 18, 20, 142 7860 53, 67, 73 7861 53, 67, 73 7862 53, 67, 73 7864 53, 67, 73 7865 53, 67, 73 7866 53, 67, 73 7960i 59, 69, 73 7961i 59, 69, 73 7962i 59, 69, 73 7964i 59, 69, 73 7965i 59, 69, 73 7966i 59, 69, 73 7968i 60, 69, 73 8040 16, 19, 20 8042 17, 19, 20 8085 52, 67, 72 8086 52, 67, 72 8088 52, 67, 72

8089 52,67,72 8158 54, 68, 73 8160 54, 68, 73 8161 54, 68, 73 8162 54, 68, 73 8164 54, 68, 73 8165 54, 68, 73 8166 54, 68, 73 8330 50, 67, 72 8331 50, 67, 72 8331M 50, 67, 72 8340 50, 67, 72 8341 50, 67, 72 8341M 50, 67, 72 8342 50, 67, 72 8416 49, 66, 72 8417 49, 66, 72 8417M 49, 66, 72 8418 49, 66, 72 8419 49, 66, 72 8424 50, 66, 72 8426 50, 66, 72 8427 50, 66, 72 8960i 61, 70, 73 8961i 61, 70, 73 8962i 61, 70, 73 8964i 60, 69, 73 8965i 60, 69, 73 8966i 60, 69, 73 8968i 61, 70, 73 ADD01 36, 63, 71 ADDR01 36, 63, 71 ADDR03 36, 63, 71 ADDR06 36, 63, 71 ADDRL1 36, 63, 71 ADDRS1 37, 63, 71 ADSR01 37, 63, 71 ADSR03 37, 63, 71 ADSR06 37, 63, 71 ADVDD01 71 AT501 38, 63, 71 C154DWK 17, 19, 20, 142 C164AWK 17, 19, 20 C174AWK 17, 19, 20 D153ATG 27, 31, 34, 142 D153DRG 27, 31, 34, 142 D153VRC 34 D154ATG 27, 31, 34, 142 D154AWG 28, 32, 34, 143 D154DRG 27, 31, 34, 142 D154VRC 28, 32, 34, 142 D154VWC 29, 32, 34, 143 D164AWG 28, 32, 34 D164VWC 29, 32, 34 E1DR01 38, 63, 71 E1DR03 38, 63, 71 E1DR06 38, 63, 71 E1DR21 39, 63, 71 E2DR01 39, 64, 71 E2DR03 39, 64, 71 E2DR06 39, 64, 71 E2DR21 40, 64, 71 E2DR31 40, 64, 71 E2DR33 40, 64, 71 E2SR01 41, 64, 71 E2SR03 41, 64, 71 E2SR06 41, 64, 71 E2VDD01 41, 64, 71 KD701 44, 65, 72, 147 KD703 44, 65, 72, 147 KD706 44, 65, 72, 147 KDR401 42, 64, 71

KDR403 42, 64, 71 KDR601 43, 65, 71, 147 KDR603 43, 65, 71, 147 KDR606 43, 65, 71, 147 KDR651 44, 65, 71, 147 KDR653 44, 65, 71, 147 KDR701 45, 65, 72, 147 KDR703 45, 65, 72, 147 KDR706 45, 65, 72, 147 KDR721 45, 65, 72, 147 KDR801 47, 66, 72 KDR803 47, 66, 72 KDR901 47, 66, 72 KDR903 47, 66, 72 KDR906 47, 66, 72 KDR921 48, 66, 72 KSR401 43, 64, 71 KSR403 43, 64, 71 KSR701 46,65,72 KSR703 46, 65, 72 KSR706 46, 65, 72 KSR901 48,66,72 KSR903 48, 66, 72 KSR906 48,66,72 KVDD701 46, 65, 72, 147 KVDD901 49, 66, 72 P1501DR 42, 64, 71 SDR203 56, 68, 73 SDR303 57, 69, 73 SDR306 57, 69, 73 SED01 55, 68, 73 SEDR01 55, 68, 73 SEDRL1 73 SES01 55, 68, 73 SESR01 55, 68, 73 SS103 56, 68, 73 SS106 56, 68, 73 SSR203 57, 68, 73 SSR303 58, 69, 73 SSR306 58, 69, 73 SVDD303 58, 69, 73 VEDR01 62, 70, 73

By Family

A

Adapta DR ADD01 36, 63, 71 ADDR01 36, 63, 71 ADDR03 36, 63, 71 ADDR06 36, 63, 71 ADDRL1 36.63.71 ADDRS1 37, 63, 71 Adapta SR ADSR01 37, 63, 71 ADSR03 37, 63, 71 ADSR06 37, 63, 71 Adapta VDD ADVDD01 71 AT500 7253 38, 63, 71, 155 AT501 38, 63, 71, 155 Attain 2187 77,79 2188 77, 79 4193 78,79 4194 78, 79

С

CapSure 4003 92, 123, 127, 129 4003M 92, 123, 127, 129 4004 93, 123, 127, 129, 150 4004M 93, 123, 127, 129, 150 4503 104, 124, 127, 129 4503M 104, 124, 127, 129 4504 104, 124, 127, 129, 149 4504M 104, 124, 127, 129, 149 5026 110, 125, 127, 130 CapSureFix 4067 98, 123, 127, 129 4068 99, 123, 127, 129 4568 108, 125, 127, 129 5068 113, 125, 127, 130 5568 118, 126, 127, 130 6940 119, 126, 128, 130 CapSureFix Novus 4076 102, 124, 127, 129 5076 115, 125, 127, 130 CapSure Epi 4965 131, 134, 135 4968 132, 134, 135 CapSure Sense 4073 100, 124, 127, 129 4074 101, 124, 127, 129 4574 108, 125, 127, 129 CapSure SP 4023 94, 123, 127, 129 4024 95, 123, 127, 129 4523 105, 124, 127, 129 4524 106, 124, 127, 129 5023 109, 125, 127, 129 5023M 109, 125, 127, 129 5024 110, 125, 127, 130 5024M 110, 125, 127, 130 5524 116, 125, 127, 130 5524M 116, 125, 127, 130

CapSure SP Novus 4092 103, 124, 127, 129 4592 109, 125, 127, 129 5092 116, 125, 127, 130 5592 118, 126, 127, 130 5594 119, 126, 128, 130 CapSure VDD 5032 136, 137 CapSure VDD-2 5038 136, 137 CapSure Z 4033 95, 123, 127, 129 4533 106, 124, 127, 129 5033 111, 125, 127, 130 5034 111, 125, 127, 130 5534 117, 126, 127, 130 CapSure Z Novus 5054 112, 125, 127, 130 5554 117, 126, 127, 130 Concerto C154DWK 17, 19, 20, 142 C164AWK 17, 19, 20 C174AWK 17, 19, 20

Е

EnPulse DR E1DR01 38, 63, 71 E1DR03 38, 63, 71 E1DR06 38, 63, 71 E1DR21 39, 63, 71 EnPulse 2 DR E2DR01 39, 64, 71 E2DR03 39, 64, 71 E2DR06 39, 64, 71 E2DR21 40, 64, 71 E2DR31 40, 64, 71 E2DR33 40, 64, 71 EnPulse 2 SR E2SR01 41, 64, 71 E2SR03 41, 64, 71 E2SR06 41.64.71 EnPulse 2 VDD E2VDD01 41, 64, 71 EnRhythm DR P1501DR 42, 64, 71 EnTrust D153ATG 27, 31, 34, 142 D153DRG 27, 31, 34, 142 D153VRC 34 D154ATG 27, 31, 34, 142 D154DRG 27, 31, 34, 142 D154VRC 28. 32. 34. 142 Epicardial Patch 6721 80, 88, 89, 90 6921 80, 88, 89, 90

G

GEM 7227 21, 30, 33, 139, 148 GEM DR 7271 23, 30, 33, 139 GEM II VR 7229 21, 30, 33, 139, 148, 157 GEM III AT 7276 25, 31, 33, 140, 157 GEM III DR 7275 24, 31, 33, 140, 153, 157 GEM III VR 7231 22, 30, 33, 139, 157

I

InSync 8040 16, 19, 20 InSync ICD 7272 13, 18, 20, 33, 139 InSync Marquis 7277 13, 18, 20, 33, 140, 146 InSync Maximo 7303 15, 18, 20 7304 16, 18, 20 InSync Sentry 7297 14, 18, 20 7299 15, 18, 20 InSync II Marquis 7289 14, 18, 20, 141, 146 InSync II Protect 7295 20 InSync III Protect 7285 141, 146 InSync III 8042 17, 19, 20 InSync III Marquis 7279 140, 146 Intrinsic 7288 26, 31, 33, 141 Intrinsic 30 7287 33

Κ

Kappa 400 DR KDR401 42, 64, 71 KDR403 42, 64, 71 Kappa 400 SR KSR401 43, 64, 71 KSR403 43, 64, 71 Kappa 600 DR KDR601 43, 65, 71, 147 KDR603 43, 65, 71, 147 KDR6051 44, 65, 71, 147 KDR653 44, 65, 71, 147

Kappa 700 D . KD701 44, 65, 72, 147 KD703 44, 65, 72, 147 KD706 44, 65, 72, 147 Kappa 700 DR KDR701 45, 65, 72, 147 KDR703 45, 65, 72, 147 KDR706 45, 65, 72, 147 KDR721 45, 65, 72, 147 Kappa 700 SR KSR701 46,65,72 KSR703 46, 65, 72 KSR706 46, 65, 72 Kappa 700 VDD KVDD701 46, 65, 72, 147 Kappa 800 DR KDR801 47, 66, 72 KDR803 47, 66, 72 Kappa 900 DR KDR901 47,72 KDR903 47,72 KDR906 47,72 Kappa 900 SR KSR901 48, 66, 72 KSR903 48, 66, 72 KSR906 48, 66, 72 Kappa 900 VDD KVDD901 49,66,72 Kappa 920 DR -KDR921 48,66,72

L

Legend 8416 49, 66, 72 8417 49, 66, 72 8417M 49, 66, 72 8418 49, 66, 72 8419 49, 66, 72 Legend II 8424 50, 66, 72 8426 50, 66, 72 8427 50, 66, 72

Μ

Marquis DR 7274 24, 30, 33, 140, 146 Marquis VR 7230 22, 30, 33, 139, 146 Maximo DR 7278 25, 31, 33, 140, 146 Maximo VR 7232 23, 30, 33, 146 Minix/Minix ST 8330 50, 67, 72, 152 8331 50, 67, 72, 152 8331M 50, 67, 72, 152 8340 50, 67, 72, 152 8341 50, 67, 72, 152 8341M 50, 67, 72, 152 8342 50, 67, 72, 152 Minuet 7107 51, 67, 72 7108 51, 67, 72

By Family continued

0

Onyx 7290 26, 31, 33, 141

Ρ

Preva DR 7088 51, 67, 72 7089 51, 67, 72 Preva SR 8088 52, 67, 72 8089 52, 67, 72 Prevail S 8085 52, 67, 72 8086 52, 67, 72 Prodigy D 7864 53, 67, 73 7865 53, 67, 73 7866 53, 67, 73 Prodigy DR 7860 53, 67, 73 7861 53, 67, 73 7862 53, 67, 73 Prodigy S 8164 54, 68, 73 8165 54, 68, 73 8166 54, 68, 73 Prodigy SR 8158 54, 68, 73 8160 54, 68, 73 8161 54, 68, 73 8162 54, 68, 73

S

Screw-In 4057 96, 123, 127, 129 4057M 96, 123, 127, 129 4058 97.123.127.129 4058M 97, 123, 127, 129 4557 107, 124, 127, 129 4557M 107, 124, 127, 129 4558M 107, 124, 127, 129 SelectSecure 3830 91, 123, 127, 129 Sensia DR SED01 55, 68, 73 SEDR01 55, 68, 73 SEDRL1 73 Sensia SR SES01 55, 68, 73 SESR01 55, 68, 73 Sigma 100 S SS103 56, 68, 73 SS106 56, 68, 73 Sigma 200 DR SDR203 56, 68, 73 Sigma 200 SR SSR203 57, 68, 73

Sigma 300 DR SDR303 57.69.73 SDR306 57, 69, 73 Sigma 300 SR SSR303 58, 69, 73 SSR306 58, 69, 73 Sigma 300 VDD SVDD303 58, 69, 73 Spectraflex 4951 131, 134, 135 4951M 131, 134, 135 6957 120, 126, 128, 130 6957J 121, 126, 128, 130 Sprint 6932 81, 88, 89, 90, 148 6942 83, 88, 89, 90, 148 6943 84, 88, 89, 90, 148 6945 85, 88, 89, 90, 148 Sprint Fidelis 6930 80, 88, 89, 90, 144 6931 81, 88, 89, 90, 144 6948 86, 88, 89, 90, 144 6949 86, 88, 89, 90, 144 Sprint Quattro 6944 84, 88, 89, 90 Sprint Quattro Secure 6947 85, 88, 89, 90 Sub-Q Lead 6996 87, 88, 89, 90 Sub-Q Patch 6939 83, 88, 89, 90 6999 83, 88, 89, 90 SureFix 5072 114, 125, 127, 130 SVC/CS 6933 82, 88, 89, 90 6937 82, 88, 89, 90 6937A 82, 88, 89, 90 6963 82, 88, 89, 90

Т

Target Tip 4011 93, 123, 127, 129 4012 94, 123, 127, 129, 151 4081 103, 124, 127, 129 4082 150 4512 105, 124, 127, 129 4582 149 Tenax 6917 133, 134, 135 6917A 133, 134, 135 6961 121, 126, 128, 130 6962 122, 126, 128, 130 Thera-i D 7964i 59, 69, 73 7965i 59, 69, 73 7966i 59, 69, 73 Thera-i DR 7960i 59, 69, 73 7961i 59, 69, 73 7962i 59, 69, 73 7968i 60, 69, 73

Thera-i S 8964i 60, 69, 73 8965i 60, 69, 73 8966i 60, 69, 73 Thera-i SR 8960i 61, 70, 73 8961i 61, 70, 73 8962i 61, 70, 73 Thera-i VDD 8968i 61, 70, 73 Transvene 6934S 90, 148 6936 82, 88, 89, 90, 148 6966 82, 88, 89, 90, 148

V

Versa DR VEDR01 62, 70, 73 Virtuoso D154AWG 28, 32, 34, 143 D164AWG 28, 32, 34 D154VWC 29, 32, 34, 143 D164VWC 29, 32, 34

> If you are looking for a model number or family that is not included in this report, you may call US Technical Services (see page 2).

Mailer Kits Available for Returning Product

Medtronic urges all physicians to return explanted product and to notify Medtronic when a product is no longer in use, regardless of reason for explant or removal from use. The procedures for returning product vary by geographic location.

Mailer kits (pictured right) with prepaid US postage are available for use within the United States to send CRT, ICD, IPG, and leads to Medtronic's CRDM Returned Product Analysis Lab. These mailers are sized to accommodate the devices and leads from a single patient or clinical event and are designed to meet postal regulations for mailing biohazard materials.

If the product being returned is located outside the United States, please contact your local Medtronic representative for instructions.

Medtronic also requests the return of devices from non-clinical sources such as funeral homes, and will assume responsibility for storage and disposal of the product once received. For return of larger quantities of explanted products than the mailer can accommodate, Medtronic has handling and shipping guidelines available upon request.

Both mailers and guidelines can be requested by contacting the Returned Product Lab.

CRDM Returned Product Analysis Laboratory Medtronic, Inc. 7000 Central Avenue NE MS RCE172 Minneapolis, MN 55432-3576 USA

Phone: 1 (800) 328-2518, ext. 44800 email: crdm.returnedproduct@medtronic.com

World Headquarters

Medtronic, Inc. 710 Medtronic Parkway Minneapolis, MN 55432-5604 USA Tel: (763) 514-4000 Fax: (763) 514-4879 www.medtronic.com

Medtronic USA, Inc. Toll-free: 1 (800) 328-2518 (24-hour technical support for physicians and medical professionals)

Europe

Medtronic International Trading Sàrl Route du Molliau 31 CH-1131 Tolochenaz Switzerland Tel: (41 21) 802 7000 Fax: (41 21) 802 7900 www.medtronic.com

Canada

Medtronic of Canada Ltd. 6733 Kitimat Road Mississauga, Ontario L5N 1W3 Canada Tel: (905) 826-6020 Fax: (905) 826-6620 Toll-free: 1 (800) 268-5346

Asia Pacific Medtronic International, Ltd. 16/F Manulife Plaza The Lee Gardens, 33 Hysan Avenue Causeway Bay Hong Kong Tel: (852) 2891 4456 Fax: (852) 2891 6830 enquiryap@medtronic.com www.medtronic.com

Latin America

Medtronic USA, Inc. Doral Corporate Center II 3750 NW 87th Avenue Suite 700 Miami, FL 33178 USA Tel: (305) 500-9328 Fax: (786) 709-4244 www.medtronic.com

UC200804878 EN © Medtronic, Inc. 2008 All Rights Reserved Printed in USA May 2008

